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Abstract: We developed and evaluated a methodology for subpixel discrimination and large-area
mapping of the perennial warm-season (C4) grass component of vegetation cover in mixed-composition
landscapes of the southwestern United States and northern Mexico. We describe the methodology
within a general, conceptual framework that we identify as the differential vegetation phenology
(DVP) paradigm. We introduce a DVP index, the Normalized Difference Phenometric Index (NDPI)
that provides vegetation type-specific information at the subpixel scale by exploiting differential
patterns of vegetation phenology detectable in time-series spectral vegetation index (VI) data from
multispectral land imagers. We used modified soil-adjusted vegetation index (MSAVI2) data from
Landsat to develop the NDPI, and MSAVI2 data from MODIS to compare its performance relative to
one alternate DVP metric (difference of spring average MSAVI2 and summer maximum MSAVI2),
and two simple, conventional VI metrics (summer average MSAVI2, summer maximum MSAVI2).
The NDPI in a scaled form (NDPIs) performed best in predicting variation in perennial C4 grass cover
as estimated from landscape photographs at 92 sites (R2 = 0.76, p < 0.001), indicating improvement
over the alternate DVP metric (R2 = 0.73, p < 0.001) and substantial improvement over the two
conventional VI metrics (R2 = 0.62 and 0.56, p < 0.001). The results suggest DVP-based methods,
and the NDPI in particular, can be effective for subpixel discrimination and mapping of exposed
perennial C4 grass cover within mixed-composition landscapes of the Southwest, and potentially
for monitoring of its response to drought, climate change, grazing and other factors, including land
management. With appropriate adjustments, the method could potentially be used for subpixel
discrimination and mapping of grass or other vegetation types in other regions where the vegetation
components of the landscape exhibit contrasting seasonal patterns of phenology.

Keywords: phenology; differential vegetation phenology; DVP; normalized difference phenometric
index; NDPI; vegetation mapping; grassland; rangeland

1. Introduction

Across the southwestern and western United States, grazing of grass forage by livestock is
the dominant land use, occurring in 73% and 83% of the land area in Arizona and New Mexico,
respectively, and 62% of the combined land area of the 11 western-most conterminous U.S. states [1].
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Several historical, ongoing or emerging stress factors, notably overgrazing, landscape fragmentation,
climate change, persistent drought, woody plant encroachment, and invasive plant species, pose
significant threats to the biological integrity and resilience of Southwest ecosystems and present major
challenges to the design of effective strategies for land management, mitigation and conservation [2–14].
From the standpoint of agricultural and mixed-use land management, detrimental impacts on the
current and future capacity of grass vegetation in rangelands of the Southwest and beyond to support
grazing for livestock production is a paramount concern [15–19]. Knowledge and understanding of
these issues from both scientific and land management perspectives, as well as the design of effective
strategies for mitigation and adaptation, can benefit from improved, timely data and information
about the distribution and surface cover of grass vegetation in the Southwest and their response to
these stress factors over time. By enabling consistent observations over seasonal, annual, decadal and
longer time periods, image-based, multispectral remote sensing can be an effective tool for mapping
and monitoring of the distribution and relative productivity of grass and other vegetation types and
their changes over time.

1.1. Multispectral Image-Based Approaches to Mapping of Semiarid Grass

A diverse set of analytical methods that exploit phenological information in time-series
of multispectral images has been developed for distinguishing and mapping vegetation cover
types [20–25], estimating and mapping biomass and vegetation fuel loads [26–30] and for investigating
how vegetation and related ecosystem processes respond to management, disturbance, weather,
drought and climate change [31–37]. These methods examine the seasonal growth dynamics of the
vegetation through quantification and analysis of various metrics of the time signal observed within
one or more years. Time-series observations of a spectral vegetation index (VI), such as the normalized
difference vegetation index (NDVI), are commonly used for this purpose [38,39]. Typical metrics
include, for example, the dates of the beginning and end of the growth period, the length of the growth
period, and date and magnitude of the peak value of the NDVI or other VI [40].

Interpretation of such metrics is straightforward for land areas with a dominant vegetation
type or a common phenology, but can be complex for areas with horizontal (surface cover) or
vertical (understory and overstory) variation in vegetation type and phenology [41–44]. In the
mixed-composition landscapes of the Southwest, the observed time signal may be composed of
one or more discrete and potentially unique signals attributable to the individual grass, shrub, tree
and succulent components of the landscape, with their respective contributions modulated by their
fractional surface cover within the pixel. When seeking to discern the perennial warm-season grass
component of the vegetation cover, such mixed time signals confound the extraction and interpretation
of standard phenology metrics.

Many past studies have addressed the mixed signal problem in efforts to distinguish signal
contributions from herbaceous and woody vegetation. For example, Moody and Johnson [45]
showed that the first and second harmonics from a discrete Fourier transform of NDVI time-series
data acquired by the Advanced Very High Resolution Radiometer (AVHRR) over a study area in
southern California are sensitive to variations in grass cover, woody vegetation, and agriculture.
Hirosawa et al. [46] applied principal components analysis to time-series NDVI data from the AVHRR.
They showed that variations in the histograms for the first two principal components provided
a measure of the homogeneity/heterogeneity of the cover types within the grasslands and other major
vegetation communities of Arizona. Roderick et al. [47] and Lu et al. [48] used methods based on the
seasonal-trend decomposition by LOESS (STL) procedure [49] to map fractional cover of evergreen
(woody) vegetation by isolating its signal from the seasonally green (herbaceous) signal in time series
NDVI data for the Australian continent acquired by AVHRR. Pisek et al. [50] used a semi-empirical
approach [51] and a physically-based approach [52] to retrieve the understory (herbaceous) and
overstory (woody) vegetation components of the seasonal NDVI signal observed at high latitude forest
sites in Northern Europe. Scanlon et al. [53] used seasonally averaged NDVI and interannual variations
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in wet-season NDVI as state-space variables in a linear unmixing model to estimate fractional cover
of trees, grass and bare soil along an aridity gradient in southern Africa. Johnson et al. [54] achieved
improved accuracy in estimating fractional green vegetation cover with spectral mixture modeling
by using spatial interpolation to account for spatial variation in the values of spectral end-members.
Gessner et al. [55] applied decision tree regression to a set of satellite-derived phenology metrics for the
wet and dry season to estimate fractional cover of woody, herbaceous and bare soil in savanna regions
of southern Africa. Brandt et al. [25] estimated and mapped woody plant cover in the Sehelian drylands
of Africa by using multiple regression modeling of the relationships between various satellite-derived
phenological metrics and field data.

Helman et al. [56] and Chekroun et al. [57] used a distinctly different approach to distinguish
the contributions of herbaceous and woody vegetation to the VI time signals in their Mediterranean
study areas. In contrast to conventional signal decomposition, their approaches were designed
a priori to take strategic advantage of two intra-annual periods, the dry season and the wet season,
when the seasonal phenology of herbaceous and woody vegetation diverge. Because herbaceous
vegetation is absent or senescent during the dry season, the VI signal during this period is attributed
solely to woody vegetation and background soil. During the wet season when the herbaceous
vegetation becomes photosynthetically active, the composite signal from the ecosystem includes
contributions from all components (woody vegetation, herbaceous vegetation, and background soil).
These studies demonstrated that the signal component associated with seasonal herbaceous vegetation
could be isolated from the woody signal by exploiting this seasonal divergence in the VI response.
Chekroun et al. [57] used this approach with several VI data types from the Moderate Resolution
Imaging Spectroradiometer (MODIS) to achieve improved sensitivity to drought across landscapes of
Northern Tunisia with large variations in the proportional surface cover of trees, shrubs and grass.
Helman et al. [56] showed this approach is effective for estimating and mapping spatial variation in
the subpixel fractional surface cover of woody vegetation and herbaceous vegetation in their study
area in Israel.

1.2. A Paradigm for Exploiting Vegetation Phenology Information in Satellite-Based Vegetation Mapping

The method presented by Helman et al. [56] is a particular example of a general, conceptual
approach that has strong potential for quantitative mapping and monitoring of vegetation in
mixed- and variable-composition landscapes, yet to our knowledge remains relatively unexplored.
We identify the conceptual approach by its emphasis on the strategic leveraging of a priori information
and understanding of distinct, seasonal differences in the phenology of the vegetation components
within a landscape. It is distinguished from other phenology-based (frequency-domain) approaches
and those that emphasize spatial and spectral information by its use of metrics that exploit
predetermined differences in phenology. The metrics are used strategically to extract from the
composite time signal information on the fractional cover (and potentially, the condition in response to
stress) of a specific vegetation component of the landscape. We identify this approach as a differential
vegetation phenology (DVP) approach to mapping and monitoring of vegetation cover.

1.3. A Differential Vegetation Phenology Approach to Mapping of Perennial C4 Grass in the Southwest

The surface cover and productivity of the perennial grass component of the arid and semiarid
Southwest landscapes can vary widely across the region and over time, reflecting the interacting
influences of climatic and edaphic conditions (expressed primarily as water limitations on growth),
inter-species competition for resources, disturbance (e.g., wildfire and pests), herbivory, and land use
associated with human activities, particularly (but not exclusively) grazing [14,58–62]. Under these
particular, highly variable growth conditions, grasses (as well as other plant types) exhibit unique
adaptive strategies that provide distinct competitive advantages, which are integral to their occurrence
and sustained existence in the Southwest. Such adaptations are expressed in numerous ways, including
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not only unique physiognomy and physiology (such as shallow roots and C4 photosynthesis), but also
distinct patterns of seasonal growth, or phenology [58,63–65].

The perennial C4 grasses, which are the dominant grass type in our study area, exhibit a
phenological pattern that is tightly coupled with the region’s characteristic but highly variable seasonal
cycle of temperature (winter minimum, summer maximum) and precipitation (winter and summer,
with drought in spring and autumn) [62,66]. Their principal, active growth period occurs during the
summer and early autumn when warm temperatures suitable for C4 photosynthesis coincide with the
arrival of precipitation from the North American Monsoon, and is typically followed by a period of
senescence and dormancy in winter and spring [62]. This pattern contrasts starkly with the phenology
of the other major vegetation types, primarily shrubs, trees and succulents, that coexist with perennial
grasses in Southwest landscapes and remain green during a longer period (mesquite and riparian
trees) or throughout the year (most shrubs and succulents) [67–69]. These contrasting seasonal patterns
of phenology can be exploited to estimate and map the fractional cover of perennial grass through a
DVP-based analysis of time-series, satellite-derived multispectral image data.

Here, we present the conceptual foundation and our development, application and evaluation of
a DVP methodology that uses times-series observations from Landsat 5 and the Moderate-Resolution
Imaging Spectroradiometer (MODIS) to estimate and map the fractional cover of perennial
warm-season grass within a study area that encompasses parts of southern Arizona, USA and northern
Sonora, Mexico. The methodology is based on a remote sensing-derived DVP metric, which we
developed as a Normalized Difference Phenometric Index (NDPI). Our application in the Southwest
suggests the NDPI can be an effective source of information on the distribution of grass and rangelands
to support science and land management. With appropriate adjustments, the NDPI could potentially
be used for subpixel discrimination and mapping of grass or other vegetation types in other regions
where the vegetation components of the landscape exhibit contrasting seasonal patterns of phenology.

2. Data and Methods

2.1. Study Area

The study area covers approximately 30,000 km2 in southern Arizona, USA and northern Sonora,
Mexico (Figure 1). The area encompasses parts of two distinct ecoregions of the Southwest, the
Apache Highlands and the Sonoran Desert, which dominate the southeastern and northwestern
segments, respectively. The Apache Highlands ecoregion extends across approximately 12.1 million
hectares in southeastern Arizona, southwestern New Mexico, northern Sonora, and northwestern
Chihuahua [8,70,71]. Its physiography is characterized by isolated mountain ranges, or sky islands,
and intervening valleys, which underlie the region’s unique ecology and biodiversity. Topographic
elevations within the study area range from roughly 450 m at the desert lowland in the northwest, to
more than 2500 m at the highest peaks of the sky islands (Figure 2).

The study area contains a diverse array of vegetation communities, with pine-oak woodlands and
mixed conifer forests at higher elevations, grassland and shrubland at moderate elevations, and desert
scrub at lower elevations [8]. The grass vegetation across the study area is dominated by perennial,
warm-season (C4) grass (both native and invasive species); annual grasses are a relatively minor
constituent (Table 1). We therefore focus our effort on the mapping of perennial, C4 grasses across the
study area. The Apache Highlands ecoregion transitions to the Sonoran Desert ecoregion as elevation
generally decreases and temperature and aridity increase toward the northwestern and western parts
of the study area. This transition is characterized by a general decline in the presence and surface
cover of perennial grasses until they become essentially absent in the Sonoran Desert’s core regions,
except for riparian zones and other locations where water limitations are less extreme.

The climate of the study area, as well as the broader region encompassing the full extent of
the Apache Highlands and eastern portion of the Sonoran Desert ecoregions, is greatly influenced
by the precipitation regime of the North American Monsoon [72,73]. Annual total precipitation is
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characteristically low and highly variable in both space (non-uniform distribution at multiple spatial
scales) and time (large fluctuations across seasons and among years). Despite inherent variability, the
seasonal distribution of precipitation exhibits a distinct, bimodal pattern (Figure 3): winter precipitation
(primarily from frontal storms) followed by spring drought, then summer convective precipitation
(primarily from the North American Monsoon), followed by autumn drought.Remote Sens. 2016, 8, 889  5 of 32 

 

 
Figure 1. The study area and domain for our Moderate Resolution Imaging Spectroradiometer 
(MODIS)-based analysis encompasses the square area bounded by the white line near the bottom of 
the large Arizona map. The inner, white rectangle is the area of our Landsat-based analysis, which is 
located within the overlap of the two Landsat path-rows. The small Arizona map inset at the top-right 
shows the coverage of the satellite data sets: two adjacent, overlapping path-rows of Landsat, and a 
tiled MODIS product.  

Table 1. Common Grass Species Occurring in Southern Arizona [74]. 

Common Name Genus Species Life Form 1 Photosynthetic Pathway 
Native     

black grama Bouteloua  eriopoda P C4 
blue grama Bouteloua gracilis P C4 

sideoats grama Bouteloua  curtipendula P C4 
slender grama Bouteloua repens P C4 
hairy grama Bouteloua hirsuta P C4 

plains lovegrass Eragrostis  intermedia P C4 
plains bristlegrass Setaria  leucopila P C4 

sand dropseed Sporobolus cryptandrus P C4 
Arizona cottontop Digitaria  californica P C4 

red three-awn Aristida purpurea P C4 
other three-awn species Aristida various P C4 

ring muhly Muhlenbergia torreyi P C4 
other muhly species Muhlenbergia various P C4 

fluff-grass Dasyochloa  pulchella P C4 
tobosa grass Pleuraphis  mutica P C4 

needlegrass species Stipa various A C 3 

Figure 1. The study area and domain for our Moderate Resolution Imaging Spectroradiometer
(MODIS)-based analysis encompasses the square area bounded by the white line near the bottom of
the large Arizona map. The inner, white rectangle is the area of our Landsat-based analysis, which is
located within the overlap of the two Landsat path-rows. The small Arizona map inset at the top-right
shows the coverage of the satellite data sets: two adjacent, overlapping path-rows of Landsat, and
a tiled MODIS product.
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Table 1. Common Grass Species Occurring in Southern Arizona [74].

Common Name Genus Species Life Form 1 Photosynthetic Pathway

Native

black grama Bouteloua eriopoda P C4
blue grama Bouteloua gracilis P C4

sideoats grama Bouteloua curtipendula P C4
slender grama Bouteloua repens P C4
hairy grama Bouteloua hirsuta P C4

plains lovegrass Eragrostis intermedia P C4
plains bristlegrass Setaria leucopila P C4

sand dropseed Sporobolus cryptandrus P C4
Arizona cottontop Digitaria californica P C4

red three-awn Aristida purpurea P C4
other three-awn species Aristida various P C4

ring muhly Muhlenbergia torreyi P C4
other muhly species Muhlenbergia various P C4

fluff-grass Dasyochloa pulchella P C4
tobosa grass Pleuraphis mutica P C4

needlegrass species Stipa various A C 3
alkali sacaton Sporobolus airoides P C4
dropseed species Sporobolus various P C4

sprangletop species Leptochloa various P C4

Invasive

red brome Bromus rubens A C4
cheatgrass Bromus tectorum A C 3
buffelgrass Cenchrus ciliaris P C4

Lehmann lovegrass Eragrostis lehmanniana P C4
weeping lovegrass Eragrostis curvula P C4

1 perennial (P); annual (A).
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2.2. Conceptual Basis

The major vegetation types within our study area, primarily perennial warm-season (C4) grasses,
shrubs, trees and succulents, represent successful evolutionary responses to climate, edaphic conditions,
and interspecific competition for resources. For an individual vegetation type, this response has
multiple expressions, including unique physiognomy, physiology and phenology [76,77] and variation
in spatial distribution and surface cover. The phenology exhibited by the perennial C4 grasses closely
follows the seasonal precipitation pattern dictated by the North American Monsoon [60,62,68,72,73,78].

The perennial C4 grass phenology in our study area is distinct from the phenology of the other
major vegetation components of the landscape (trees, shrubs and succulents) [61]. The photosynthetic
activity and green-leaf display of perennial C4 grasses differ dramatically between the pre-Monsoon
period (May and June) and the subsequent Monsoon-dominated period (July through September
with influences extending through October), however remain relatively stable for trees, shrubs
and succulents throughout both periods. This difference reflects distinct adaptive strategies to the
water-limited growth environment [63,64,79]. The perennial C4 grasses have relatively shallow but
extensive root systems that facilitate efficient capture and rapid photosynthetic response to variations
in soil water from ephemeral rain events of the North American Monsoon. In contrast, the deeper root
systems of the trees and shrubs enable access to greater depths below ground where soil moisture is
more consistently available and seasonal fluctuations are dampened [59–61,80].

Because seasonal changes in leaf display and photosynthetic pigments are the primary
phenology-related signal detectable by multispectral optical remote sensing, such differential
expressions of phenology among perennial C4 grasses and the trees, shrubs and succulents (in contrast
to their physiognomy and physiology) can be directly observed and analyzed with time-series
observations from Earth-observing satellites such as Landsat and MODIS. We take advantage of
this capability with a DVP approach to discriminate and map the perennial grass component within
our study area.

2.3. Normalized Difference Phenometric Index

The seasonal pattern observed in time-series, satellite-based, multispectral (visible and
near-infrared) images at an individual pixel location represents the integrated seasonal response
of the various vegetation types of the landscape within the pixel, or overall landscape phenology.
We introduce here a quantitative, phenology-based, temporal vegetation index for application to
time-series of multispectral (visible and near-infrared) satellite images.
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Our objective in developing this index is to provide information on the presence and surface
cover of a specific vegetation type at the subpixel scale within a mixed-composition landscape and
how that vegetation component responds to interannual and longer term changes in climate, and/or
disturbance caused by grazing, fire, pests and invasive species. We pursued this objective by exploiting
known differences in the phenology, or seasonal pattern of green leaf display and photosynthetic
activity, among the major vegetation cover types within the landscape. We define and demonstrate
the index in the context of our present research objective for satellite-based mapping of the perennial
grass cover in our Southwest study area. We developed this phenology-based index as the Normalized
Difference Phenometric Index (NDPI) and calculate it in raw form as

NDPI = (VIp2 − VIp1)/(VIp2 + VIp1) (1)

where VI is the average spectral vegetation index for a specified, time period. The subscript parameters
p1 and p2 are discrete, non-overlapping time periods within a year.

Whereas the equation for NDPI has the same form as the equation for the well-established
normalized difference vegetation index (NDVI), it is altogether distinct with respect to its input
variables (vegetation index vs. spectral reflectance) and its purpose (exploiting temporal information
vs. spectral information).

For mapping and analysis, we convert the raw NDPI to a scaled index, NDPIs:

NDPIs = NDPIobs − NDPIref, (2)

where NDPIobs is the raw NDPI value observed for an individual pixel, and NDPIref is the raw NDPI
value associated with the reference vegetation cover conditions specified for the target vegetation
type (perennial C4 grass in this study). We define the reference vegetation cover as nominally pure,
continuous, and homogeneous. Equation (2) converts NDPIobs values to a consistent, convenient and
intuitive measurement scale in which 0 indicates maximum (essentially continuous) surface cover and
−NDPIref (the additive inverse of NDPIref) indicates absence of the target vegetation type. We propose
that the magnitude of NDPIs between 0 and −NDPIref is a potential measure of the fractional surface
cover of the target vegetation type in the observed pixel. We demonstrate this relationship in our
present application to mapping of perennial C4 grass in the Southwest.

Although we consider the nominal range of output values from Equation (2) to be 0 to −NDPIref,
the equation itself does not preclude positive values of NDPIs. However, in practice positive values of
NDPIs will occur only under certain, unique circumstances, and such occurrences are not necessarily
problematic. The first circumstance is associated with our process for specifying the value of NDPIref.
In the present application, we did not determine NDPIref from the single, absolute maximum NDPI
value observed within the study area for our target vegetation type (perennial C4 grass), rather we
used the mean value of a larger sample set of pixels. NDPI values that are greater than the mean of
this sample would produce positive NDPIs values, however their deviation from 0 is typically small.
Indeed, careful examination of positive NDPIs values in an iterative process to specify NDPIref can
provide valuable information and feedback for optimizing the selection of sample pixels. Another
circumstance that could produce positive NDPIs values is when a component of the surface cover
exhibits seasonal changes in the VI (between p1 and p2) that mimic the phenology of the target
vegetation type, and the resulting NDPI value exceeds the specified value of NDPIref. As we show
subsequently in our results, such conditions may occur in areas of agricultural crops, where the
seasonal cropping pattern is similar to the phenology of the target vegetation type (perennial C4 grass
in our study area).

Conceivably, other circumstances may occur that could also produce positive NDPIs values.
For example, when the NDPI method is used for monitoring over multiple years, a positive deviation
in NDPIobs from NDPIref in any individual year would produce a positive value of NDPIs. In such a
monitoring application, positive NDPIs values could be readily identified and examined with reference
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to climate data and management information, and provide meaningful insights about potential, causal
factors, such as increased summer precipitation or reduced grazing pressure. Additional circumstances
in either mapping or monitoring applications of the NDPI, besides those considered here, could
potentially occur that would also produce positive NDPIs values. Regardless, occurrences of positive
NDPIs values are not necessarily problematic and can often be meaningful and informative.

2.4. Specification of NDPI Parameters and Variables

The parameters p1 and p2 in the NDPI equation (Equation (1)) are selected to isolate seasonal
intervals when the phenology of the target vegetation type diverges substantially from the phenology
of other vegetation types within the landscape. The selections are made with reference to divergence
in seasonal photosynthetic activity and green leaf display that occurs consistently, even if variably
(in response to weather and climate) among years. We distinguish such divergence from episodic
changes in seasonal photosynthesis resulting from disturbance events, for example, fire and land cover
conversion [81]. For mapping of perennial C4 grass in our Southwest study area, we specify p1 as day
121 to 176 (1 May through 25 June), and p2 as day 177 to 304 (26 June through 31 October). The break
point between p1 and p2 (25/26 June) accounts for the end and start dates of the corresponding 8-day
composite periods of the MODIS data product, described subsequently in Section 2.8.

The dates for p1 (1 May to 25 June) bracket a period when the perennial C4 grasses in the study area
exhibit minimal photosynthetic activity and greenness. This period immediately precedes the period
when rainfall from the onset of the North American Monsoon typically becomes significant. The dates
for p2 (26 June to 31 October) capture the dominant period of rainfall associated with the North
American Monsoon (July through September) when the perennial C4 grasses exhibit annual maximum
photosynthesis and productivity, but also includes October when prior Monsoon (and October)
rainfall can still support additional productivity before cooling temperatures become limiting for
C4 photosynthesis.

We purposely selected the p1 start-date (1 May) and the p2 end-date (31 October) to limit our
analysis to the predominant leaf-on period of the deciduous vegetation in the study area (mesquite,
cottonwood and other riparian trees). In comparison to perennial C4 grass, the greenness of all other
major vegetation components in the study area (both deciduous and evergreen) may therefore be
reasonably assumed to be relatively stable throughout our specified p1 and p2 periods. This assumption
is supported by observation-based spectral vegetation index data used in our subsequent numerical
modeling of the NDPIs response to variation in fractional cover. Our specified time periods also help
to minimize the signal contribution from annual grasses that are active in the cool season.

Our specification of p1 and p2 shares a common rationale with Helman et al. [56], who used
MODIS-derived NDVI data to exploit similar differential patterns of vegetation phenology in wet
and dry seasons to distinguish the herbaceous and woody components of vegetation cover in
Mediterranean forests and woodlands in Israel. Helman et al. [56] used the average NDVI during the
dry season to represent the signal contribution from woody vegetation and background soil (NDVIW),
and the difference of the maximum NDVI in the wet season and NDVIW to represent the herbaceous
component (NDVIH).

Our development and application of the NDPI for mapping of perennial warm-season grasses
in the Southwest modifies the seasonal difference calculation used by Helman et al. [56] in four
ways. Firstly, we purposely use time-series VI data that represent the long-term (15-year) average
instead of one or more individual years to minimize weather-related differences in the VI response.
While such interannual differences can potentially provide useful information for monitoring purposes,
multiple-year average VI data (in our application, 15-year averages using 8-day MSAVI2 data) are
preferable for vegetation cover mapping because they emphasize spatial information by reducing
confounding information associated with disturbance- or weather-induced interannual variations in
the occurrence, greenness, or biomass of the perennial C4 grass. Moreover, for monitoring purposes,
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an NDPI map produced from multiple-year average VI data is useful in defining reference conditions
against which such fluctuations in yearly NDPI values can be quantitatively evaluated.

Secondly, whereas Helman et al. [56] used average and maximum VI (NDVI) data for the seasonal
dry and wet periods, respectively, we use average VI (MSAVI2) data for both periods (p1 and p2).
By using the average VI value in p2 (wet season), we seek to reduce potential bias associated with the
effects of interannual variability of the within-season temporal distribution of precipitation.

Thirdly, whereas Helman et al. [56] use the difference of the wet-and dry-season VI values, we use
the NDPI formulation (Equation (1)) to transform the simple ratio of the wet-season (p2) and dry
season (p1) VI values to a fixed scale with a finite range of −1.0 to +1.0. The response of VI(p1) and
VI(p2) to changes in subpixel fractional cover of perennial C4 grass is functionally (but not physically)
analogous to the response of red and NIR reflectance to variation in subpixel fractional cover of healthy,
green vegetation of any type. With increasing fractional cover of the surface component of interest
(perennial C4 grass for NDPI in this study; any green vegetation for NDVI), both VI(p1) and red
reflectance decrease as both VI(p2) and NIR reflectance increase.

The purpose of the NDPI transformation is not improved quantification of the subpixel fractional
coverage of target vegetation type (perennial C4 grass in this study). Instead, our motivations parallel
those for using the NDVI in the spectral domain [82]: to improve the dynamic range under low
vegetation-signal conditions, improve the visualization and interpretation of the information contained
in the data, and facilitate comparison and interpretation of results among different applications and
studies. In the NDPI context, low vegetation-signal conditions manifest as small differences between
the VI values of p1 and p2 (as expected when the fractional cover of the target vegetation type is
small relative to other surface cover), whereas in the NDVI context they manifest as small differences
in the NIR- and red-band reflectances (as expected when the land surface is sparsely vegetated).
Because the NDPI and NDVI transformations have the same mathematical expression, their numerical
results therefore have equivalent sensitivity to variation in the values of their corresponding input
variables. We discuss this issue and related implications for both our present study and future,
potential applications of the NDPI subsequently in Section 2.5. Fourthly, we convert the NDPI values
(Equation (2)) to an intuitive scale in which 0 indicates maximum surface cover and −NDPIref indicates
absence of the target vegetation type.

By maximizing the seasonal contrast in perennial C4 grass phenology, while avoiding or
minimizing seasonal differences in the phenology of all other major vegetation types in the study area,
our specification of p1 and p2 enables maximum sensitivity to the phenology exhibited by our target
vegetation type, perennial C4 grass. With this parameterization, the NDPI provides a means to isolate
and extract information on specifically the perennial C4 grass component of an integrated landscape
phenology signal arising from variable combinations and cover fractions of vegetation types within an
individual, satellite-observed pixel. Because satellite-based land imagers cannot directly detect grass
cover that may be obscured by densely foliated over-story vegetation such as trees and large shrubs,
the method is most suitable for discrimination and mapping of the exposed, non-understory grass
component of vegetation surface cover.

As the exposed areas of perennial C4 grass cover across the study area decrease from a reference
condition (characterized by essentially dense, continuous surface cover), it is necessarily replaced
by other vegetation types, bare soil, or manmade materials. Decreasing perennial grass cover is
manifested through systematic changes in the seasonal pattern of a satellite-derived VI, as displayed in
an idealized form in Figure 4. Our specification of p1 and p2 in Equation (1) maximizes the sensitivity
of the NDPI to these changes. In this research we investigated the NDPIs as a quantitative indicator of
the divergence of the phenology of an observed landscape from the phenology of a reference landscape
associated with continuous surface cover of perennial grass (Figure 4).
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Figure 4. An idealized plot showing seasonal patterns of the spectral modified soil-adjusted vegetation
index (MSAVI2) for perennial C4 grass, and shrub or mesquite, with dense and homogeneous surface
cover. The arrows indicate the directions in which the curve for perennial C4 grass is expected to shift
as its surface cover within a pixel becomes replaced by shrub or mesquite.

For VI in Equation (1), we used the modified soil-adjusted vegetation index (MSAVI2) [19].
MSAVI2 is calculated as

MSAVI2 =
2ρNIR + 1 −

√
(2ρNIR + 1)2 − 8 (ρNIR − ρred)

2
(3)

where ρ is reflectance in the near-infrared (NIR) or red band [83]. By normalizing the contribution
of background soil signal to the integrated spectral reflectance, MSAVI2 is a better indicator of the
vegetation signal than the NDVI in land areas, such as much of our study area, where exposed soil can
be a significant component of the observed surface [83,84].

For development, application and empirical analysis of the NDPI, we used time-series image
data from two satellite sensors, Landsat 5 Thematic Mapper (TM, 30 m resolution, 16-day repeat
cycle) and MODIS on the Terra satellite (250 m resolution, daily repeat cycle) to calculate the MSAVI2.
The overlapping temporal records of Landsat 5 (1984–2013) and MODIS Terra (2000-present) support
comparable results. The red and NIR bands correspond to spectral wavelengths of 630–690 nm and
760–900 nm, respectively, for TM, and 620–670 nm and 841–876 nm, respectively, for MODIS.

The conceptual foundation and our initial development and confirmation of the DVP method
and NDPI is based on our Landsat data analysis. Landsat’s 30-m resolution facilitated confident
identification of pixels to represent the reference vegetation cover conditions and NDPIref. However,
the geographic extent of our Landsat analysis was limited to the overlapping area of two adjacent
Landsat path-rows (Figure 1) where, for years 2009 and 2011, sufficient cloud-free observations were
available to capture seasonal patterns of landscape phenology with reasonable fidelity. We used
15 years (2000–2014) of 250-m resolution, 8-day composite data from MODIS to calculate the NDPI
over the full extent of our study area. We evaluated the performance of our DVP method by statistical
analysis of the relationships between the NDPIs and categorical estimates of perennial C4 grass cover
from field observations (produced in this research) and field-based estimates of C4 grass cover along an
elevation gradient in a sky island mountain range [85]. We also used numerical modeling to examine
the behavior of the NDPIs in responding to variations in perennial C4 grass cover in hypothetical
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combinations with four major vegetation types that occur in the study area: shrub, mesquite, riparian
cottonwood, and pinyon-juniper-evergreen oak.

2.5. Potential Variation in the NDPI-Vegetation Cover Relationship

In the case of the spectral vegetation index, NDVI, the relationship between the NDVI and the
subpixel fraction of vegetation cover is sensitive to the brightness of the exposed soil (the sum of the red
and NIR reflectance values), and the maximum sensitivity (greatest curvilinearity in the relationship)
occurs when the soil component of the surface cover is very dark [86,87]. Likewise, in the temporal
context of the NDPI, we expect the relationship between NDPI and the subpixel fractional cover of the
target vegetation type varies with the sum of VI(p1) and VI(p2), and the maximum sensitivity occurs
at the lowest cumulative values of VI(p1) and VI(p2).

We consider here two distinctly different, potential sources of variation in the satellite-derived VI
that could affect the sensitivity (curvilinearity of the relationship) of the NDPI to subpixel fractional
cover of the target vegetation (perennial C4 grass in our study). The first source includes year-to-year
differences in weather or disturbance that cause differences in vegetation surface cover, biomass, or
greenness. It also includes potential noise in the satellite-derived reflectance data that are unrelated
to surface and vegetation conditions (including atmospheric contamination and sensor calibration
drift). The second source is relevant to applications of the NDPI that differ significantly from those of
the present study with regard to the target vegetation cover type and/or the vegetation, exposed soil
and phenology characteristics of the study area. In such applications, differences in the characteristic
(for example, multiple-year average) magnitudes and dynamics of VI(p1) and VI(p2) of the vegetation
components (both the target and non-target vegetation types and exposed soil) relative to those of our
study could cause the NDPI relation to fractional cover of the target vegetation type to vary.

Following the method described by Hanan et al. [86] in their analysis of the NDVI, we used linear
mixture modeling to perform a sensitivity analysis of how the NDPI responds to variation in the
cumulative magnitude of MSAVI2(p1) and MSAVI2(p2). The response of NDPI to subpixel grass cover
(not shown) becomes increasingly curvilinear as MSAVI2 values of the non-grass surface components
during p1 and p2 decline below the 15-year values observed in our study area and toward the lowest
potential values. This systematic change in the NDPI relationship is similar to the change in the
NDVI relationship in the spectral domain when the exposed soil reflectance becomes very dark [86].
However, for the actual, observed range of MSAVI2(p1) and MSAVI2(p2) average values in our study
area, the sensitivity of the NDPI-grass cover relationship is modest: NDPI varies only within 0%–18%
of the NDPI (0.40) associated with the average observed MSAVI2(p1) and MSAVI2(p2) in the study
area. Because our sensitivity analysis does not represent all conditions of vegetation, exposed soil,
and phenology that would be potentially encountered in other NDPI applications, we recommend
incorporating a sensitivity analysis in applications that differ substantially from our present study in
the Southwest.

2.6. Landsat Data and Analysis

Our initial application of the DVP-based method with the NDPI used Landsat 5 TM data for
a sample area located in the southeastern part of the study area (Figures 1 and 5). We used surface
reflectance data [88] and selected cloud-free or nearly cloud-free images over the Landsat sample
area for analysis. We masked cloud and cloud shadow-affected pixels from each individual image
by differencing the scene with clouds from the nearest cloud-free image date and manually editing
the resultant image. All cloud or cloud shadow-affected pixel locations were masked from the entire
temporal image stack. Simple linear interpolation from the temporally adjacent scenes was used when
an image was removed because of excessive cloud contamination.

The sample area covers approximately 1772 km2 (6%) of the study area, and is located entirely
within the overlap of two horizontally adjacent Landsat World Reference System path-rows (paths 35
and 36, row 38). Landsat observes overlap areas twice as frequently as the non-overlap areas of a scene
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(8 days average vs. 16 days), which effectively diminishes the tradeoff between spatial resolution
and observation frequency that is typically associated with Landsat-based applications [89,90].
Consequently, in the overlap areas landscape phenology can be captured at 30 m resolution with
greater confidence than is possible elsewhere in a Landsat scene. By taking advantage of the overlap,
we obtained cloud-free observations for 24 dates in 2009 and 25 dates in 2011. We selected years 2009
and 2011 for the Landsat analysis because they yielded the highest number of usable Landsat images
from among the years since the MODIS data record began (2000). We deemed these years to be most
effective for capturing seasonal patterns of landscape phenology and informing our MODIS-based
analysis and mapping application, described henceforth.
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study area is shown in Figure 2.
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We used the 2009 and 2011 Landsat data to calculate and map the NDPI within the Landsat
study area (Figure 5). To specify the reference phenology and NDPIref for this area, we selected
pixel locations with the highest NDPI values as candidates to represent dense, essentially continuous,
perennial C4 grass cover. We verified that the candidate pixels exhibited the expected phenology of
perennial C4 grass by examining their time-series MSAVI2 patterns and rejecting agricultural and
other non-conforming pixels. The selected pixels were located within the Las Cienegas National
Conservation Area (LCNCA) (Figure 5), which is recognized for its extensive perennial warm-season
grasslands [91,92]. We further verified the suitability of these locations in our photographic field
survey (described subsequently in Section 2.9.1). We used the time-series of average MSAVI2 values
for selected pixels to define the reference phenology patterns and NDPIref values for 2009 and 2011,
which indicate the seasonal growth response of a nominally pure, perennial C4 grassland within our
Landsat study area to the specific weather conditions in these years.

The next step in our Landsat analysis was designed to provide a graphical demonstration and
confirmation of the systematic changes in seasonal phenology patterns that occur when the vegetation
cover in an observed landscape deviates from the vegetation cover associated with our reference
phenology, a nominally pure, dense, and continuous cover of perennial C4 grass. To achieve this
objective, we calculated the NDPI for all pixel locations within our Landsat analysis area, then applied
an unsupervised classification to the resulting NDPI image to generate a set of 10 NDPI classes, ranging
from the lowest NDPI values (class 1) to the highest NDPI values (class 10). Our DVP method is
predicated on the expectation that the unsupervised classification of NDPI data would aggregate
pixels with similar surface cover of perennial C4 grasses, and thereby account for differences in
perennial C4 grass cover across a range of vegetation compositions, from pure grassland to desert
scrub. We evaluated the validity of this expectation, and its consistency with the idealized response in
Figure 4, by examining the divergence of the phenology pattern of 10 NDPI classes from our reference
phenology pattern.

2.7. Numerical Modeling of NDPIs Response to Variation in Perennial C4 Grass Cover

We used linear mixture modeling to simulate the behavior of NDPIs under a range of vegetation
composition and surface cover conditions. The NDPIs was computed for a set of hypothetical Landsat
pixels consisting of perennial C4 grass with fractional cover varying from 0.0 to 1.0 in increments of
0.1. Four simulations were performed in which the remaining surface cover was represented by either
shrubs, mesquite, riparian cottonwood, or pinyon-juniper-evergreen oak vegetation. Performing this
simulation required MSAVI2 values for p1 and p2 that represent pure samples (100% surface cover) of
each vegetation type. We estimated these values by sampling from the 2009 Landsat 5-derived MSAVI2

images at locations exhibiting maximum surface cover of each vegetation type. We were unable to
identify confidently any locations with 100% cover of the individual vegetation types. To overcome
this limitation, we identified within the Landsat study area pixel locations with the highest MSAVI2

values associated with each of the five vegetation types based on our a priori knowledge of the study
area. We verified the vegetation type in these locations by visual reference to high-resolution Google
Earth imagery.

We estimated the cover fraction of the selected shrub site to be approximately 0.3, and
approximately 0.8 for the selected sites of perennial C4 grass, mesquite, cottonwood, and
pinyon-juniper-evergreen oak. To convert the MSAVI2 values in p1 and p2 for these locations to
values that represent 100% cover, we divided the observed MSAVI2 values by these estimated surface
cover values to produce adjusted MSAVI2 values (Table 2). We then used the adjusted MSAVI2 values
(representing 100% surface cover) in our simulation of how NDPIs responds to variation in perennial
C4 grass cover in combination with each of the four other vegetation types.
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Table 2. Estimated values of MSAVI2 for nominally pure samples of vegetation types.

Vegetation Component
Average MSAVI2 from Landsat for Dates in 2009

p1 p2

perennial C4 grass 0.23 0.57
shrubs 0.54 0.57

mesquite 0.66 0.64
cottonwood (riparian) 0.74 0.74

pinyon-juniper-evergreen oak 0.67 0.70

2.8. MODIS Data and Analysis

Whereas our initial development of the NDPI with Landsat was limited in both spatial extent
(overlapping area of adjacent path-rows) and time (two years with abundant cloud-free observations),
the wide swath (2330 km) and frequent (daily) revisit cycle of MODIS provided sufficient observations
for us to apply the method over multiple years and across the full extent of our study area. We used a
15-year (2000–2014) time-series of 8-day composite MODIS images with 250 m resolution. Our purpose
in using multiple years of MODIS data was to reduce the potential for bias in our NDPI-based mapping
results that could result from interannual variations in weather (primarily rainfall) on the observed
seasonal MSAVI2 pattern, and hence on the NDPI [93]. Such year-to-year, weather-related variations are
apparent in the Landsat results for 2009 and 2011, as discussed subsequently in Section 3.1. Sensitivity
of the NDPI to weather effects on a specific vegetation component of mixed-composition landscapes
provides an additional, unique source of information from the DVP method. This information may
be exploited to detect and monitor at the subpixel scale the response of specifically the perennial C4

grass component of mixed-vegetation landscapes in the Southwest to drought and climate change.
Results from our investigation of the monitoring potential of the NDPI will be reported in a separate,
forthcoming paper. For the present research in which our focus is mapping (rather than monitoring),
we purposely removed weather-induced interannual variations in the MODIS-derived NDPI by
computing a 15-year average NDPI image. We excluded from our analysis all image pixels located
above 2134 m (7000 ft) to avoid effects of orographic cloud cover (particularly during the monsoon
period) and snow cover during winter months. Although our initial processing and analysis of the
MODIS time-series data included all months, we ultimately excluded snow-prone months in our
specification of p1 and p2 for modeling of the NDPI.

The major steps in our processing of the MODIS 250-m, 8-day composite surface reflectance
data (MOD09Q1 product) [94] are as follows. We excluded MODIS images with substantial,
residual contamination of pixels by clouds and cloud shadows based on a visual comparison of
false-color images for each weekly composite to the nearest cloud-free image in the time-series.
This was performed by rapidly alternating the display of a reference cloud-free image and a
target image. Although the temporal compositing procedure that generates the 8-day MODIS
data product is intended to remove cloud-related artifacts that can occur in the individual, daily
MODIS images, in our study area we found it was not consistently successful. Our visual-based
approach to detecting such artifacts enabled us to identify and remove images with significant,
residual cloud-related contamination.

We used data from MODIS band 1 (red) and band 2 (near-infrared) to generate a 15-year time-series
of MSAVI2 images representing remaining 8-day MODIS composite periods. To fill gaps in the
MSAVI2 image time-series associated with excluded MODIS images, we performed simple linear
interpolation between corresponding pixels in the remaining, temporally adjacent MSAVI2 images. We
then calculated on a per-pixel basis the average MSAVI2 values in each year for the seasonal periods
specified for p1 and p2. With these yearly MSAVI2 data, we calculated (Equation (1)) a set of 15 yearly
NDPI images. We then computed a 15-year average NDPI image and used it to produce (Equation (2))
an NDPIs image that represents the 2000–2014 period. We produced a second pair of 15-year image
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data sets consisting of yearly average MSAVI2 values for p1 and yearly maximum MSAVI2 values for
p2. We used these data to generate three additional 15-year average MSAVI2-based image products,
described below, for comparison with the 15-year average NDPIs.

The remaining procedures for our MODIS-based application of the DVP method generally follow
those of our Landsat-based application, however we extended the analysis to the spatial domain to
evaluate the effectiveness of the NDPIs for mapping perennial C4 grass cover across the full range of
vegetation types, composition, and surface cover in our study area. We used the 15-year average NDPI
image to identify and select an area to represent the reference seasonal phenology pattern associated
with nominally pure, dense, continuous cover of perennial C4 grasses. Based on our conceptual model
of how NDPI changes in response to variation in perennial C4 grass cover (Figure 4) and results
from our Landsat analysis (presented in Section 3.1) that confirm this model, we expected the highest
observed NDPI values would be associated with the highest fractional cover. However, high average
NDPI values also occurred in areas dominated by irrigated agriculture, primarily northwest of Tucson.
Because the seasonal growth of irrigated crops is decoupled from precipitation-related constraints on
moisture availability, their phenology can deviate substantially from the characteristic phenology of
natural vegetation upon which our selections of p1 and p2 are based. In determining our reference
phenology pattern, we therefore excluded these irrigated land areas from consideration, and limited
the scope to areas with substantial rain-fed grasslands as determined from our a priori knowledge of
the study area.

We selected the average phenology pattern and NDPI observed within the San Rafael Valley in
southern Arizona to represent our reference phenology, and the associated NDPIref value, for perennial
C4 grassland in our study area. The grasslands that cover the gentle, rolling hills of the San Rafael Valley
are among the most expansive, pristine and productive grasslands of the Southwest [95]. As the setting
for the 1955 musical film production, “Oklahoma!” [96], the San Rafael Valley grasslands became
established as an iconic (if not a geographically accurate) representation, in widescreen Technicolor,
of the North American shortgrass prairie. Following Equation (2), we generated an NDPIs image by
subtracting our specified NDPIref value from all pixels in the NDPIobs image.

To support a comparative analysis of the performance of our DVP method in estimating and
mapping the perennial C4 grass cover relative to other methods, we generated images for three
additional VI-based metrics. These metrics represent potential, alternate approaches to grassland
mapping that also exploit temporal information in time-series MODIS observations. The selected
metrics are the 15-year (2000–2014) averages of

• summer average MSAVI2,
• summer maximum MSAVI2, and
• (summer maximum MSAVI2) − (spring average MSAVI2),

where, for our purposes, “spring” and “summer” refer respectively to May through June, and
July through October. The July-October period corresponds to the principal growth period of perennial
C4 grasses (p2 in our parameterization of Equation (1)) and was selected for its potential to maximize
sensitivity to specifically this vegetation type. The summer average MSAVI2 and summer maximum
MSAVI2 are examples of conventional VI metrics for detecting differences in vegetation phenology,
surface cover, green biomass, and production. The difference of the summer maximum MSAVI2 and
spring average MSAVI2 was selected to represent the DVP-based method used by Helman et al. [56] to
discriminate sub-pixel compositions of evergreen and herbaceous vegetation in Mediterranean forests.
We evaluated the relative performance of these three satellite-based VI metrics, and our DVP-based
method using the NDPIs, in estimating perennial C4 grass cover by comparisons with field-based
observations at sample sites within the study area.
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2.9. Field Observations for Validation of Map Results

The preferred approach to validating the performance of our NDPI-based application of the DVP
method would be through direct comparisons with an independent set of quantitative, spatial data
on the distribution and fractional surface cover of specifically perennial C4 grasses across the study
area. However, we were unable to determine the existence and availability of such data from a search
of the research literature. Producing a new data set with precise estimates of fractional cover with
geographic coverage similar to our study area was beyond the scope of the present research. As an
alternative, we used two independent, field-based data sets for validation. As part of this research, we
produced a data set that identifies general categories of perennial C4 grass cover at sample locations
distributed throughout the study area. The other data set consists of estimates of the relative surface
cover of C4 grass species at field plots in the Huachuca Mountains reported by an earlier study [85].

2.9.1. Data from Photographic Field Survey

We used ground-based, natural-color, digital photography to record and qualitatively assess the
presence and surface cover of perennial C4 grass at selected field sites in the study area. During a field
campaign in August of 2015, we traversed by vehicle all quadrants of the study area and collected
natural-color digital photographs at 92 locations. We recorded the geographic coordinates of each
site with a handheld GPS device (Oregon 650t, Garmin International, Inc., Olathe, KS, USA). Practical
considerations, including site accessibility and time efficiency, precluded a random sample-based
approach to site selection. Forest and woodland vegetation, which are limited to upper elevations of
the sky island mountain ranges of our study area, were not represented in the survey. We assume the
landscape conditions captured in our photographic survey of the 92 sites in 2015 provide a reasonable
representation of the average, overall range of vegetation and grass cover conditions, from pure desert
scrub to pure grassland, during our 2000–2014 study period.

We developed a portable camera system for efficient, mobile operation and used it to acquire
landscape photographs at the field sites. The system included a digital single-lens reflex (DSLR) camera
(Canon model EOS 50D with EF-S 18–55 mm lens) attached to the top of a 3.2 m vertical mast. The
mast was manually deployed at each site and oriented to capture high-oblique, natural-color images
of the adjacent landscape. The camera was connected to a portable computer located in the rear cargo
area of the field vehicle and controlled remotely with a software application (DSLR Remote Pro for
Windows, Breeze Systems Ltd., Camberley, UK). Image files were recorded in raw and JPEG formats.

Through visual examination of the natural-color images acquired by the DSLR camera, we
assessed the vegetation cover characteristics of the landscape at each field site with regard to the
presence and relative surface cover of perennial C4 grass. We assigned each of the 92 sites to one of
five qualitative categories:

1. no grass cover (n = 11)
2. minor grass cover (n = 15)
3. moderate grass cover (n = 23)
4. dense grass cover, with breaks (n = 31)
5. dense, continuous grass cover (n = 12)

The locations of the 92 field sites and sample photographs representing each of the five categories
are displayed in Figure 6. To enable direct, quantitative comparisons among the results from the
four satellite-based metrics, we normalized the metric data values extracted from the image products
at the 92 photographic survey locations.
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Figure 6. Color dots on the MODIS-derived map of the 15-year average NDPIs indicate locations of the
92 field sites used for validation. The photographs represent each qualitative landscape category, or
class, of perennial C4 grass cover, ranging from essentially no cover (class 1) to dense, continuous cover
(class 5).

Because our analysis of the landscape photographs could not yield reliable, precise, quantitative
estimates of fractional cover, each set of sites assigned to a qualitative landscape category represents
an undetermined amount of variation. Precise estimates of fractional cover could potentially be
acquired through more extensive and detailed field studies than our photographic survey, or through
analysis of extremely high-resolution (1–5 cm) multispectral or hyperspectral imagery from an airborne
sensor, however these options could not be realized within the practical constraints of the present
research project. Consequently, the uncertainty inherent in the five qualitative categories reduces the
quantitative information available to support validation. We acknowledge this uncertainty, as well as
potential uncertainties associated with using single-year observations (2015) to represent the 15-year
average (2000–2014) conditions, and interpret our validation results with appropriate caution.

Our use of the categorical data for validation assumes that the individual sets of data values
assigned to the landscape categories have distinct, although indeterminate, central tendencies that are
separable in data space. On this basis, we use linear least-squares regression to quantify the strength of
the relationships between the normalized satellite-based metrics and the landscape category numbers.
We refer to the regression results to evaluate the relative performance of the satellite-based metrics in
predicting variation in the central tendency among the landscape categories.

As an additional test of relative performance, we quantified and compared the overlapping ranges
of the normalized data among the five landscape categories. Results from the overlap analysis enable
us to compare the relative success of the satellite-based metrics in accounting for the unique, albeit
quantitatively indeterminate information on perennial C4 grass cover represented by the set of sample
locations associated with each landscape category. We expect the most reliable indicator of perennial
C4 grass cover is the metric that exhibits the least amount of overlap among the landscape categories.
Overlap calculations were performed for intervals of 1, 2 and 3 from each landscape category. In this
analysis scheme, an interval of 1 accounts for overlap between categories 1 and 2, 2 and 3, 3 and
4, and 4 and 5. An interval of 2 accounts for overlap between categories 1 and 3, 2 and 4, and 3
and 5. An interval of 3 accounts for overlap between categories 1 and 4, and 2 and 5. None of the
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satellite-based metrics exhibited overlap between landscape categories 1 and 5, therefore we neglected
the 4-category interval in our analysis of overlap.

The complete set of data and information from the field survey, including the location, category
designation, and landscape image for each site are provided in the Supplementary Materials (S1).

2.9.2. Data from Field Plots in a Sky Island Mountain Range

The occurrence and relative surface cover of C4 grass species at 68 sample plots across an elevation
gradient on the northeastern flank of the Huachuca Mountains, a sky island mountain range in the
southeastern part of our study area was reported for prior study by Wentworth [85]. The data
are summarized as average values representing the 10 contiguous, 50-m intervals from 1600 to
2100 m elevation, and are reported in a line plot (Figure 2d in [85]). We used linear interpolation to
estimate from visual inspection of the line plot the numerical values of relative cover of C4 grasses.
For comparison, we extracted NDPIs values at all grid cell locations on the northeastern side of the
Huachuca Mountains and computed the average NDPIs values within the same elevation intervals as
those used by Wentworth [85]. Because the Wentworth [85] data were collected nearly three decades
before our MODIS observation period, we exercised caution by considering only elevation-related
trends, rather than absolute values of relative cover.

3. Results and Discussion

3.1. Landsat-Based Results

The Landsat-derived reference phenology (seasonal MSAVI2 curves) for 2009 and 2011 are
consistent with expectations for landscape conditions characterized by nominally pure, continuous,
perennial C4 grass cover (Figure 7). The MSAVI2 remains low and relatively stable throughout the
winter and spring period when the perennial C4 grasses are predominantly dormant. A significant
feature of the general pattern evident in both years is the rapid rise in the MSAVI2 after approximately
day 176 (25 June). This abrupt increase reflects the increase in photosynthesis and productivity by
perennial C4 grasses with the onset of precipitation from the North American Monsoon and concurrent
warm temperatures. Differences in the time patterns for 2009 and 2011 are attributable primarily to
differences in the amount and timing of precipitation (data not shown).
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features, which we assert convey unique, quantitative information on the fractional surface cover of 

Figure 7. Seasonal patterns of the MSAVI2 from Landsat 5 for 2009 (left) and 2011 (right) for an area
within Las Cienegas National Conservation Area characterized by predominately dense and continuous
grass cover, and selected to represent the reference phenology for calculation of the NDPI.

Deviations in the Landsat-derived MSAVI2 values for NDPI classes labeled 3 through 10 from the
corresponding MSAVI2 values that define our reference phenology patterns exhibit significant features
that constitute the conceptual and practical underpinnings of the NDPI (Figure 8). These features,
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which we assert convey unique, quantitative information on the fractional surface cover of perennial
C4 grasses in our study area, would not have been produced from an unsupervised classification of
the image date layer-stack itself. The features and the information they contain emerge only from
calculation and classification of an NDPI image or another way of initially stratifying the data by
grass cover.

The deviations displayed in Figure 8 are positive in the winter/spring and negative in the summer.
This pattern is consistent with our expectations from a priori knowledge of the phenology of the major
vegetation components of the region as discussed previously and expressed in idealized form in
Figure 4. We attribute the positive deviations in winter/spring to the MSAVI2 of perennial C4 grasses
(which are dormant) being lower than the MSAVI2 of other vegetation types in the landscape, which
are green during part or all of this period (trees, shrubs, and/or succulents). Conversely, we attribute
the negative deviations in summer to the MSAVI2 values for perennial C4 grasses being higher than
the values of the other vegetation types during this period when the photosynthetic productivity and
green leaf display of C4 grasses are approaching or at their maximum.
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corresponding dates in years 2009 (left) and 2011 (right). Classes 1 and 2 are not displayed for clarity.

Differences among the NDPI classes in the magnitude of their MSAVI2 deviations in both
winter/spring and summer exhibit a systematic pattern. In this application, increasing positive
deviations in winter/spring are associated with increasing negative deviations in summer. We assert
that this pattern of change in seasonal deviations of the MSAVI2 from the reference phenology pattern,
which corresponds to decreasing values of the NDPI, is indicative of decreasing surface cover of
perennial C4 grass cover within the land area captured by an individual pixel. In our subsequent
analysis, we evaluate the validity of this assertion on a theoretical basis by examining the results of our
numerical modeling. We then evaluate it on an empirical basis by comparing 15-year averages of NDPIs

from MODIS with results of categorical estimates of perennial C4 grass cover from field observations.

3.2. Numerical Modeling Results

The simulation results show mild, non-linear relationships between NDPIs and subpixel fractional
cover for each vegetation-type combination (Figure 9). The regression lines diverge slightly from a
common point corresponding to 100% perennial grass cover, with maximum divergence at values of
fractional cover that vary with the curvilinearity of the regression lines. The differences among the
relationships at their points of maximum divergence are 7%–12% of the average range of NDPIs, and
have an average difference of 7% for all cases of simulated fractional cover. A more detailed and realistic
sensitivity analysis could be performed in future research by using, for example, a geometric-optical
canopy radiative transfer model instead of linear mixture modeling. Nevertheless, these results
reinforce our expectation that the NDPIs can be effective in discriminating the presence and subpixel
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surface cover of perennial C4 grass throughout our study area. However, the absence of a single,
universal relationship between NDPIs and perennial C4 grass cover suggests differences in the
phenology of the non-grass vegetation components are a potential source of uncertainty. A priori
knowledge of the seasonal variation in the spectral reflectance properties of the major vegetation
components of the landscape is therefore useful for reliable application and interpretation of the NDPIs.
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Figure 9. Results from linear mixture modeling of the response of NDPIs to subpixel variation in
fractional cover of perennial C4 grass in theoretical combinations with shrubs, mesquite, riparian
cottonwood, and pinyon-juniper-evergreen oak. R2 values (p < 0.001) from 2nd-order polynomial
least-squares regression are 0.99 (grass and shrubs, grass and mesquite), 0.97 (grass and cottonwood),
and 0.98 (grass and pinyon-juniper-evergreen oak).

3.3. MODIS-Based Map Results

The spatial distribution of the 15-year average summer maximum MSAVI2 (Figure 10) generally
corresponds to variation in topographic elevation (Figure 2). The lowest MSAVI2 values are observed
in the most arid and sparsely vegetated lowlands. The highest MSAVI2 values are seen at the highest
elevations within the sky island mountain ranges where woodland and forest vegetation are the
dominant cover type. Significant exceptions are the anomalously high values apparent at low elevations
where irrigated agriculture is the dominant land use (for example, northwest and immediately south of
Tucson). Anomalous, high MSAVI2 values are also evident along riparian zones, where soil moisture
is sufficient to support dense tree vegetation, and in some locations, agricultural crops. The riparian
zone anomalies are evident throughout the study area, but are prominent along the Santa Cruz River
(south of Tucson) and along the San Pedro River (extending north-south across the eastern part of the
study area).

The overall spatial patterns displayed in Figure 10, including those of the anomalies, suggest the
15-year average maximum MSAVI2 is generally sensitive to variations in total aboveground biomass,
green leaf area, and primary production. Such a relationship is consistent with expectations for a
satellite-based, seasonal maximum, average, or integrated VI [97,98]. However, the patterns do not
indicate the average summer maximum MSAVI2 is effective for distinguishing, in terms of either
biomass, leaf area or surface cover, perennial C4 grass from the other vegetation types. This result
highlights shortcomings of a basic, conventional VI-based approach to mapping specifically the
perennial C4 grass component of mixed-composition landscapes in the Southwest.



Remote Sens. 2016, 8, 889 22 of 33

Remote Sens. 2016, 8, 889  21 of 32 

 

 
Figure 10. Image-based map of the 15-year (2000–2014) average of the maximum MSAVI2 from 
MODIS (tile h08v05) within the summer period. Gray color indicates the data mask applied to cloud- 
and snow-prone areas (elevation > 2134 m). The diagonal, broken line is the transect across the 
Huachuca Mountains from which the image data were sampled for comparative analysis.  

The spatial distribution of the 15-year average NDPIs (Figure 11) differs significantly from the 
summer-maximum MSAVI2 pattern (Figure 10) along the upper elevation gradients of the sky island 
mountains (c.f. Figure 2) and in riparian zones. Whereas the summer maximum MSAVI2 generally 
increases with increasing elevation within the sky island mountain ranges, the NDPIs decreases with 
elevation in these upland areas. These elevation-related patterns are illustrated in data from a transect 
across the Huachuca Mountains in the southeastern part of the study area (Figure 12). The patterns 
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Figure 10. Image-based map of the 15-year (2000–2014) average of the maximum MSAVI2 from MODIS
(tile h08v05) within the summer period. Gray color indicates the data mask applied to cloud- and
snow-prone areas (elevation > 2134 m). The diagonal, broken line is the transect across the Huachuca
Mountains from which the image data were sampled for comparative analysis.

The spatial distribution of the 15-year average NDPIs (Figure 11) differs significantly from the
summer-maximum MSAVI2 pattern (Figure 10) along the upper elevation gradients of the sky island
mountains (c.f. Figure 2) and in riparian zones. Whereas the summer maximum MSAVI2 generally
increases with increasing elevation within the sky island mountain ranges, the NDPIs decreases
with elevation in these upland areas. These elevation-related patterns are illustrated in data from
a transect across the Huachuca Mountains in the southeastern part of the study area (Figure 12).
The patterns along the transect are consistent with the influence of climatic and ecophysiological
factors on vegetation distribution along elevation gradients [99,100]. With increasing elevation, cooler
temperatures and reduced evaporative demands favor woodland and forest vegetation, while reducing
the competitive advantage and viability of perennial C4 grasses. Thus, the decline in NDPIs along
the uppermost elevation gradients suggests NDPIs, in contrast to the maximum summer MSAVI2,
is sensitive to the expected elevation-related decline of perennial C4 grasses [85].

The spatial pattern of the 15-year average NDPIs also deviates significantly from the 15-year
average maximum summer MSAVI2 in the riparian zones. Whereas the summer maximum MSAVI2

exhibits anomalously high values in those areas, the NDPIs does not. Although grasses occur in riparian
ecosystems of the semiarid Southwest, woody vegetation, including gallery forests of cottonwood and
willow, is typically the dominant cover type [101–103]. Whereas the high MSAVI2 values observed
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in the riparian zones suggest this index is a misleading indicator of the surface cover of perennial
C4 grasses, the low NDPIs values observed in these areas conform to our expectations. The overall
results from visual comparison of the MODIS-derived map products (Figures 10 and 11) support our
expectation that the DVP method using NDPIs can provide improved capabilities for discriminating
the perennial C4 grass component from other vegetation components of Southwest landscapes, relative
to a simplified, conventional VI-based approach represented here by the summer maximum MSAVI2.

Images for both the NDPIs (Figure 11) and summer-maximum MSAVI2 (Figure 10) exhibit high
values in areas of irrigated cropland. Such areas appear as the distinct, dark green features (indicating
high MSAVI2 or NDPIs values) in the northwestern part of the study area, directly northwest of Tucson
(c.f. Figure 1). Whereas these patterns are a reasonable result for MSAVI2 with respect to green biomass
and primary production, they represent an anomalous and misleading result for the NDPIs with
respect to perennial C4 grass cover. The NDPIs response in irrigated croplands may be attributed to a
seasonal cropping pattern that effectively mimics the phenology of the perennial grasses in the region.
While this artifact does not diminish the potential effectiveness of NDPIs and the overall DVP method
for discriminating perennial C4 grasses in non-irrigated land areas, it does indicate the need for a
priori identification and masking of cropland areas. Conversely, the anomalous results for irrigated
agriculture suggest the DVP method has potential for discrimination and mapping of agricultural crop
vegetation within mixed-vegetation landscapes.
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Figure 11. Image-based map of the 15-year (2000–2014) average NDPIs from MODIS (tile h08v05).
Gray color indicates the data mask applied to snow-prone areas (elevation > 2134 m). White color
pixels that appear in sporadic, narrow bands indicate data masks applied to missing or unreliable
MODIS data. The diagonal transect and the rectangular area, indicated by the broken lines across the
Huachuca Mountains, are where the image data were sampled for comparative analysis.
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Figure 12. Variation in (a) 15-year averages of NDPIs and summer maximum MSAVI2; and
(b) topographic elevation, observed for individual pixels along a common transect (displayed in
Figures 10 and 11) across the Huachuca Mountains in the southeastern part of the study area (Figure 2).
Pixel sample numbers increase from the southwest to the northeast direction.

3.4. Validation of MODIS-Based Map Results

We now present and discuss results from comparison of the four satellite-based metrics with data
from our photographic survey. The scatter plots displayed in Figure 13 show results, including R2 and
associated p-values, from the regression of data sampled from the four image-based map products at
the 92 photographic survey sites against the numerical value of the corresponding landscape category.
As discussed earlier, the results require careful interpretation because the regressions were performed
with numerical values that correspond to categories (indicating ranges of perennial C4 grass cover),
rather than absolute values of cover. Accordingly, we avoid inferences to absolute values of cover,
which would be fundamental for a rigorous quantitative validation. In our validation, we consider the
regression results as general indicators of relative performance in accounting for the increasing amounts
of perennial C4 grass cover represented by the sequence (1 to 5) of the qualitative landscape categories.
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maximum MSAVI2 and the spring average MSAVI2; and (d) NDPIs.

Results from least-squares linear regression indicate the 15-year averages of the two conventional
VI-based metrics are moderately successful in predicting the variation in perennial C4 grass cover
represented by the five landscape categories (Figure 13a,b). The coefficient of determination (R2) is
0.56 (p < 0.001) for the summer average MSAVI2 (Figure 13a) and 0. 62 (p < 0.001) for the summer
maximum MSAVI2 (Figure 13b). Relative to these results from simple, conventional VI metrics,
regression results from the two DVP-based metrics suggest substantially greater sensitivity to the
differences in perennial C4 grass cover among the landscape categories (Figure 13c,d). The R2 value
for the difference of the summer maximum and spring average MSAVI2 is 0.73 (p < 0.001) (Figure 13c).
With an R2 value of 0.76 (p < 0.001), the results suggest the NDPIs is potentially the most successful
predictor of perennial C4 grass cover among the four metrics that we compared (Figure 13d).

Our interpretation of the regression results is reinforced by quantitative analysis of the overlap in
the ranges of the normalized data among the five landscape categories, which is apparent in the scatter
plots in Figure 13. Differences in the amount of overlap among the four satellite-based metrics indicate
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their relative performance in distinguishing the variation in perennial C4 grass cover represented by the
five landscape categories. Results from our overlap calculations (Table 3) are consistent with the results
from regression analysis. At each interval, the largest overlaps are exhibited by the two conventional
VI-based metrics (Table 3). The average overlap for the combined set of intervals is 49% for the summer
average MSAVI2, and 44% for the summer maximum MSAVI2. Consistent with the regression results,
the two DVP-based metrics show substantially improved performance relative to the conventional
metrics (Table 3). The overlap for the combined set of intervals is 26% for the difference of the summer
maximum and spring average MSAVI2, and 21% for the NDPIs (Table 3). Thus NDPIs exhibits 5%
less overlap between categories than the other DVP-based metric and 23%–28% less overlap than the
conventional VI metrics. These relative reductions in overlap potentially represent commensurate
increases in unique information captured by the NDPIs. The results from the overlap analysis provide
additional evidence that the NDPIs is potentially the most effective among the four satellite-based
metrics in distinguishing differences in perennial C4 grass cover among the field sites that represent
the landscape categories.

Table 3. Average Overlap of the Ranges of Normalized Data Values among Landscape Categories for
Individual and Combined Category Intervals.

15-Year Avg. Data Product

Interval from Reference Landscape Category Number

+1 +2 +3 Combined

Avg. Overlap (%) Avg. Overlap (%) Avg. Overlap (%) Avg. Overlap (%)

Summer Average MSAVI2 0.33 (64) 0.22 (48) 0.13 (35) 0.23 (49)
Summer Maximum MSAVI2 0.30 (61) 0.20 (45) 0.10 (27) 0.20 (44)
(Summer Max. MSAVI2) −

(Spring Avg. MSAVI2) 0.19 (54) 0.09 (24) 0.00 (0) 0.10 (26)

NDPIs 0.14 (49) 0.04 (14) 0.00 (0) 0.06 (21)

Results from comparison of the 15-year average NDPIs with estimates of the relative cover of C4

grass species across an elevation gradient in the Huachuca Mountains [85] are displayed in Figure 14.
The NDPIs decreases monotonically with increasing elevation across the sample range from 1600 to
2100 m. Although the decline in field-based estimates of the relative cover of C4 grasses along the
same elevation gradient is not monotonic, the general pattern corresponds well with the NDPIs pattern
(Figure 14a). The additional variability apparent in the field plot-based C4 grass data may be at least
partially attributable to their representation of a limited set of conditions. The area from which the
NDPIs data were sampled covers the entire northeastern side of the Huachuca Mountains (Figure 11)
and therefore captures all landscape conditions (including variations in surface slope and aspect).
The 68 sites from which the C4 grass cover data were collected represent a sample set of locations that
may not represent the full range of landscape conditions observed within the same elevation intervals
over the broader sample area represented by the NDPIs. Regardless, least-squares linear regression
confirms a statistically significant relationship between the observed, elevation-related changes in
NDPIs and C4 grass cover (R2 = 0.70, p < 0.01) (Figure 14b). These results support our interpretation,
discussed earlier, of the divergence in the 15-year averages of the NDPIs and the summer maximum
MSAVI2 observed in the elevation transect across the Huachuca Mountains (Figures 10 and 11). In stark
contrast to the conventional VI-based metric, the NDPIs captures the expected decline in C4 grass
cover with increasing elevation in the upland areas of the sky island mountain ranges.
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by the dotted line in Figure 11, whereas the relative cover data are from field plots studied by 
Wentworth [85]. 
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Figure 14. Comparison of the 15-year average NDPIs and field-based estimates of the relative surface
cover of C4 grasses, both sampled from the northeastern side of the Huachuca Mountains in the
southeastern part of the study area (Figures 2 and 11), and displayed (a) as a function of elevation, and
(b) as a scatter plot with results from least-squares linear regression. Both data sets represent average
values for 50-m elevation intervals. The NDPIs data are from the rectangular area bounded by the
dotted line in Figure 11, whereas the relative cover data are from field plots studied by Wentworth [85].

4. Conclusions

We developed a methodology for mapping of the exposed perennial, warm-season (C4) grass
component of mixed- and variable-composition landscapes in the Southwest, and applied the method
to a study area in southern Arizona, USA and northern Sonora, Mexico. Our application demonstrates
and exemplifies a general, conceptual approach to mapping of an individual vegetation component
of vegetation cover in mixed- and variable-composition landscapes, which heretofore has remained
relatively unexplored [56]. Insomuch as the conceptual approach embodies a distinct category of
remote sensing analytical methods that, to our knowledge, has not been explicitly identified in the
remote sensing research literature, we have identified it as a differential vegetation phenology (DVP)
approach to vegetation mapping and monitoring.

We distinguished the DVP approach from other vegetation mapping methods by its emphasis on
strategic leveraging of a priori information on the seasonal differences in phenology of the vegetation
cover components that comprise a landscape. We distinguished the DVP approach from other
phenology-based (frequency-domain) methods, and from those that use only spatial and spectral
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information, by its use of metrics that strategically exploit such predetermined differences in phenology.
In our DVP application to mapping of perennial C4 grass in the Southwest, we introduced one such
metric—a temporal vegetation index as opposed to a spectral vegetation index—that we refer to as a
normalized difference phenometric index, or NDPI. The combined results from our analysis provide
a consistent body of evidence that the DVP methods, and the NDPIs in particular, performs best in
mapping perennial C4 grass in our Southwest study area relative to two conventional VI-based metrics.
Desirable goals for future research include additional validation and refinement of the NDPI (and other
potential, DVP-based metrics), and quantitative comparisons against additional, existing methods
for subpixel discrimination and mapping of the perennial C4 grass component of mixed-composition
landscapes in the Southwest. Because the relationship between NDPI and the subpixel fractional
cover of the vegetation cover type of interest is not necessarily constant for all potential vegetation,
exposed soil, and phenology conditions, we recommend performing a sensitivity analysis in future
NDPI applications that differ substantially from our present study in the Southwest.

In this mapping application in the Southwest, we used 15-year (2000–2014) average data sets from
MODIS to reduce the effects of interannual variability in vegetation phenology that are attributable to
weather conditions, especially variability in precipitation. The resulting map of the 15-year average
NDPIs (Figure 11) therefore represents the average conditions of perennial C4 grass cover during the
observation period. Whereas the 15-year average NDPIs does not account for potential changes or
variability in the spatial distribution or extent of perennial C4 grass in the study area during 2000–2014,
monitoring and analysis of the NDPIs on an annual basis could provide useful information about how
perennial C4 grass in mixed-composition landscapes responds to fire and other disturbances, weather,
drought, climate change, and land management strategies (such as grazing regimes). Likewise, analysis
of variations and trends in the NDPIs over multiple years may provide an integrated, ecosystem-based
indicator of the strength and variability of the North American Monsoon. Our ongoing research
is investigating this potential with an aim toward providing improved, timely, satellite-based data
products on grassland and other vegetation components that support the information needs of the
science and land management communities in the Southwest and beyond.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/11/889/s1,
Dataset S1: Color Landscape Images from Field Survey in August 2015.
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