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Abstract: We present an efficient method for monitoring woody (i.e., evergreen) and 

herbaceous (i.e., ephemeral) vegetation in Mediterranean forests at a sub pixel scale from 

Normalized Difference Vegetation Index (NDVI) time series derived from the Moderate 

Resolution Imaging Spectroradiometer (MODIS). The method is based on the distinct 

development periods of those vegetation components. In the dry season, herbaceous 

vegetation is absent or completely dry in Mediterranean forests. Thus the mean NDVI in the 

dry season was attributed to the woody vegetation (NDVIW). A constant NDVI value was 

assumed for soil background during this period. In the wet season, changes in NDVI were 

attributed to the development of ephemeral herbaceous vegetation in the forest floor and its 

maximum value to the peak green cover (NDVIH). NDVIW and NDVIH agreed well with 

field estimates of leaf area index and fraction of vegetation cover in two differently 

structured Mediterranean forests. To further assess the method’s assumptions, understory 

NDVI was retrieved form MODIS Bidirectional Reflectance Distribution Function (BRDF) 

data and compared with NDVIH. After calibration, leaf area index and woody and herbaceous 

vegetation covers were assessed for those forests. Applicability for pre- and post-fire 

OPEN ACCESS 

mailto:davidhelman.biu@gmail.com


Remote Sens. 2015, 7 12315 

 

 

monitoring is presented as a potential use of this method for forest management in 

Mediterranean-climate regions. 

Keywords: LAI; MODIS; Mt. Carmel; understory; wildfire; Yatir 

 

1. Introduction 

Monitoring the dynamics of different vegetation components of the forest is essential to identify and 

understand trends in vegetation structure and ecosystem functioning. Specifically, changes in vegetation 

cover from woody to herbaceous species might indicate successional processes [1] or decline/recovery 

processes following natural and/or anthropogenic disturbances [2,3]. Woody and herbaceous vegetation 

constitute different layers in forests (e.g., under and over-story layers), which makes their monitoring 

important for use in land-atmosphere models [4]. Moreover, practical fields such as the management of 

wood [5] and range [6] production, fire risk [7], wildlife habitat [8] and biodiversity [9] depend upon 

estimating woody and herbaceous vegetation in woodlands. For example, woody and herbaceous 

vegetation regulate fire behavior and fire severity in different manners [10]. They also differ in their 

value for livestock grazing depending on animal type (e.g., cattle and sheep consume mainly herbaceous 

plants while goats feed mostly on woody species).  

Conventional monitoring through ground inventory surveys is costly, time consuming and limited in 

temporal and spatial coverage [11]. In particular, reliable long-term vegetation monitoring in 

Mediterranean forests is challenging, as these forests are usually unable to return their costly 

management and monitoring operations. Satellite remote sensing offers an efficient and accessible tool 

for continuous vegetation monitoring at local to global scales complementing spatio-temporal limitations 

of field data.  

Among satellite remote sensing tools, spectral vegetation indices are widely used for monitoring 

vegetation [12]. However, satellite-derived vegetation indices are mostly used to interpret changes such 

as greening or browning of the entire vegetation system without being able to distinguish between the 

woody and herbaceous contribution to those trends [13–16]. To date, a few studies have used vegetation 

indices to detect vegetation components in woodland systems at a sub-pixel level. 

Canisius and Chen [17] proposed a physical-based approach to distinguish between understory and 

overstory reflectance in forests using satellite images. They applied multi-angle observations of canopy 

reflectance to monitor changes in understory reflectance. Yang et al. [18] proposed a more empirical-based 

method using the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance 

Distribution Function (BRDF) product to retrieve ecosystem understory Normalized Difference 

Vegetation Index (NDVIu). Although both methods successfully retrieve understory reflectance in 

sparse forests [19] they are unable to separate the contribution of woody and herbaceous vegetation to 

the understory signal. 

To distinguish between woody and herbaceous contributions, Roderick et al. [20] used time series 

analysis on NDVI. They aimed to map woody and herbaceous cover across Australia by applying a 

moving average method to separate between the long inter-annual trend and the seasonal (intra-annual) 

components of the time series. They assumed that woody vegetation in Australia is mainly evergreen 
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(i.e., woody plants that keep their leaves and stay green throughout the entire year) and herbaceous 

vegetation is ephemeral (i.e., above ground tissues that wither during the dry season). Then, they 

attributed the baseline of the trend to the woody vegetation and the seasonal signal to herbaceous 

vegetation in the understory [20].  

Lu et al. [21] further refined their method by applying a Seasonal-Trend decomposition (STL) [22] 

based on LOcally wEighted regreSsion Smooth (LOESS), adding a small seasonal component to the 

trend. By applying STL on 8-km NDVI time series derived from the Advanced Very High Resolution 

Radiometer (AVHRR), they produced ensemble-monthly averages of herbaceous vegetation cover for a 

14-year period over Australia. Although promising, their proposed model is relatively complex and not 

suited for Mediterranean vegetation systems. In their model, the NDVI attributed to the woody 

vegetation increases simultaneously with the NDVI attributed to the herbaceous vegetation, while in 

actuality there is a delay of a few months between the development of ephemeral (herbaceous) and 

evergreen (woody) foliage in Mediterranean systems [23]. 

Here we present an efficient method to distinguish between NDVI from woody (i.e., evergreen) and 

herbaceous (i.e., ephemeral) vegetation in Mediterranean woodlands at a sub-pixel scale using 

phenology-based time series analysis. We first built 14-year MODIS NDVI time series at a temporal 

resolution of 16 days and spatial resolution of 250 m. Then, using the distinct phenology of the herbaceous 

and woody vegetation we decomposed NDVI time series into their woody (NDVIW) and herbaceous 

(NDVIH) signals. Results were compared with field data of overstory (i.e., woody) leaf area index and 

estimated woody and herbaceous vegetation covers in two Mediterranean woodlands. We also compared our 

results with NDVIu retrieved from MODIS BRDF data [18] at those two sites. Finally, we demonstrate the 

potential applications of this method for forest management and pre/post-fire monitoring. 

2. Data and Methods 

2.1. Satellite Data and Processing  

We used the MODIS NDVI product (MOD13Q1) at a spatial resolution of 250 m. This product is a 

composite based on a single day value selected from periods of 16 days using a maximum value 

criterion [24]. Fourteen-year time series (from September 2000 to September 2014) of 16-day NDVI 

were built and woody and herbaceous signals were separated using the procedure described in 

Section 2.3 for each pixel at two woodland sites (see Section 2.2). NDVI, the most used vegetation index, 

is based on the solar reflectance in the red (Red, 0.6 μm) and near infrared bands (NIR, 0.8 μm). It is 

normalized to get values between −1 to 1, with fully vegetation cover approaching 1 [25]: 

NDVI = 
NIR − Red

NIR + Red
 (1) 

NDVI exhibits asymptotic (saturation) problems over highly dense vegetation cover and is also sensitive 

to canopy background variations with brighter canopies negatively biasing NDVI values over sparse 

vegetation [24]. However, NDVI reliably detected green biomass and vegetation dynamics in 

Mediterranean ecosystems that display relatively low to moderate values [26–29]. We preferred NDVI 

to the enhanced vegetation index (EVI), although EVI overcomes some of the above-mentioned 

drawbacks, because EVI tends to be much noisier over our study area with lower signal to noise ratio.  
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Noise and uncertainties in NDVI time series were reduced with LOESS [30], a technique for 

eliminating outliers from datasets with seasonal signal [21]. LOESS was applied with a window of  

n = 16 time steps (×16 days) to track the intra-annual change eliminating outliers that were greater than 

the standard deviation. Then, the residual was added to the smoothed time series to reproduce the original 

time series excluding only erroneous data. This procedure successfully eliminated cloud-contaminated 

and other erroneous data from the time series in all pixels within the study sites area. 

To retrieve understory NDVI, we applied the method proposed by Yang et al. [18] on the MODIS 

BRDF/Albedo product (MCD43A1, version 5). The MCD43A1 is produced every eight days with 

16 days of acquisition using data from both Terra and Aqua satellites [31]. It provides the weighting 

parameters associated with the RossThick–LiSparse BRDF model that describes the reflectance 

anisotropy at a 500m spatial resolution. The MCD43A1 product for tile h20v05 was downloaded with 

the associated data quality (MCD43A2) for the period of August 2005–August 2006.  

The rationale behind Yang et al. [18] method is that pixels with smaller overstory LAI (LAIo) expose 

more understory cover making the understory contribution to the NDVI more significant. Thus NDVI 

in pixels with LAIo approaching 0 would be attributed mostly to the understory. Such pixels are difficult 

to find or even identify in forests. However, if LAIo varies between pixels, each pixel exposes different 

understory cover displaying distinct NDVI value. Then, the expected NDVI for LAIo = 0 (i.e., NDVIu) 

could be calculated by using regression analysis on those pixels and their reconstructed NDVI values 

for different angles (from BRDF data). A linear regression is performed after setting the nadir-view 

NDVI as the independent variable and the reconstructed NDVI values from the bidirectional angles as 

dependent variables. NDVIu is then calculated as the mean NDVI value in which regression lines (one 

regression line for each angle in the pixels of a defined window) have the smallest standard deviation. 

Correlations should be significant for pixels within a defined window with a similar canopy structure 

but variable LAIo. For the full description of this method and some illustrative examples the reader is 

referred to [18]. 

Here, we chose a window of 3 × 3 pixels following the criteria established by Yang et al. (see 

Section 5.2 in [18]). A 16-day NDVIu time series was produced for each one of the two case study sites. 

It is worth noting that NDVIu includes the combined signal from evergreen woody vegetation and 

ephemeral herbaceous plants in the understory. Therefore, NDVIu should be comparable to soil 

background NDVI (0.1–0.2) in Yatir during the dry season. This is because there is hardly any evergreen 

vegetation in the understory and the herbaceous vegetation is completely dry (see Section 2.2.1). Hence, 

comparable NDVIu and ecosystem NDVI values during the wet season in Yatir would imply that the 

herbaceous vegetation is the main contributor to the NDVI during this period assessing the method’s 

assumptions (see Section 2.3). At Mt. Carmel, NDVIu is expected to be higher than soil NDVI during 

the dry season due to evergreen woody species in the understory (see Section 2.2.2.). 

2.2. The Case Study Sites  

2.2.1. Yatir Pine Forest 

The Yatir forest is a pine forest (Pinus halepensis) planted mostly from 1964 to 1969 in the semiarid 

region of Israel (31°20′49.2″N, 35°03′07.2″E, Figure 1a). It covers an area of ~2800 ha (Figure 1b). The 



Remote Sens. 2015, 7 12318 

 

 

average elevation is 650 m a.s.l. and mean annual precipitation is 285 mm∙yr−1 (for the last 40 years). 

The mean annual temperature is 18.2 °C with 13 and 31 °C for mean winter (November–January) and 

summer (May–July) temperatures, respectively. Tree density is ~300 trees∙ha−1 with a mean tree 

diameter of 17.5 cm and mean tree height of 11 m [32]. The canopy leaf area index (LAI) is typically 

~1.4 ± 0.4 m2∙m−2 with small fluctuations between winter and summer [33]. The understory is comprised 

of ephemeral herbaceous species (i.e., theropytes, geophytes and hemicryptophytes) growing during the 

wet season (September–April) and drying out in the beginning of the dry season (May–June). A relatively 

thin needle litter layer covers the forest floor during the needle senescence period (June–August) [23]. The 

forest understory is absent of evergreen vegetation (Figure 1c).  

 

Figure 1. (a) Location of the two study sites (Yatir forest and Mt. Carmel woodlands). 

(b) Aerial (Google Earth ®) and (c) field views of the planted pine forest of Yatir in the 

semiarid region of Israel. Photo: Eugene Ivanov. 

This forest site was selected because it has only two vertical layers (i.e., evergreen trees in the 

overstory and ephemeral herbaceous species in the understory) and a monospecific single-aged stand 

structure, which makes easier interpretation of the results. Moreover, this site was subject to extensive 

studies since the operation of its FLUXNET station in 2000 and is of special interest for its contribution, 

along other semi-arid ecosystems, to the climate system [34,35].  

We used allometric mean annual LAIo estimates for the period of January 2000–June 2005 and 

monthly effective LAIo measured using a TRAC device (Tracing Radiation and Architecture of 

Canopies) during 2005 and 2006, both from Sprintsin et al. [33], to calibrate and compare with NDVIW 

(i.e., overstory trees in the case of Yatir). 
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2.2.2. Mt. Carmel Mixed Pine-Oak Woodlands 

Mt. Carmel region (35°E, 32°N; 10–520 m, Figure 1a) has a typical East-Mediterranean climate with 

dry hot summers (June–August) and cool rainy autumns and winters (October–May). The mixed pine-oak 

woodlands in Mt. Carmel cover an area of ~21,500 ha (Figure 2a). Mean annual precipitation ranges 

from 550 mm∙yr−1 near the coastal plane to 750 mm∙yr−1 at the highest elevations (550 m a.s.l.). 

Vegetation in Mt. Carmel varies between dense multi-aged mixed pine-oak woodland and a more open 

and patchy shrublands. It consists of a variety of woody shrub and tree species in which the most 

dominant are Pinus halepensis, Quercus calliprinos, Pistacia lentiscus L. and Cistus salviifolius L., 

along with a large variety of herbaceous species (i.e., therophytes, geophytes and hemicryptophytes). 

This results in a complex vertical and horizontal multi-strata canopy structure [36] (Figure 2b). 

 

Figure 2. (a) Aerial (Google Earth ®) and (b) field views of the mixed pine-oak evergreen 

woodlands at Mt. Carmel. The burnt area from the wildfire of 2010 (red line) and the location 

of the 22 survey plots (dots) are indicated in (a). Photo: Naama Tessler. 

The most dominant tree species are the Aleppo Pine (P. halepensis) and the common oak (Quercus 

calliprinos). These two evergreen tree species vary strongly in their total cover and shift in dominance 

depending on ecological site conditions (mainly bedrock type), land use history (grazing, cutting), and 

disturbances (fire). Herbaceous plants in the understory are all ephemerals with a life cycle during the 

wet season. The area went through repeated fires during the last 20 years affecting the regeneration of 

P. halepensis, which resulted in multi-aged pine distribution [37]. Wildfires in this site changed the 

forest structure and ratio of woody to herbaceous vegetation cover affecting its hydrological balance and 

ecosystem functioning [38].  

We selected this site to test our method in a more complex woodland system comprising evergreen 

woody vegetation in the understory. In addition, this area went through a large wildfire (~2500 ha) in 

December 2010 [39] and was monitored since then providing in situ data of vegetation cover that can be 
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used to compare with our results. This site represents a typical complex-structured Mediterranean 

woodland system with relatively high productivity (unpublished data). 

Four field surveys were conducted since the wildfire of 2010 during the spring seasons  

(March–May, i.e., the time of peak herbaceous cover) of 2011–2014 in 22 plots of 10 × 10 m2 each. The 

plots were selected based on Mt. Carmel geology map on southern and northern aspects within the burnt 

area (Figure 2a). In each plot, total vegetation cover and specific species cover were determined 

following Stohlgren [40]. Species cover were summed and grouped into three groups: evergreen trees in 

the overstory (Tr-Ev), evergreen shrubs in the understory (Sh-Ev) and ephemeral herbaceous plants in 

the understory (He-Ep) (Table 1). In addition to vegetation cover assessment, fire severity was 

determined in each plot and classified as: low, medium and high according to the classification proposed 

by Neary et al. [41]. Classification was extended to the total burnt area by using high spatial resolution 

aerial photos and GIS tools. 

Table 1. The mean vegetation cover (%) of evergreen trees (Tr-Ev) and shrubs (Sh-Ev) and 

ephemeral herbaceous species (He-Ep) estimated in 22 plots at Mt. Carmel (Figure 2a) 

during 2011–2014. The total vegetation cover in each plot, and the mean and standard errors 

(SE) of all plots are also indicated. 

Plot Tr-Ev (over) Sh-Ev (under) He-Ep (under) Total (over + under) 

1 14 37 17 68 

2 9 38 33 80 

3 2 39 44 85 

4 3 25 59 87 

5 12 41 30 83 

6 28 41 16 85 

7 15 30 30 77 

8 17 46 18 82 

9 16 29 23 68 

10 16 34 20 70 

11 9 53 26 88 

12 19 28 30 77 

13 20 31 23 73 

14 9 17 35 60 

15 14 29 26 68 

16 25 38 20 83 

17 31 26 36 93 

18 13 24 29 67 

19 28 25 15 68 

20 14 49 18 80 

21 29 18 31 78 

22 28 46 11 85 

AVG 17 34 27 78 

SE 2 2 2 2 

Average in situ vegetation cover for each plot were used to calibrate NDVIW and NDVIH, and to 

produce woody and herbaceous cover maps for 2000–2014 at Mt. Carmel. NDVIH was regressed against 
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He-Ep, while NDVIW was regressed against the sum of Tr-Ev and Sh-Ev covers. Calibrations included 

only 14 MODIS pixels (250 m) because some of the 22 plots were within the area of a single pixel. In 

such case, species covers were averaged to get the mean cover within the pixel area. Plots that fall 

between pixels were discarded.  

Although there are some uncertainties when comparing field and satellite data due to scaling and/or 

sensor view issues [42], this method has been extensively used to calibrate/validate satellite vegetation 

indices with biophysical parameters [21,26,27,43]. To test the robustness of this calibration we calculated 

vegetation covers using the classical two-end members fractional vegetation cover equation [44]: 

FVC = 
NDVIX − NDVI0

NDVIFull − NDVI0

 (2) 

where NDVI0 in Equation (2) is the NDVI from the soil background (0.1), NDVIFull is the NDVI from a fully 

vegetated area (0.7 and 0.9 for woody and herbaceous, respectively) and NDVIX is the NDVIW or the NDVIH 

value. Finally, we compared woody and herbaceous cover maps retrieved from the two models.  

2.3. Description of the Method  

The well-defined wet and dry seasons characterizing Mediterranean climate regulate the 

photosynthetic activity and growth of the vegetation in Mediterranean ecosystems [45]. The seasonal 

year in Mediterranean forests is defined as the 12-month period since the beginning of the rainfall in 

October [32]. Ephemeral herbaceous species appear as an understory layer in forests shortly after the 

beginning of the rainy season (October–November) reaching a peak biomass at the end of winter (February), 

drying out in spring (April) [46]. In contrast, the evergreen woody vegetation becomes most active from 

early spring (March) developing new leaves towards the dry season (June–August) [23] (Figure 3). 

 

Figure 3. Schematic representation of the distinct growth and senescence periods of evergreen 

woody vegetation (dashed blue line) and ephemeral herbaceous plants (red line) in 

Mediterranean forests. Phenological stages are shown as the relative Normalized Difference 

Vegetation Index (i.e., NDVI/NDVImax) of each of those two vegetation components. The wet 

and dry periods are also indicated. 
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These two components, i.e., woody and herbaceous species, contribute differently to the NDVI (Figure 3) 

resulting in a mixed signal at the sub pixel scale [19,20]. Hence, only by using time series analysis the 

contribution of these components to the total ecosystem NDVI (NDVIEcos) can be estimated. Because in 

Mediterranean woodlands the herbaceous vegetation is mostly ephemeral, NDVIEcos during the dry 

season (June–August) could be attributed solely to evergreen woody species and soil background 

(hereafter NDVIW). Then, the seasonal component (i.e., the NDVIEcos in wet season—October–April) 

would be attributed mostly to the herbaceous vegetation (hereafter NDVISeas), which is the most dynamic 

component (in terms of NDVI) in those systems [21]. Accordingly, we separated the woody and 

herbaceous NDVI from the NDVIEcos in three steps: 

(1) The average NDVIEcos over the dry period (June–August) was calculated and taken as NDVIW 

for each seasonal year (i.e., from September to September). If NDVIEcos in the wet season was 

lower than the calculated NDVIW, the minimum NDVIEcos value was taken as the NDVIW 

instead. This ensures that abrupt intra-annual changes following disturbances (e.g., fires or 

clearing) are detected. For example, if a fire event occurs in December (i.e., during the wet 

season), taking the average NDVIEcos over the dry season (June–August) would overestimate 

woody cover in that specific year. In contrast, taking the minimum NDVIEcos, which is the 

NDVIEcos value following the fire, would be more representative because it includes the 

change due to the fire. 

(2) The NDVIW is then subtracted from NDVIEcos to compute the seasonal component of the time 

series (NDVISeas). 

(3) The maximum NDVISeas value in each seasonal year is taken as NDVIH, which represents the 

peak biomass/green-cover of the herbaceous vegetation [13]. 

By assuming a constant NDVI for soil background during the dry season [27], NDVIW could be used 

to track inter-annual changes in forest’s woody cover or leaf area index (LAI) after calibrating against 

ground truth data. Similarly, NDVIH could be used to monitor changes in green biomass [26,27] or 

herbaceous vegetation fraction cover [20,21].  

Although NDVIH does not account for herbaceous vegetation fully covered by the canopy, it is 

assumed that in closed forests it contributes a negligible fraction due to the limited light resource [21]. In 

open forests, though, because sensor view angle changes throughout the year, NDVIH is assumed to represent 

almost all of the herbaceous vegetation present in the forest floor. The validity of these assumptions were 

previously demonstrated in several studies [21,26,27] and will be further examined here by comparing with 

field data and the calculated understory NDVI (NDVIu) from the MODIS BRDF data [18]. 

2.4. Applications of NDVIW and NDVIH for Pre- and Post-Fire Monitoring in Mt. Carmel  

We demonstrate three pre/post fire-monitoring applications using NDVIW and NDVIH in Mt. Carmel 

woodlands selecting the wildfire of 2010 as a case study. Field data collected at the burnt area (described 

in Section 2.2.2) were compared with three applications of NDVIW and NDVIH:  

(i) Post-fire monitoring of woody and herbaceous recovery (i.e., changes in woody and 

herbaceous cover) in the burnt area of the wildfire of 2010 (four post-fire years) assessed from 

NDVIW and NDVIH. 
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(ii) Fire severity assessment in the burnt area from the difference in NDVIW between pre and post 

fire years.  

(iii) Production of a fuel-based fire risk map from NDVIW for the year prior to the wildfire and 

comparison with fire-spread behavior (i.e., the burnt area). Fire risk map was produced by 

assigning a relative score from 1 to 10 (i.e., from the lowest to the highest risk level) to each 

pixel in the Mt. Carmel area according to its woody cover (i.e., 1 for minimum and 10 for 

maximum cover) and dryness status (i.e., 1 for the most positive, or no trend, and 10 for the 

most negative trend).  

Although forest fires are driven also by weather conditions, topography and many other factors, here 

we examined the importance of fuel density and status on fire spread behavior. This is important because 

fire hazard models mostly use static fuel-based maps that does not account for long-term drought effects 

on the woody vegetation status. We did not use NDVIH in this map because fires in Mt. Carmel were 

mostly driven by woody dry matter and less by ephemeral herbaceous vegetation [47]. Moreover, the 

fire risk map produced when using also NDVIH was mostly similar to that produced from NDVIW alone. 

3. Results and Discussion 

3.1. Mapping Leaf Area Index from NDVIW in Yatir 

Figure 4a shows the time series of NDVI of the entire ecosystem (NDVIEcos) from 2000 to 2014 (from 

September to September) in one representative pixel at the planted pine-forest of Yatir. The NDVIEcos 

during the summer was relatively low (~0.3) increasing in winter, reaching a maximum value of 0.45–0.6 

and decreasing afterward towards the next summer (Figure 4a). NDVIW generally increased from 2001 

(i.e., the seasonal year of 2000/1) to 2008 decreasing afterward till the end of the time series (Figure 4c).  

NDVISeas was very dynamic throughout the years in Yatir (Figure 4e) probably due to variations in 

annual rainfall amount [26]. The NDVIu derived from BRDF data was almost the same as the NDVIEcos 

during the main wet season (November–April, Figure 5a). Because understory vegetation in Yatir is 

comprised mostly of ephemeral herbaceous species, this supports the assumption that herbaceous 

vegetation in the understory is the main contributor to the seasonal change in NDVIEcos. However, 

NDVIEcos increased in October before NDVIu started to increase, probably due to tree leaf development 

as observed from the increase in LAIo (Figure 5a). Similarly, NDVIEcos was higher than NDVIu during 

the senescence period (March–April) coincident with an increase in LAIo (Figure 5a). 

The relatively high NDVIu during the summer (~0.23) compared to the soil background NDVI for 

this region (0.1–0.2) was probably due to accumulated greenish to yellowish needle litter in the 

understory, which is typically accumulated during this period in the forest floor [23]. NDVIH showed 

almost an opposite trend to NDVIW mostly decreasing till 2009, increasing in the following years 

(Figure 4g). The relationship between LAIo from the TRAC measurements and June to August NDVIEcos 

was significant (R2 = 0.72, p < 0.05, Figure 5b). NDVIW also agreed well with in situ mean annual LAIo 

during January 2000–June 2005 (R2 = 0.71, p < 0.05), exhibiting a typical exponential relationship 

(LAI = 0.18∙e7∙NDVIP, Figure 5c). Indeed, the significant relationships between NDVI and in situ LAIo 

imply that the mean over the dry season NDVIEcos (i.e., NDVIW) is a good estimator of the mean annual 

LAIo in this forest site. 
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Figure 4. Examples of the original and decomposed NDVI time series in one representative 

pixel (250 m) at the evergreen pine forest of Yatir (left column) and the pine-oak woodlands of 

Mt. Carmel (right column). Original and smoothed time series of NDVIEcos are shown in (a,b), 

NDVIW in (c,d), NDVISeas in (e,f) and NDVIH in (g,h) for Yatir and Mt. Carmel, respectively. 

 

Figure 5. (a) NDVIEcos, NDVIu (retrieved from Bidirectional Reflectance Distribution 

Function product), and monthly in situ overstory LAI (LAIo) in a 4 km2 area at the Yatir 

pine forest. Scatterplots showing the relationships between (b) monthly LAIo vs. NDVIEcos 

and (c) mean annual LAIo vs. NDVIW (2000–2006) for the same area. 

Figure 6 shows the spatial distribution of the mean annual LAIo calculated from NDVIW in Yatir at 

a 250 m spatial resolution with mostly negative trends for the period of 2000–2014. 
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Figure 6. Spatial distribution of (a) the mean annual and (b) trends of overstory LAI retrieved 

from NDVIW at Yatir for 2000–2014. Significant trends are indicated in (a) as + (positive) and 

• (negative), while in (b) all significant trends are indicated as +. 

3.2. Assessing Woody and Herbaceous Cover from NDVIW and NDVIH in Mt. Carmel  

Figure 4b,d,f,h show the NDVIEcos and its decomposition into NDVIW, NDVIH and NDVISeas in one 

representative pixel at the mixed pine-oak woodlands of Mt. Carmel. The large wildfire of December 

2010 (2500 ha) is noted by an abrupt decline in NDVIW from 2010 to 2011 (Figure 4d). Another, much 

smaller wildfire event in 2005 (150 ha, [39]) is also noted by a decrease in NDVIW from 2004 to 2005. 

As in Yatir, the NDVIu retrieved from BRDF data suggests that understory vegetation is the primary 

contributor to NDVIEcos during the wet season (November–April, Figure 7). However, unlike in Yatir, 

the NDVIu was high in Mt. Carmel woodlands during the dry season (~0.4) due to the relatively dense 

evergreen vegetation cover in the understory.  
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Figure 7. NDVIEcos and NDVIu (from BRDF) in a 4-km2 area of the pine-oak woodlands at 

Mt. Carmel. 

Woody and herbaceous vegetation covers estimated in field were significantly correlated with 

NDVIW and NDVIH, respectively (p < 0.01 for both, Figure 8). The coefficient of determination was 

moderate with R2 of 0.58 for NDVIW vs. woody cover and 0.69 for NDVIH vs. herbaceous vegetation 

cover. Correlations were only moderate probably due to the scale differences between the field plots 

(10 × 10 m2) and the MODIS pixels (250 × 250 m2). 

 

Figure 8. Scatterplots of woody (left) and herbaceous (right) vegetation covers (%) assessed 

in field vs. NDVIW and NDVIH in 14-MODIS pixels. Each dot in the graph is the four-year 

averaged vegetation cover within one MODIS pixel (see Section 2.2.2). For the herbaceous 

vegetation cover, an exponential function was fitted following the assumption that NDVIH 

equals 0 in the dry season when herbaceous vegetation is absent (0% cover). 

We used the regression functions from Figure 8 to derive maps of the mean annual woody and herbaceous 

vegetation covers at Mt. Carmel for the period of 2000–2014 (Figure 9a,d). Similar spatial patterns with 

slightly different magnitudes were obtained from NDVIW and NDVIH when using the two-end members 

FVC equation (Equation (2), Figure 9b,e).  
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Figure 9. The 14-year mean woody (a–c) and herbaceous (d–f) vegetation cover (%) and 

NDVI trends in Mt. Carmel. Vegetation cover was estimated from NDVIW and NDVIH using 

(a,d) NDVI-field regression functions (see Figure 8) and (b,e) the two-end members FVC 

equation (Equation (2)). The strong NDVIW decline in (c) and contrast NDVIH increase in 

(f) are the result of the 2010 wildfire (compare with wildfire area in Figure 2a). 

However, the range in woody cover at Mt. Carmel was narrower when using the calibration function 

(30%–70%, Figure 9a) compared to the obtained from the two-end members function (15%–80%, 

Figure 9b). This was probably because of the relatively narrow range of woody covers estimated at field and 

used for the calibration (40%–60%, Figure 8). Omitting low and high covers from the calibration resulted in 

overestimation and underestimation of the woody cover at sparse/dense woody cover, respectively.  

Oppositely, the range of herbaceous cover was wider when using the calibration function (20%–90%, 

Figure 9d) compared to the retrieved from the two-end members function (30%–65%, Figure 9e). This is 

probably because of the exponential function used for calibration, whereas the function used in two-end 
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members model is linear. Therefore, the two-end members model underestimated the herbaceous 

vegetation cover at low and high values of vegetation covers.  

NDVIW and NDVIH were useful in assessing woody and herbaceous vegetation dynamics relatively, 

although the described discrepancies. A good example is the effect of the 2010 wildfire on the woody and 

herbaceous trends observed in Figure 9c,f. A large decline in NDVIW is clearly noted in the 14-year NDVIW 

trends (~0.2 per decade), while NDVIH slightly increased (<0.1 per decade) during the same period. 

3.3. Pre and Post Fire Assessment Using NDVIW and NDVIH in Mt. Carmel  

NDVI is an indicator of the vegetation dryness [48] and could be used to assess dry woody vegetation 

matter, which is the main fuel source in Mediterranean forest wildfires. A decline in NDVIW would 

imply drying trends in woody vegetation and increasing dry matter for potential fires [47]. On the 

contrary, low woody cover would reduce fire vulnerability in woodlands because there is less fuel for 

fire. Ephemeral herbaceous vegetation plays only a minor role in Mt. Carmel wildfires because of its 

relatively low biomass.  

Figure 10a shows that the fuel-based fire risk map based only on the mean annual and trends in 

NDVIW reproduced the fire-spread behavior of the 2010 wildfire with great accuracy.  

 

Figure 10. (a) A fuel-based fire risk map produced for the year 2009 (prior to the 2010 

wildfire) from the woody vegetation cover (mean NDVIW) and its dryness status (NDVIW 

trends). Superimposed is the area of the wildfire; histograms of (b) the total number of pixels 

in Mt. Carmel with their respective risk levels and (c) the ratio between the number of pixels 

with a specific risk level in the burnt zone to that in the entire Mt. Carmel area  

(in %). The dashed line in (c) indicates the percent area of burnt zone from the entire 

Mt. Carmel area (i.e., 8.6%). 
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Most of the pixels within the wildfire area were ranked with the highest risk level, being 18% and 

21% (for levels 9 and 10, respectively) from the total cells ranked with the same levels in Mt. Carmel 

(Figure 10c). This is more than the expected in the burnt zone, which comprises only ~9% of the entire 

Mt. Carmel area. These results, based only on fuel density and status (both from NDVIW), do not 

consider topographic or weather conditions, which are important driving forces of fire spread behavior. 

However, such a fuel-based map might improve fire hazard models that mostly rely upon static fuel 

maps [47]. Those do not consider the effects of drought years on the woody (and/or herbaceous in other 

cases) vegetation status, which is an important factor determining fire spread behavior as shown here.  

 

Figure 11. Maps of (a) low, medium and high severity burnt areas classified in field and 

extended with high-resolution aerial photograph; and (b) the difference between post- and 

pre-fire NDVIW (ΔNDVIW). (c) Box plot of mean, first and third quartiles (with respective 

standard deviations) of ΔNDVIW in the low, medium and high severity areas mapped at field 

(shown in a). Different letters indicate statistically significant differences at p < 0.001 using 

a two-tailed Student’s t-test, after a Bonferroni correction. 

NDVIW was also used to assess fire severity in the burnt area of Mt. Carmel. Figure 11 shows the 

difference between NDVIW from the year prior (2010) and posterior (2011) to the wildfire (ΔNDVIW, 
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Figure 11b). The mean ΔNDVIW was significantly different (p < 0.001) between areas classified in field 

as low, medium and high severity with mean ΔNDVIW of 0.1, 0.13 and 0.16, respectively (Figure 11c). 

Finally, we used NDVIW and NDVIH to assess woody and herbaceous vegetation recovery 

(i.e., changes in cover) in the burnt area (Figure 12). Results from NDVIW and NDVIH agreed well with 

the field estimates when using both, the empirical relationships (from Figure 8) and the classical two-end 

members equation (Equation (2)). All estimates showed that after a woody cover reduction due to the 

wildfire (Figures 9c and 11b), woody vegetation cover decreased from 2011 to 2012 (from the year after 

the wildfire to the next year) but increased in the subsequent two years (Figure 12). 

 

Figure 12. Changes in woody and herbaceous vegetation cover following the wildfire of 

2010 as estimated from field (open bars) and from NDVI (solid bars) using a field-based 

calibration function (NDVI-field) and two-end members fraction of vegetation cover (FVC) 

equation. Asterisks indicate statistically significant differences between the NDVI’s 

components and the field estimates for each specific year at p < 0.05. Different letters denote 

statistically significant differences in vegetation covers between years at p < 0.05. 

The herbaceous vegetation cover that generally increased in the burnt zone (Figure 9f), showed an 

opposite change to the woody cover. It first increased from 2011 to 2012 (first to second year after the 

wildfire) but decreased afterward during the next two years (in 2013 and 2014).  

The agreement between field estimates and calculated vegetation covers from NDVIW and NDVIH 

demonstrate the potential use of this method to monitor succession processes in forests 

following disturbances. 

4. Conclusions  

In this study, we proposed a phenology-based method that uses the distinct timing of ephemeral 

herbaceous (i.e, above ground tissues that wither during the dry season) and woody (i.e., evergreen) 

foliage development to separate time series of the Normalized Difference Vegetation Index (NDVI) into 

their respective contributions. The average NDVI during the dry season (i.e., when herbaceous species 

are dry or absent) was attributed to the woody vegetation (NDVIW), while the maximum value during the 

wet season (NDVIH) was attributed to the herbaceous vegetation after subtracting NDVIW from the time 

series. The assumption that the herbaceous vegetation contributes most of the NDVI signal during the wet 

season was validated with the understory NDVI (NDVIu) retrieved from an independent semi-empirical 

method based on the small bidirectional variation in NDVIu compared to the canopy-level variation [18]. 
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Both methods showed that change in NDVI during the wet season were caused by the development of 

herbaceous vegetation at the understory.  

NDVIW agreed well with the in situ monthly and mean annual overstory LAI (LAIo) measured at the 

planted pine forest of Yatir (southern Israel). The coefficients of determination (R2) were 0.72 and 0.71 

for monthly and annual LAIo, respectively. NDVIW and NDVIH were also moderately correlated to 

woody and herbaceous vegetation covers estimated at field in Mt. Carmel pine-oak woodlands (northern 

Israel) with R2 of 0.58 and 0.69, respectively (p < 0.1 for both correlations). The relationships between 

NDVIW and LAIo were used to assess spatial variations in mean annual and trends in LAIo at Yatir for 

2000–2014. The relationships between NDVIW/NDVIH and in situ woody/herbaceous covers were used 

to produce maps of mean annual and trends in woody and herbaceous vegetation covers at Mt. Carmel 

for 2000–2014 (using the calibration functions). The spatial patterns of those maps were comparable to 

those retrieved using a simple two-end members equation. 

To show the potential use of this method, we presented three pre/post-fire applications using the 

Mt. Carmel 2010 wildfire as a case study: (1) We produced a fuel-based fire risk map with mean NDVIW 

representing woody cover and its trend woody dryness condition (i.e., negative trends meaning drying 

trends). Pixels with high NDVIW and negative NDVIW trends were ranked as high fire-risk pixels and 

vice-versa. The fire risk map reproduced fire-spread behavior of the wildfire of 2010 with great accuracy. 

About 39% of the pixels in Mt. Carmel with the highest risk levels were found within the area of the 

wildfire, which constitute only 9% from the entire Mt. Carmel area; (2) We used the difference in 

NDVIW between the year after and before the wildfire (ΔNDVIW) to map fire severity. The mean 

ΔNDVIW was significantly different (p < 0.001) between areas classified at field as low, medium and 

high severity with, respectively, decreasing ΔNDVIW values; (3) We used NDVIW and NDVIH to 

monitor the recovery of the woody and herbaceous vegetation in the burnt area during post-fire years 

(2011–2014). 

The proposed method has the potentials to be used in Mediterranean systems for several forest 

management, fire risk assessment and post fire monitoring purposes. Moreover, it could be used to assess 

overstory and understory LAI and fraction of absorbed photosynthetic active radiation (fPAR) [49], 

which are essential parameters in land surface modeling. Yet, it should be noted that limitations of 

satellite imaging in detecting understory vegetation underneath a denser overstory cover (>80%) must be 

further determined. This could be done, for example, by placing ground spectral sensors at several heights in 

the forest to determine over- and under-story NDVI [50] and compare with NDVIW and NDVIH. 

Once established, this method holds a great potential for monitoring, understanding and managing 

complex vegetation systems comprising various combinations of woody and herbaceous vegetation in 

Mediterranean ecosystems. 
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