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Abstract: The combination of remote sensing and crop growth models has become an 

effective tool for yield estimation and a potential method for grain quality estimation. In this 

study, two assimilation variables (derived from a hyperspectral sensor), called leaf area 

index (LAI) and canopy nitrogen accumulation (CNA), were jointly used to calibrate the 

sensitive parameters and initial states of the DSSAT-CERES crop model, to improve 
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simulated output of the grain yield and protein content of winter wheat. The results show that 

the modified simple ratio (MSR) and normalized difference red edge (NDRE) better 

estimated LAI and CNA, respectively, compared with the other possible vegetation indices. 

The integration of both LAI and CNA resulted in a more robust DSSAT-CERES models 

with than each one alone. The R2 and RMSE values, respectively, of the regression between 

the simulated (using the two assimilation variables method) and measured LAI were 0.828 

and 0.494, and for CNA were 0.808 and 20.26 kg N∙ha−1. These two assimilation variables 

resulted in grain yield and protein content estimates of winter wheat with a high precision 

and R2 and RMSE values of 0.698 and 0.726 ton∙ha−1, and 0.758% and 1.16%, respectively. 

This study provides a more robust method for estimating the grain yield and protein content 

of winter wheat based on the integration of the DSSAT-CERES crop model and remote 

sensing data. 

Keywords: Hyperspectral; DSSAT-CERES; winter wheat; particle swarm optimization 

algorithm; yield; grain protein content 

 

1. Introduction 

Wheat (Triticum aestivum L.) is a staple food in North China, where the population accounts for about 

40% of the country’s total [1,2]. The productivity of wheat, including grain yield and quality, directly 

determines its market price and related agriculture policies [3,4], and an advanced knowledge of grain 

yield and quality is important for this purpose [5,6]. The combination of remote sensing and crop growth 

simulation models has provided an effective tool for crop grain yield and quality estimation in regional 

studies [5,7]. 

Many studies have been focused on the integration of remote sensing and crop growth simulation 

models for crop growth monitoring and yield estimation [5,7,8]. Maas [9,10] initially described four 

techniques (input, updating, re-initialization, and re-parameterization) for leaf area indices (LAI) by 

incorporating remote sensing data into crop growth model estimations. Guerif and Duke [8,11] 

combined the Simple and Universal Crop Growth Simulator (SUCROS) model and the SAIL reflectance 

model to calibrate the site specific characteristics of soil and crops using remote sensing data, and they 

suggested that assimilation methods had a great potential for large-scale crop monitoring (e.g., yield 

prediction). Jongschaap [12] demonstrated simulation accuracy could be improved by run-time 

replacement for the Rotask simulation model with remote sensing observations. In a regional winter 

wheat and maize yield simulation, De Wit and Van Diepen [13] used the Ensemble Kalman filter 

(EnKF) to assimilate soil moisture into the World Food Study (WOFOST) model, where the results 

indicated assimilation of soil moisture improved the model’s relationship with crop yield statistics for 

66% and 56% of the regions for winter wheat and maize, respectively. Fang et al. [7,14] integrated 

MODIS LAI, vegetation index, and the Crop System Model (CSM)-Crop Environment Resource 

Synthesis (CERES)-Maize model for corn yield estimation in Indiana, USA. Morel et al. [15] coupled 

the sugarcane modelling software (MOSICAS) with a remotely sensed time series of the fraction of 

intercepted photosynthetically active radiation (fIPAR) to optimize the yield estimation by the partial 
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forcing and complete forcing methods. They confirmed that MOSICAS was forced with fIPAR values 

from SPOT images, which were used to improve the accuracy of the model for the yield estimation. 

Previous studies have typically used one agronomic variable (e.g., LAI) as a state variable for 

combining remote sensing and crop growth models and for yield estimation [8,13,14,16,17]. In such 

studies, the assimilated variable of the model had a reliable accuracy, but other agronomic state variables 

did not [18]. Thorp et al. [19] linked the PROSPECT + SAIL (PROSAIL) radiative transfer model and 

Decision Support System for Agrotechnology Transfer (DSSAT) crop growth models 

(DSSAT-PROSAIL) with LAI and plant nitrogen (N) content to estimate the LAI, canopy biomass,  

plant N content, and yield of durum wheat and demonstrated that inverting the DSSAT-PROSAIL  

model offered better estimates of crop biophysical properties. Ma [20] selected the 

Soil-water-atmosphere-plant environment (SWAP) model and the Moderate Resolution Imaging 

Spectroradiometer (MODIS) products to assimilate evapotranspiration and LAI and suggested that this 

could achieve a better yield estimation of winter wheat than the use of just one variable. Wang et al. [18] 

confirmed that the use of LAI together with leaf N accumulation as assimilation variables resulted in a 

better estimation of winter wheat yield than using each variable alone for model parameter initialization. 

According to previous studies, the use of two assimilation variables offers the potential for enhanced 

agro-ecosystem modeling. However, few studies have used two remotely derived assimilation variables, 

and especially the DSSAT-CERES crop model for quality estimation has received little attention. 

Therefore, the objectives of this work were (1) to select the best spectral indices for estimating LAI and 

canopy N accumulation (CNA) (2) to assimilate LAI and CNA derived from spectral indices into the 

DSSAT-CERES model using the data assimilation method for obtaining more accurate LAI and CNA 

simulations and (3) to calibrate the optimal initial values and model parameters for both grain yield and 

protein content (GPC, an important indicator of grain quality) prediction of winter wheat.  

2. Materials and Methods 

2.1. Description of the Study Site 

The field experiment was conducted during the 2009/2010 and 2012/2013 growing seasons of winter 

wheat at the Xiaotangshan experimental site (40.17°N, 116.43°E) in Beijing, China. This area is 

representative of the overall soil and crop management practices in this region. The soil is fine-loamy, 

with a nitrate N (NO3-N) content of 3.16–14.82 mg∙kg−1, an ammonium N (NH3-N) content of 

10.20–12.32 mg∙kg−1, an Olsen phosphorus content of 3.14–21.18 mg∙kg−1, an exchangeable potassium 

content of 86.83–120.62 mg∙kg−1, and an organic matter content of 15.84–20.24 g∙kg−1 in the 0–30 cm 

layer. This area has a typical warm, temperate, semi-humid continental monsoon climate, with hot rainy 

summers, cold dry winters, and short springs and autumns. Throughout all seasons, the temperature 

fluctuated daily with significant differences between night and day.  

Three experiments were conducted with different wheat cultivars, N application rates, and sowing 

dates over multiple years (Table 1). Each plot area was 100 m2. Experiment 1 was designed in 2009/2010 

with a completely randomized design of three wheat cultivars and three sowing dates. Experiment 2 was 

conducted in 2012/2013 with a completely randomized design of four wheat cultivars and four N 

application rates. Experiment 3 was a randomized complete block design with two replications of four N 
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application rates. Plot management followed the local standard practices (weed control, pest 

management and fertilizer application) for wheat production in this region. 

Table 1. Summary of treatments for the three experiments. 

Exp. Growing Season Cultivar Sowing Date N Application(kg N∙ha−1) 

1 2009–2010 
Nongda195, Jingdong13, 

Jing9428 

25 September,  

5 October and  

15 October 2009 

135 

2 2012–2013 
Nongda211, Zhongmai175, 

Zhongyou206, Jing9843, 
28 September 2012 0, 105, 210, 420 

3 2012–2013 Jingdong22 27 September 2012 60, 136, 210, 280 

Note: Exp. is the abbreviation of experiment. There were three winter wheat cultivars and each had three 

planting dates in 2009.  

2.2. Data Acquisition 

2.2.1. Fundamental Data Set 

The fundamental data set includes meteorological data, soil data, and management data. The 

meteorological data contain the precipitation and maximum and minimum air temperature, which were 

acquired from the China Meteorological Data Sharing Service System [21]. The solar radiation was 

calculated with the Angstrom formula [22], using the hours of sunshine recorded by the CMDSSS. 

The soil data for each soil horizon, including soil texture, permanent wilting point, field capacity, 

volumetric water content at saturation, soil organic carbon, inorganic N, PH, and bulk density, were 

measured through ground investigations and instrumental measurements [23]. Crop management data 

(e.g., seeding, irrigation, and fertilization) were recorded while carrying out the field experiments. 

2.2.2. Canopy Hyperspectral Reflectance Data 

Spectral measurements were conducted at the following stages of winter wheat (number is the growth 

stage based on Zadoks’ code system [24]): stem elongation (31), booting (47), anthesis (65) and milk 

development (75) (Table 2). The canopy spectral reflectance data were measured with an ASD 

FieldSpec Pro FR spectroradiometer (Analytical Spectral Devices, Boulder, Co, USA) with a spectral 

range of 350–2500 nm and a view angle of 25°. To ensure that the same instrument parameters were used 

at different growth stages, the instrument was held at a height of 1.0 m above the canopy, under clear sky 

conditions, between 10:00 a.m. and 2:00 p.m. Beijing time. Vegetation radiance measurement was taken 

by averaging 20 canopy spectral reflectance curves at an optimized integration time, with a dark current 

correction for each spectrometry measurement. A white standard panel coated with BaSO4 was used for 

the spectral reflectance calibration before and after these measurements. 

2.2.3. Plant Measurement 

The aboveground vegetation corresponding to the spectral sampling positions in a plot was collected 

and was destructively sampled by randomly cutting plants from an area of 0.25 m2, which the number of 

tillers was counted. Then, 20 representative wheat tillers were randomly sampled from the randomly 
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cutting plants. Leaf area and related dry mass of 20 representative wheat tillers was measured, and 

specific leaf area (SLA) was calculated. The total dry mass of leaves within the sampled area was 

determined by the representative dry mass of leaves and the number tillers in sample area. Leaf area 

index (LAI) was then computed by multiplying the dry mass with the SLA [25]. The dry plant material 

of each sample was then ground to pass through a 240-mesh screen and analyzed for total N using a 

Carlo-Erba NA 1500 dry combustion analyzer (Carlo Erba, Milan, Italy) [26]. Canopy N accumulation 

(CNAm) was calculated as the aboveground biomass multiplied by the plant N concentration. 

Grain yield was measured at the harvest of winter wheat. Three replicate 1 × 1 m areas of each plot for 

each treatment were obtained. Collected grain was dried and weighed on an electronic scale (±0.01 g). 

The grain protein content (GPC, %) of each plot was analyzed using a FOSS InfratecTM 1241 Grain 

Analyzer (Tecator, Hoganas, Sweden). 

Table 2. List of data acquisition in the three wheat experiments. 

Phenology Date Zadoks Canopy Spectral LAIm CNAm Yield GPC 

Experiment 1 2010       

Stem elongation 23 April 31 9 9 9 - - 

Booting 6 May 47 9 9 9 - - 

Anthesis 19 May 65 9 9 9 - - 

Milk development 1 June 75 9 9 9 - - 

Harvest 20 June  - - - 9 9 

Experiment 2 2013       

Stem elongation 25 April 31 16 16 16 - - 

Booting 10 May 47 16 16 16 - - 

Anthesis 20 May 65 16 16 16 - - 

Milk development 31 May 75 16 16 16 - - 

Harvest 20 June  - - - 8 8 

Experiment 3 2013       

Stem elongation 25 April 31 8 8 8 - - 

Booting 10 May 47 8 8 8 - - 

Anthesis 20 May 65 8 8 8 - - 

Milk development 29 May 75 8 8 8 - - 

Harvest 20 June  - - - 8 8 

Note: CNAm and GPC represent measured canopy N accumulation and grain protein content, 

respectively. - represents not-measured data in this growth stage. Number in each agronomy variable 

represents the number of samples.  

2.3. Data Assimilation Methods 

2.3.1. DSSAT-CERES Model Description 

The CERES-Wheat model integrated into DSSAT v4.5 was used in this study [5]. The model is a 

software system that integrates the effects of soil, weather, management, and genetics on daily crop 

growth, and it can be used to simulate crop phenology, total above-ground biomass, grain yield and 

quality, water, and N balance [27–29].  
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In the DSSAT-CERES model, the phenology of winter wheat was divided into nine growth stages on 

the basis of temperature, photoperiod, and genetic characteristics [30]. LAI is determined by the growth 

of leaves on both the main stem and tillers. In the model, the area of the leaves on the main stem, which 

is dependent on a temperature control factor, was first calculated. The number of tillers per plant depends 

on the thermal time after emergence [31,32]. Carbon assimilation was calculated from daily solar 

radiation, plant population, canopy extinction coefficient, and LAI. The assimilated carbon was then 

proportionally partitioned into different plant organs at different growth stages [32,33]. Canopy N 

accumulation was simulated based on the crop N demand and available N in the soil. The crop N demand 

affects plant growth, target N concentrations, and critical N concentration. The N concentration of 

different plant organs varies with the plant growth stage. The available N uptake from the soil depends on 

the soil NH4
+ and NO3

− concentrations, soil water, and root growth [34,35]. The grain dry matter was derived 

from photosynthesis during the grain filling stage and re-translocation from the pre-stored dry matter, 

whereas the N accumulation of grain was derived from the direct root uptake during the grain filling stage 

and re-translocation from the pre-stored N uptake. The growth rate of grain dry matter and N accumulation 

were functions of environmental factors such as rainfall, temperature, and solar radiation [32,36]. 

2.3.2. LAI and CNA Estimation from Spectral Indices 

The LAI and CNA estimations were based on several existing spectral indices that are considered to 

be good candidates for evaluating LAI and N status. The selected spectral indices are listed in Table 3. 

Table 3. Summary of spectral indices studied in this paper. 

Spectral Indices Formula Developer(s) 

Normalized difference VI# (NDVI) (R890 − R670)/(R890 + R670) Pearson et al. [37] 

Modified Simple Ratio (MSR) (R800/R670 − 1)/sqrt(R800/R670 + 1) Chen [38] 

Optimized soil-adjusted VI (OSAVI) 1.16(R800 − R670)/(R800 + R670 + 0.16) Rondeaux et al. [39] 

Wide dynamic range VI (WDRVI) (α*R800 − R670)/(α*R800 + R670) α = 0.1 Gitelson et al. [40] 

Red-edge chlorophyll index (CIred-edge) R750/R720 − 1 Gitelson et al. [41] 

Greenness index (GI) R554/R677 Zarco-Tejada et al. [42] 

Optimal VI (VIopt) (1 + 0.45)(R800
2 + 1)/(R670 + 0.45) Reyniers et al. [43] 

Ratio of MCARI to MTVI2 (MCARI/MTVI2) 

MCARI/MTVI2 

MCARI: (R700 − R670 − 0.2(R700 − R500))(R700/R670) 

MTVI2: 1.5(1.2(R800 − R550) − 2.5(R670 − R550)) 

Eitel et al. [44] 

MERIS terrestrial chlorophyll index (MTCI) (R750 − R710)/(R710 − R680) Dash et al. [45] 

Standardized LAI Determining Index (sLAIDI) S(R1050 − R1250)/(R1050 + R1250), S = 5 Delalieux et al. [46] 

Enhanced VI (EVI) 2.5(R800 − R660)/(1 + R800 + 2.4R660) Jiang et al. [47] 

Normalized difference red edge index (NDRE) (R790 − R720)/(R790 + R720) Fitzgerald et al. [48] 

Normalized difference chlorophyll index (NDCI) (R708 − R665)/(R708 + R665) Mishra et al. [49] 

Double-peak canopy nitrogen index (DCNII) (R750 − R700)/(R700 − R670)/(R750 − R670 + 0.09) Jin et al. [50] 

Three band water index (TBWI) (R973 − R1720)/R1447 Jin et al. [51] 

Note: # represents vegetation index.  
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2.3.3. Data Assimilation Strategy 

Kennedy and Eberhart [52] originally proposed particle swarm optimization (PSO) to simulate the 

graceful but unpredictable choreography of bird flocks [53]. In PSO, a particle is expressed a potential 

solution. Each particle, without quality or size in a d-dimensional search space, possesses its own 

position and velocity, and fitness value determined by a cost function. Every particle would modify its 

position and velocity associated with the optimal point in a current generation (pid) and that of all 

particles in a swarm (pgd). A flowchart for grain yield and GPC estimates made through the PSO 

assimilation of remote sensing data into the DSSAT-CERES model is illustrated in Figure 1. 

In order to evaluate the assimilation performance of the two state variables, three assimilation 

schemes were conducted: only LAI as a state variable (SVLAI), only CNA as a state variable (SVCNA), 

and LAI and CNA used together as state variables (SVLAI + CNA). The detailed steps are as follows. 

(1) The initial value (position) and velocity of the particles were determined. For SVLAI, four crop genotype 

parameters (PHINT, LAIS, SLAS and LSPHS) sensitive to LAI and three management parameters 

(plant density, irrigation amount, and fertilization amount) were adjusted [54] (Table 4); For SVCNA, four 

crop genotype parameters (P1D, PHINT, RDGS and SLPF) sensitive to CNA and the same three 

management parameters were adjusted (Table 4). For SVLAI + CNA, all the above crop genotype and 

management parameters were considered. The velocity in each dimension was set to ~10% of the 

dynamic range of the variable [53]. It is important to point out that the parameters sensitive to CNA 

were set to default values (Table 4) in the SVLAI method, and vice versa (i.e., the parameters sensitive 

to LAI were set to default values (Table 4) in the SVCNA method). 

(2) The DSSAT executable file “dscsm045.exe” under the installation directory, integrated with the 

required data, was run in Matlab (version 2007, MathWorks, US), and the simulated LAI and CNA 

were output. 

(3) The relationships between the spectral indices and LAI or CNA were analyzed, and the best 

regression model was selected to estimate LAI and CNA, respectively. 

(4) The cost function was constructed according to the variables simulated by the DSSAT-CERES 

model and those retrieved by the spectral index. The fitness value from the cost function determined 

whether the optimization algorithm reached the optimum input parameters. When one state variable 

was used in an assimilation scheme (SVLAI or SVCNA), the cost function was based on only one 

variable (i.e., LAI or CNA) (Figure 1). When two state variables were used in an assimilation 

scheme (SVLAI + CNA), the cost function was based on both LAI and CNA. 

(5) The program searched for the pid and pgd at each iteration. 

(6) The positions and velocities of the particles were updated on the basis of pid and pgd. The c1 and c2 

values were set as 2, and ξ and η were random values between 0 and 1 [53]. 

(7) If the iteration (100 generations in this study) was not reached, the updated positions were replaced and 

the second step was conducted. If the iteration was reached, LAI, CNA, yield and GPC were output. 

2.4. Statistical Analysis 

The coefficient of determination (R2) and the root mean square error (RMSE) were used as metrics to 

quantify the amount of variation explained by the developed relationships, as well as the accuracy of 
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those relationships. Generally, the performance of the model was estimated by comparing differences in 

the R2 and RMSE. A higher R2 and a lower RMSE indicated higher precision and accuracy of the inversion. 

Update the position and velocity of particles：
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Figure 1. Flowchart of the particle swarm optimization (PSO) assimilation scheme for 

integrating remote sensing data with the Decision Support System for Agrotechnology 

Transfer–Crop Environment Resource Synthesis (DSSAT-CERES) model. 
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Table 4. Initial values and ranges of calibration parameters or initial data of the 

DSSAT-CERES. 

Variables Default Ranges 

Initial data 

Plant density (PPOP, m−3) 350 300–400 

Irrigation amount (IRVAL, mm) 150 90–240 

Fertilization amount (FAMN, kg N∙ha−1) 200 0–400 

Sensitive to LAI 

Phyllochron interval parameter (PHINT) 100 90–120 

Area of standard first leaf (LA1S) 2.0 1.5–3.0 

Specific leaf area (SLAS) 300 200–400 

Final leaf senescence starts (LSPHS) 5.0 4.0–5.7 

Sensitive to CNA 

Photoperiod parameter (P1D) 50 30–70 

Phyllochron interval parameter (PHINT) 100 90–120 

Root depth growth rate (RDGS) 3.0 2.5–3.5 

Photosynthesis factor (SLPF) 1 0.8–1.0 

Note: The initial data values were determined with management data, and the genotype parameters were set based on 

default values in DSSAT-CERES model. 

3. Results 

3.1. LAI and CNA Estimation from Spectral Indices 

Fifteen spectral indices were used to estimate winter wheat LAI and CNA from the field data from 

Experiments 1 and 2 (n = 100), and Experiment 3 (n = 32) was used to validate the models’ accuracy. 

Linear and nonlinear (logarithm, exponential, and power) functions were used to fit the models, and the 

best model had the highest R2 and lowest RMSE. Table 5 shows the relationship between LAI (or CNA) 

and the spectral indices.  

The results show that all the spectral indices were significantly related to LAI (p-value < 0.001). In 

particular, the six indices (NDVI, MSR, OSAVI, WDRVI, GI and EVI) with R2 values greater than 0.8 

best estimated the LAI of winter wheat, although large differences in their RMSE values (0.627, 0.598, 

0.673, 0.651, 0.758 and 0.761, respectively) were revealed. The power relationship between MSR and 

LAI (R2 = 0.829, RMSE = 0.598) had the highest performance compared with the statistical 

relationships of the other indices, and this relationship was used to estimate the LAI of winter wheat in 

this study. 

Similarly, the regressions between CNA and each spectral index (p-value < 0.001) were highly 

significant. In comparison, OSAVI, CIred-edge, MCARI/MTVI2, MTCI, NDRE and DCNII were more 

strongly related with CNA than the other indices, indicating they were very sensitive to changes in CNA 

(R2 = 0.701, 0.745, 0.762, 0.742, 0.794 and 0.733, respectively); the corresponding RMSE values used 

for validating the model accuracy were 39.97 kg N∙ha−1, 43.04 kg N∙ha−1, 42.73 kg N∙ha−1, 44.03 kg N∙ha−1, 

37.75 kg N∙ha−1 and 52.43 kg N∙ha−1, respectively. NDRE had the highest R2 and the lowest RMSE, and 

the results showed that the predicted CNA was very consistent with the measured CNA (Table 5). 

Therefore, NDRE was selected to estimate the CNA of winter wheat in this study. 
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Table 5. Relationships of LAI and CNA with spectral indices of winter wheat (n = 100). 

Spectral Indices LAI Model R2 RMSE CNA Model R2 RMSE (kg N∙ha−1) 

NDVI y = 0.1321e3.5882x 0.800** 0.627 y = 3.1877e4.3454x 0.699** 41.80 

MSR y = 0.89x0.9799 0.829** 0.598 y = 33.85x1.132 0.659** 44.52 

OSAVI y = 0.2658e3.5008x 0.826** 0.673 y = 317.72x2.2247 0.701** 39.97 

WDRVI y = 2.2473e1.5338x 0.821** 0.651 y = 98.704e1.7295x 0.622** 47.62 

CIred-edge y = 2.1067x0.8293 0.774** 0.642 y = 90.798x1.0544 0.745** 43.04 

GI y = 0.9191x1.8479 0.823** 0.758 y = 39.585x1.8903 0.513** 53.36 

VIopt y = 4.7134x−12.983 0.798** 0.700 y = 0.0239x6.9962 0.528** 45.35 

MCARI/MTVI2 y = 0.0971x−1.087 0.707** 0.700 y = 406.86e−23.41x 0.762** 42.73 

MTCI y = 0.6336x1.0374 0.700** 0.686 y = 18.218x1.383 0.742** 44.03 

sLAIDI y = 0.9837e1.5881x 0.720** 0.802 y = 37.49e1.8599x 0.588** 37.13 

EVI y = 6.7588x1.3672 0.812** 0.761 y = 362.97x1.6175 0.678** 43.38 

NDRE y = 0.5172e3.5672x 0.766** 0.695 y = 473.26x1.6525 0.794** 37.75 

NDCI y = 0.3319e4.5273x 0.783** 0.633 y = 455.99x1.7035 0.478** 47.12 

DCNII y = 0.5628e0.047x 0.488** 0.879 y = 6.6829x−77.668 0.733** 52.43 

TBWI y = 1.5433x0.5171 0.778** 0.672 y = 64.326x0.589 0.601** 44.14 

Note: x represents spectral indices; y represents LAI (or CNA); probability levels are indicated by * and ** for p-values of 

0.05 and 0.01, respectively.  

3.2. LAI and CNA Simulation Using Data Assimilation 

According to the relationship between MSR and LAI and that between NDRE and CNA, LAI and 

CNA were used as state variables to calibrate the DSSAT-CERES model based on the PSO assimilation 

algorithm. The results shown in Figure 2 and Table 6 demonstrate a significant relationship between the 

simulated and measured LAI using the data assimilation methods. The SVLAI method used LAI as the 

state variable, and thus there was a strong linear relationship between the simulated and measured LAI 

(Figure 2a), with R2 values of 0.782, 0.857 and 0.637, and corresponding RMSE values of 0.452, 0.535 

and 0.586 for Experiments 1, 2 and 3, respectively (Table 6). The SVCNA method used CNA as the state 

variable, and the simulated LAI was greater than the measured LAI (Figure 2c). The R2 and RMSE 

values between the simulated and measured LAI for Experiments 1, 2 and 3 were 0.619, 0.806 and 

0.565, and 1.158, 1.001 and 1.579, respectively (Table 6). The SVLAI + CNA method used both LAI and 

CNA as state variables, and this method demonstrated a good simulation (Figure 2e), with R2 and 

RMSE values of 0.771, 0.873 and 0.670, and 0.472, 0.496 and 0.515 for Experiments 1, 2 and 3, 

respectively (Table 6). The relationships between the simulated and measured LAIs for the three 

experiments were analyzed together. The results show that there was a high variation in the SVCNA 

method’s estimates of LAI (R2 = 0.695; RMSE = 0.494), and the SVLAI + CNA method (R2 = 0.828; 

RMSE = 0.494) performed better than the single state variable method (R2 = 0.809; RMSE = 0.527 

for the SVLAI method). 

The simulated and measured CNA for the three assimilation methods were compared. The 

dispersion of the data between the simulated and measured CNA was larger with the SVLAI 

method. The results show that the SVLAI method tended to underestimate the CNA for 

Experiment 1 (R2 = 0.830; RMSE = 39.31 kg N∙ha−1), overestimate the CNA at low values for 

Experiment 2 (R2 = 0.793; RMSE = 32.14 kg N∙ha−1), and produce moderate results for Experiment 3 
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(R2 = 0.806; RMSE = 18.09 kg N∙ha−1) (Figure 2b and Table 6). The SVCNA method demonstrated a good 

consistency between the simulated and measured values of CNA (Figure 2d), with R2 and RMSE values of 

0.902, 0.823 and 0.806, and 24.32 kg N∙ha−1, 31.71 kg N∙ha−1 and 21.45 kg N∙ha−1 for Experiments 1, 2 and 3, 

respectively (Table 6). For the SVLAI + CNA method, the R2 and RMSE values between the simulated 

and measured CNA for Experiments 1, 2 and 3 were 0.866, 0.816 and 0.788, and 31.20 kg N∙ha−1, 

33.52 kg N∙ha−1 and 20.86 kg N∙ha−1, respectively (Table 6). The simulated CNA was in agreement with 

the measured CNA (Figure 2f). According to the three experiments, the best performance was 

produced by the SVCNA method (R2 = 0.833; RMSE = 27.58 kg N∙ha−1), followed by the SVLAI + CNA 

method (R2 = 0.808; RMSE = 30.26 kg N∙ha−1), and finally the SVLAI method (R2 = 0.715; 

RMSE = 31.65 kg N∙ha−1). 

 

Figure 2. Relationships between simulated and measured values of (a) leaf area index (LAI) 

with LAI with a state variable (SVLAI), (b) canopy N accumulation (CNA) with SVLAI, 

(c) LAI with CNA with a state variable (SVCNA), (d) CNA with SVCNA, (e) LAI with 

SVLAI + CNA, and (f) CNA with SVLAI + CNA. 
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Table 6. Regression equations between measured and simulated values of leaf area index 

(LAI) and canopy N accumulation (CNA) of winter wheat with three data assimilation 

methods across three experiments. 

Method Exp. n Regression Equation R2 RMSE Regression Equation R2 RMSE(kg N∙ha−1) 

SVLAI 1 36 y = 1.016x − 0.184 0.782 0.452 y = 1.511x − 13 0.830 39.31 

 2 64 y = 1.19x − 0.447 0.857 0.535 y = 1.231x − 29.95 0.793 32.14 

 3 32 y = 0.948x − 0.088 0.637 0.586 y = 0.887x + 15.62 0.806 18.09 

 All 132 y = 1.134x − 0.396 0.809 0.527 y = 1.084x − 1.673 0.715 31.65 

SVCNA 1 36 y = 0.662x + 0.11 0.619 1.158 y =1.406x − 31.33 0.902 24.32 

 2 64 y = 0.897x − 0.436 0.806 1.001 y = 1.249x − 15.93 0.823 31.71 

 3 32 y = 0.682x − 0.283 0.565 1.579 y = 1.038x + 9.23 0.806 21.45 

 All 132 y = 0.809x − 0.331 0.695 1.207 y = 1.247x − 14.54 0.833 27.58 

SVLAI + CNA 1 36 y = 0.975x − 0.117 0.771 0.472 y = 1.586x − 39.04 0.866 31.20 

 2 64 y = 1.135x − 0.243 0.873 0.496 y = 1.325x − 22.67 0.816 33.52 

 3 32 y = 1.009x − 0.147 0.670 0.515 y = 1.005x + 10.26 0.788 20.86 

 All 132 y = 1.107x − 0.287 0.828 0.494 y = 1.304x − 18.22 0.808 30.26 

3.3. Grain Yield and GPC Estimation 

The integration of remote sensing data and the DSSAT-CERES model was used to estimate the grain 

yield and GPC of winter wheat and the output estimate based on PSO. The relationships between the 

simulated and measured values of yield and GPC are shown in Figure 3. As Experiment 1 was just the 

sowing date and cultivar treatment, the range of the simulated yield was small. In contrast, Experiments 

2 and 3 had a large range because of the different N and cultivar treatments. Scatter plots of the simulated 

and measured yields from the three data assimilation methods fit the one-to-one line well. Our results 

show that the SVCNA method (R2 = 0.714; RMSE = 0.732 ton∙ha−1) resulted in a better estimation of 

wheat yield than the SVLAI method (R2 = 0.665; RMSE = 0.868 ton∙ha−1 (Figure 3a,c). For the SVLAI + CNA 

method, the R2 and RMSE values between the simulated and measured yields were 0.698 and 

0.726 ton∙ha−1, respectively (Figure 3e). With the smallest RMSE, the SVLAI + CNA method 

demonstrated the most consistency between simulated and measured values. In short, the data 

assimilation method with two state variables estimated grain yield with greater accuracy than that 

with only one state variable. 

Similar results were obtained for the estimation of GPC by the three data assimilation methods, and a 

good linear relationship between simulated and measured GPC values was shown (Figure 3b,d,f). For 

the assimilation method with one state variable, the inversion of the SVCNA method (R2 = 0.774; 

RMSE = 1.29%) estimated GPC better than the SV LAI method (R2 = 0.742; RMSE = 1.61%). 

The R2 and RMSE values of the regression between the estimated and measured GPC values were 0.758 

and 1.16% for the SVLAI + CNA method. The RMSE for the SVLAI + CNA method was lower than that for the 

data assimilation method with only one state variable. These results demonstrate the advantages of using 

two state variables for data assimilation. 
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Figure 3. Relationships between measured and simulated values of (a) yield with leaf area 

index as a state variable (SVLAI), (b) grain protein content (GPC) with SVLAI, (c) yield with 

canopy N accumulation as a state variable (SVCNA), (d) GPC with SVCNA, (e) yield with 

SVLAI + CNA, and (f) GPC with SVLAI + CNA. 

4. Discussion 

Spectral indices from hyperspectral data were used to estimate the LAI and CNA of winter wheat, and 

these spectral indices had highly significantly relationships with LAI and CNA (Table 5). These spectral 

indices were constructed using red edge (670–780 nm) and shortwave infrared (NIR, 800–1100 nm) 

wavelengths and they contained useful information about the population size and nutritional status of 

wheat [41,55,56]. The regression between MSR and LAI (R2 = 0.829 and RMSE = 0.598) was better 
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than those of the other indices and LAI. The MSR was expressed as a function of the simple ratio of NIR 

to red reflectance, and the simple ratio greatly reduced undesirable noise caused by simultaneous 

increases or decreases in red and NIR reflectance. The MSR also had the advantage of being less 

sensitive to canopy optical and geometrical properties [38]. Moreover, the MSR may have improved 

linearity and mitigated the saturation effect when LAI increased [57]. NDRE had the strongest 

relationship with CNA (R2 = 0.794 and RMSE = 37.75 kg N∙ha−1), and this index was measured with 

wavebands centered at 720 and 790 nm, which were more sensitive to estimating canopy N per unit area 

than canopy N concentration [48].  

LAI and CNA were individually used as state variables for integrating remote sensing data into 

the DSSAT-CERES model with the PSO data assimilation method. The results show that each 

method (SVCNA and SVLAI) estimated LAI or CNA with great accuracy, in agreement with previous 

research [5], [7], [8], [16] and [17]. However, when only one assimilation variable was used, large errors 

existed between the simulated and measured values of the other variables; for example, the RMSE of 

LAI determined with the SVCNA method was 1.207, which was much larger than that determined with the 

SVLAI method (RMSE = 0.527). Likewise, the error between the simulated and measured values of CNA 

determined with the SVLAI method was larger than that determined with the SVCNA method. This problem 

was due to unwanted and inaccurate simulations because only one state variable (i.e. LAI or CNA) was 

accurately simulated.  

In this study, the join usage of LAI and CNA as state variables for assimilating remote sensing 

information into the DSSAT-CERES model. The simulation with the combined variables was robust, 

with R2 and RMSE values of 0.828 and 0.494 for LAI and 0.808 and 30.26 kg N∙ha−1 for CNA. The 

accuracy of the state variable simulations made using two assimilation variables was fairly consistent or 

even better than those using one variable (LAI or CNA). The primary reason for this is that LAI is a key 

variable for crop growth monitoring and yield prediction [58], and CNA is an important indicator of the 

N status of wheat and significantly affects photosynthetic production and grain yield and quality [59]. 

Various crop state variables are independent of each other, though they interact with each other [18,60]. 

Therefore, the SVLAI + CNA method obtained a greater robustness of the DSSAT-CERES model than the 

single variable methods. However, this study only investigated LAI (a crop population indicator) and 

CNA (a nutritional status indicator), and the combination of these two state variables may not have been 

optimal, as the matching of the pattern of interaction between these state variables in a natural system 

may not yet be fit by the interaction pattern between them within the simulated system. In addition, the 

cost function was constructed by simple addition (Figure 1), and it did not consider the different 

deviations between simulated and measured values. Therefore, future studies should pay attention to two 

points: (1) how to select two optimal state variables that can achieve robust simulations for most model 

outputs; and (2) how to determine the cost function when two state variables are considered.  

According to the results of the grain yield and GPC estimations, the inverted SVCNA method estimated 

grain yield and GPC better than the SVLAI method (Figure 3a–d). This is because CNA is determined by 

actual plant N concentration and the corresponding canopy biomass of each plant organ [32,35], thus, 

nutrient status and plant biomass are simultaneously considered in crop growth. The joint use of LAI and 

CNA as state variables also obtained good estimations of grain yield and GPC, and the RMSE values 

between the simulated and measured grain yield and GPC were the lowest. Grain yield is derived from 

the partition of fixed carbon, which is directly related with LAI [33]. Similarly, grain N accumulation is 
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derived from the re-translocation of CNA, and GPC is simply calculated as the N concentration in grain 

multiplied by a factor [32,36]. The assimilation of two state variables derived from a remote sensor 

mutually promoted consistent results between the simulated and measured values of grain yield and GPC. 

Integrating remote sensing data with the DSSAT-CERES model for grain yield and GPC estimation 

could feasibly be conducted with different sowing dates, cultivars, and N management strategies across 

different years in this study. Further efforts are required to couple satellite data with the DSSAT-CERES 

model for estimating grain yield and GPC at a regional scale. 

5. Conclusions 

The joint integration of remotely sensed LAI and CNA as state variables into the DSSAT-CERES 

model using the PSO algorithm was tested in this study. The results suggested that LAI and CNA were 

accurately estimated with spectral indices, and MSR and NDRE were the best indices for estimating LAI 

and CNA, respectively. The method of jointly integrating LAI and CNA as state variables was more 

robust than single variable integration. A good accuracy of winter wheat grain yield and GPC 

estimations was demonstrated using this kind of data assimilation method. The results demonstrated 

integrating remote sensing with the DSSAT-CERES model is a potential approach for estimating grain 

yield and especially GPC. 
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