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Abstract: Knowledge of spatial and temporal variations in crop growth is important for crop
management and stable crop production for the food security of a country. A combination of crop
growth models and remote sensing data is a useful method for monitoring crop growth status and
estimating crop yield. The objective of this study was to use spectral-based biomass values generated
from spectral indices to calibrate the AquaCrop model using the particle swarm optimization (PSO)
algorithm to improve biomass and yield estimations. Spectral reflectance and concurrent biomass
and yield were measured at the Xiaotangshan experimental site in Beijing, China, during four winter
wheat-growing seasons. The results showed that all of the measured spectral indices were correlated
with biomass to varying degrees. The normalized difference matter index (NDMI) was the best
spectral index for estimating biomass, with the coefficient of determination (R2), root mean square
error (RMSE), and relative RMSE (RRMSE) values of 0.77, 1.80 ton/ha, and 25.75%, respectively.
The data assimilation method (R2 = 0.83, RMSE = 1.65 ton/ha, and RRMSE = 23.60%) achieved the
most accurate biomass estimations compared with the spectral index method. The estimated yield
was in good agreement with the measured yield (R2 = 0.82, RMSE = 0.55 ton/ha, and RRMSE = 8.77%).
This study offers a new method for agricultural resource management through consistent assessments
of winter wheat biomass and yield based on the AquaCrop model and remote sensing data.

Keywords: biomass; yield; AquaCrop model; spectral index; particle swarm optimization;
winter wheat

1. Introduction

Wheat is an important food source for the rapidly increasing population in China [1]. The attention
paid to national food security and sustainable agricultural development has increased over recent years,
with increased concern for the improvement of field wheat management. Therefore, it is important to
estimate wheat growth status and predict wheat yield in a timely and accurate way [2]. The integration
of crop models and remote sensing data has become a useful method for monitoring crop growth
status and crop yield based on data assimilation over extensive regions [3,4].
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In most cases, researches have developed remote sensing and crop models used in their
respective study areas [5]. Crop models simulate crop physiological growth status using mathematical
formulas [6]. They have been used to analyze the influences of climate, soil conditions,
and management strategies on agronomic parameters (e.g., canopy aboveground biomass, LAI,
and grain yield) [7]. The Agricultural Model Intercomparison and Improvement Project (AgMIP)
recently reviewed 27 wheat models from around the world [8]. This review showed that poor
performance may be obtained when a crop model is applied over a large region due to uncertainties
in the spatial distribution of soil properties, initial model conditions, crop parameters, and field
management practices, resulting in biased simulations [9,10]. Large amounts of high-quality data have
been used to improve the calibration and parameterization of crop models, thereby increasing the
simulation accuracy of crop models on a regional scale.

Rapid development of remote sensing technology has facilitated the acquisition of crop growth
information with high temporal and spatial resolutions [5,11–16]. Previous studies have indicated that
combining crop models and remote sensing data can be used to improve the accuracy of crop yield
estimates [17–25]. Curnel et al. [17] evaluated the feasibility of assimilating wheat leaf area index (LAI)
derived from remote sensing data into the World Food Studies’ (WOFOST) crop growth model using a
recalibration-based assimilation method; the results indicated that remote sensing data can be used to
improve yield estimations. Dente et al. [19] assimilated LAI from Environment Satellite (ENVISAT)
Advanced Synthetic Aperture Radar (ASAR) and Medium Resolution Imaging Spectrometer (MERIS)
data into the Crop Estimation through Resource and Environment Synthesis-Wheat (CERES-Wheat)
model at a catchment scale using a variational assimilation algorithm; the results suggested that this
approach minimizes the difference between simulated and remotely-sensed LAI and achieves high
estimation accuracy. Soil moisture data from the Advanced Microwave Scanning Radiometer-EOS
(AMSR-E) and LAI from the Moderate Resolution Imaging Spectroradiometer-LAI (MODIS-LAI) were
assimilated into the Decision Support System for Agro-technology Transfer-Cropping System Model
(DSSAT-CSM)-Maize using an Ensemble Kalman Filter algorithm, and simulated yield was more
accurate when both LAI and soil moisture were used [22]. The ensemble-based four-dimensional
variational method was used to assimilate HJ-1A/B satellite data into the CERES-Wheat model,
and estimates of winter wheat yield in field plots were reported (R2 = 0.73; RMSE = 319 kg/ha) [23].
Huang et al. [25] assimilated time series of LAI data with a 30-m spatial resolution into the WOFOST
model with a Kalman Filter (KF) algorithm and reported more accurate estimates of regional winter
wheat yield compared with more traditional approaches.

The integration of crop models and remotely sensed data using optimization algorithms
(data assimilation methods) is becoming an effective and potential method for monitoring crop
growth status and estimating crop yields, as it overcomes certain defects and combines the advantages
of individual methods [5,26–30]. The data assimilation method can be used to reduce uncertainty
in crop models to ensure that the simulated state variables (e.g., LAI and biomass) are in agreement
with the measured state variables from remote sensing data. Several assimilation schemes have been
developed [3,12,31–33]. Delecolle et al. [34] divided schemes into three categories. The first is the
forcing method, in which state variables in crop models are directly substituted by remote sensing
variables. This method is easy to use, but it relies on the calibrated parameters of crop models and
the accuracy of remote sensing data [5,12]. The second is the calibration method, in which the initial
parameters of crop models are recalibrated, based on the relationship between the remote sensing state
variables and the simulated state variables [5,10,34]. In recent years, the calibration method has gained
more attention, as it has greatly benefited from several intelligent optimization algorithms. The main
shortcoming of the calibration method is that a great deal of computation time is required [3,5,30].
The third is the updating method, in which the simulated state variables are continuously renewed
whenever remote sensing state variables are available. It is more flexible than the forcing method,
but the remote sensing data must be of a higher accuracy than those of the simulated state variables,
and this method heavily relies on the selection of the remote sensing data [4,33,35].
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The combination of remote sensing data and light-driven or carbon-driven models has been
widely studied, but few studies have focused on water-driven models for estimating the biomass
and yield of crops. Therefore, in this study we focused on the AquaCrop model, a water-driven crop
model, which was recently introduced to optimize crop water management strategies and improve
crop yield in irrigation regions [36]. Winter wheat is the main crop grown in the North China Plain
(NCP), and thus an important food source in China. Increased industrial and domestic water use has
resulted in reduced water availability for irrigation of winter wheat crops. Therefore, improving water
resource management in this region is crucial for increasing winter wheat yield. The main goal of this
study was to improve estimates of winter wheat biomass and yield by assimilating field spectroscopic
data into the AquaCrop model with a Particle Swarm Optimization (PSO) algorithm. The biomass
and yield of winter wheat were used to optimize field irrigation management strategies and then to
increase water use efficiency under different planting dates and irrigation management strategies.
The specific objectives of this study were: (1) to select the best spectral indices from hyperspectral data
for estimating winter wheat biomass; (2) to calibrate the AquaCrop model with biomass estimates
derived from these indices using the PSO algorithm for improving accuracy of biomass and yield
estimates; and (3) to evaluate the performance of the data assimilation method in estimating wheat
biomass and yield.

2. Methodology

2.1. Description of the Study Site

Field experiments were carried out during the 2008/2009, 2009/2010, 2010/2011, and 2011/2012 growing
seasons, at the Xiaotangshan experimental site (40◦10′31”~40◦11′18”N, 116◦26′10”~116◦27′05”E),
Beijing, PR China. The soil type in the study site is fine-loamy. Beijing is characterized by a typical
continental climate. The maximum temperature is 26.1 ◦C in summer, and the minimum temperature
is −4.7 ◦C in winter. For the experimental period, the average annual precipitation was 650 mm and
the frost-free period was 180 days on average [37].

2.2. Experimental Setup

Table 1 shows the winter wheat planting dates and cultivars. The area of each plot was 100 m2,
in 2008, 2009, and 2010, and 300 m2 in 2011. A two-way factorial arrangement of treatments
(winter wheat cultivar and planting date) in a randomized complete block design with three replicates
was used in this experiment. Weed control, pest management, and fertilizer application were performed
according to the local standard practices for wheat production.

Table 1. Winter wheat cultivars and planting dates in 2008, 2009, 2010, and 2011.

Winter Wheat Cultivars Planting Date

Nongda195, Jingdong8, Jing9428 28 September, 7 October, and 20 October 2008
Nongda195, Jingdong13, Jing9428 25 September, 5 October, and 15 October 2009
Nongda195, Yannong19, Jing9428 25 September, 5 October, and 15 October 2010

Nongda211, Zhongmai175, Jingdong8, Jing9843 25 September 2011
Note: There were three winter wheat cultivars, and each had three planting dates per year, in 2008, 2009,
and 2010. In 2011, four cultivars were planted on the same date.

2.3. Data Acquisition

2.3.1. Meteorological Data Collection

The local Xiaotangshan meteorological station was used to obtain meteorological data.
Daily relative humidity, rainfall, total sunshine hours, wind speed, and maximum, minimum,
and mean temperatures were recorded directly at the Xiaotangshan experimental site. The Food
and Agriculture Organization Penman–Monteith method was used to calculate the reference
evapotranspiration (ETo) [38].
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2.3.2. Measurement of Canopy Reflectance

Spectral measurements of winter wheat were taken at different growth stages. The specific growth
stages and dates are presented in Table 2. All canopy spectral measurements were taken at a nadir
orientation, 1.0 m above the canopy, under clear sky condition between 10:00 and 14:00 Beijing local
time, using an ASD Field Spec Pro Spectrometer (Analytical Spectral Devices, Boulder, CO, USA).
The spectrometer was fitted with a 25◦ field of view optical fiber, operating in the 350–2500 nm spectral
region. The scanned area of the ASD sensor was about 0.70 m2. A 40 × 40 cm BaSO4 calibration
panel was used for calculating the black and baseline reflectance. Spectral measurements taken at
all four sites in each plot were averaged to represent the canopy reflectance of each plot to reduce
the possible effects due to field conditions. Vegetation radiance measurements were averaged from
10 scans at an optimized combination time at each site, and a dark current correction was conducted
before each measurement. For each plot, a total of 40 spectra data points were obtained. Panel radiance
measurements were taken twice, before and after the canopy spectral measurements.

Table 2. Spectral reflectance measurement dates for 2009, 2010, 2011, and 2012.

Wheat Growth Stages
Measurement Dates

2009 2010 2011 2012

Jointing 16 April 18 April 13 April
28 April 23 April 28 April

Heading 6 May 6 May 7 May 10 May

Anthesis 12 May 19 May 17 May 21 May

Grain filling
26 May 1 June 30 May
10 June 7 June

12 June

2.3.3. Biomass and Yield Data Collection

The aboveground biomass, at the measuring positions of canopy spectral reflectance data,
were obtained 5–6 times using random sampling of a 0.25-m2 area, in 2009–2012, with four replicates
from each plot. A 4 × 0.25 m2 area for each plot was deemed sufficient, based on previous results [3].
All samples were heated to 105 ◦C, then oven dried at 70 ◦C to a constant weight, and their final dry
weights were recorded.

The grain yields of each plot with three replicates for each treatment were obtained by randomly
sampling a 1.5-m2 area. Finally, selected grain was dried and weighed on an electronic scale (±0.01 g).

2.3.4. Selection of Spectral Indices and Biomass Estimation from Spectral Indices

Fifteen spectral indices from the literature [13,16,39–50], determined to be good candidates for
estimating biomass, were selected for the entire winter wheat growing season, based on 2009, 2010,
and 2011 field data (Table 3). To refine the relationships between spectral indices and biomass,
linear and nonlinear regression relationships between each of the spectral indices and biomass were
determined based on field data from all growth stages during 2009, 2010, and 2011 (n = 135, calibration
dataset). Field data taken in 2012 (n = 20, validation dataset) was used to validate the estimation
accuracy of the models. Since the four winter wheat cultivars exhibited larger differences in 2012,
resulting in greater variation in the biomass of the four winter wheat cultivars, the dataset from
2012 was selected to validate the estimation accuracy of the models. To determine the most sensitive
spectral indices, we compared the coefficient of determination (R2), root mean square error (RMSE),
and relative RMSE (RRMSE) values of the different models. Best-fitting regression equations were used
for estimating winter wheat biomass. In addition, the homoscedasticity values (F) of the estimated and
measured biomass were calculated using Levene’s test [51].
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Table 3. Summary of spectral indices studied.

Spectral Index Name Formula References

WI I Water index (970, 900) R970/R900 [39]
WI II Water index (1300, 1450) R1300/R1450 [40]
NDII Normalized difference infrared index (R850 − R1650)/(R850 + R1650) [41]

NDMI Normalized difference matter index (R1649 − R1722)/(R1649 + R1722) [42]
TBWI Three band water index (R973 − R1720)/R1447 [43]
EVI Enhanced vegetation index 2.5 × (R800 − R660 )/(1 + R800 + 2.4 × R660) [44]

TCARI Transformed chlorophyll absorption
in reflectance index

3 × ((R700 − R670) − 0.2 × (R700 − R550) ×
(R700/R670)) [23]

OSAVI Optimized soil-adjusted
vegetation index 1.16 × (R800 − R670)/(R800 + R670 + 0.16) [45]

TCARI/OSAVI Combined Index II TCARI/OSAVI [16]
MTCI MERIS terrestrial chlorophyll index (R750 − R710)/(R710 − R680) [46]

CIred edge Red edge model (R750/R720) − 1 [47]

NDVI Normalized difference
vegetation index (R800 − R670)/(R800 + R670) [48]

DCNI I Double-peak canopy nitrogen index I (R750 − R700)/(R700 − R670)/(R750 − R670 + 0.09) [49]
OSAVI × CIred edge Combined Index I OSAVI × CIred edge [13]

WDRVI Wide dynamic range vegetation index WDRVI = (α × R800 − R670)/(α × R800 + R670)
α = 0.1 [50]

Note: Ri denotes reflectance at band i (nanometer).

2.4. Description of the AquaCrop and ACsaV40 (AquaCrop Plug-In) Models

2.4.1. Description of the AquaCrop Model

The AquaCrop model was reported by the FAO in 2009, and detailed descriptions are reported
in Steduto et al. [36], Raes et al. [52], and Jin et al. [37]. It computes daily crop transpiration and soil
evaporation. The model subsequently estimates yield based on daily crop transpiration [36].

2.4.2. Description of the ACsaV40 (AquaCrop Plug-In) Model

The AquaCrop plug-in program, ACsaV40, was created to simultaneously run large amounts
of data without a user interface [53]. It facilitates external and practical applications of AquaCrop.
The input parameters of ACsaV40 are sorted in a text file, which can be created using the AquaCrop
model, or by manually replacing the values of each variable with new values in the existing text
files [54]. ACsaV40 runs the successive project files, and the simulated results of each project file are
reserved in an output file, which includes the simulation period, stress factors, canopy cover, biomass,
crop yield, and so on [53].

2.5. Assimilation of the AquaCrop Model and Remote Sensing Data Using the Particle Swarm Optimization
(PSO) Algorithm

Particle swarm optimization (PSO) is a comparatively simple principle that can be easily combined
into crop models with high calculation efficiency and few input parameters. Compared with various
optimization algorithms, PSO is easier to apply in a practical study and has the advantages of a high
precision and rapid convergence [55]. It has received widespread attention among scientists who
have demonstrated its superiority in solving practical problems. In addition, PSO has the capability
of parallel computing. Therefore, we used PSO to carry out the assimilation of remote sensing data
into the AquaCrop model. PSO is based on the assumption of a group consisting of m (25 groups in
this study) particles with certain speeds, without quality and size, in a d-dimensional search space.
Each particle can modify its position and velocity based on both the best point in the current generation
(pid) and the best point of all particles in the swarm (pgd). In this study, estimated biomass was used to
optimize the crop parameters used in the AquaCrop model to obtain the optimal simulated biomass
based on the fit of the cost function. The corresponding optimal yield is produced when the optimal
simulated biomass is achieved. The PSO assimilation method for the The AquaCrop model and remote
sensing data are presented in Figure 1. The specific steps to execute the PSO are as follows:
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(1) The velocity and position (initial value) of each particle are determined. The adjusted parameters
include eight crop parameters (cgc, ccx, cdc, eme, num, psen, pstoshp, and rootdep) [56].
Specific information and ranges for these parameters are listed in Table 4.

(2) ACsaV40 is executed with the required data using MATLAB (version 2007, MathWorks, Natick,
MA, USA), and simulated biomass (BIOs) is obtained.

(3) Regression relationships between spectral indices and measured biomass are analyzed, and the
best regression model is determined to estimate biomass (BIOe).

(4) A cost function is constructed according to the relationship BIOs and BIOe, reflecting the difference
between BIOs and BIOe. The fit of the cost function determines whether the optimization
algorithm had achieved the optimal input parameters.

(5) The values of pid and pgd are searched in each iteration.

(6) The position and velocity of each particle are updated based on pid and pgd. The values of C1 and
C2 are set as 2, and random values between 0 and 1 are assigned to ξ and η [57].

(7) If the iteration target (100 generations) is not reached, the updated positions are replaced and the
previous step is repeated.

(8) If the final iteration is achieved, the values of BIOs and corresponding simulated YIELDs
are produced.
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Table 4. Initial values and ranges of calibration parameters, or initial data, of the AquaCrop model.

Variables Values Ranges

Canopy growth coefficient (cgc) 0.06 0.05–0.07
Maximum canopy cover in fraction soil cover (ccx) 0.65 0.82–0.99

Canopy decline coefficient (cdc) 0.05 0.04–0.07
Growth degree day: from sowing to emergence (eme) 175 100–250

Number of plants per hectare (num) 4,500,000 2,500,000–5,500,000
Soil water depletion factor for canopy senescence (psen) 0.65 0.55–0.75

Shape factor for water stress coefficient for stomatal control (pstoshp) 2.5 1.5–3.5
Growth degree day: from sowing to maximum rooting depth (rootdep) 1500 1200–1800

3. Results

3.1. Biomass Estimation

The regression relationships between biomass and spectral indices are provided in Table 5.
The lowest and highest R2 values (0.25 and 0.84) were obtained for DCNI I and NDMI, respectively.
The order of the spectral indices was WI I, WI II, NDII, NDMI, TBWI, EVI, TCARI, OSAVI,
TCARI/OSAVI, MTCI, CIred edge, NDVI, DCNI I, OSAVI × CIred edge, and WDRVI. Of the R2 values,
two were above 0.70, five were equal to or above 0.60, and eight were below 0.6. All spectral
indices were fitted to power regression equations, with the exception of NDMI, DCNI I, and WDRVI,
which were fitted to exponential regression equations (Table 5). The result showed that the assumption
of homoscedasticity is met, based on the calculated F values between the estimated and measured
biomass (Table 5).

Table 5. Correlations between biomass and spectral indices of winter wheat (n = 135).

Vegetation Index Regression Equations R2 F RMSE (Ton/Ha) RRMSE (%)

WI I y = 1.169x−13.5 0.72 ** 0.85 2.05 29.33
WI II y = 0.264x2.149 0.56 ** 0.62 2.98 42.63
NDII y = 29.40x1.620 0.67 ** 0.80 2.24 32.04

NDMI y = 0.883e70.06x 0.77 ** 0.94 1.80 25.75
TBWI y = 2.3x1.040 0.52 ** 0.80 3.41 48.78
EVI y = 15.13x1.660 0.61 ** 0.73 2.92 41.77

TCARI y = 28.11x0.847 0.38 ** 0.45 3.87 55.36
OSAVI y = 22.73x3.352 0.60 ** 0.81 2.89 41.34

TCARI/OSAVI y = 1.165x0.361 0.30 ** 0.34 4.08 58.37
MTCI y = 0.451x1.838 0.63 ** 0.77 2.48 35.48

CIred edge y = 3.767x1.750 0.68 ** 0.80 2.18 31.19
NDVI y = 15.33x4.835 0.59 ** 0.73 2.95 42.20

DCNI I y = 2.626e0.458x 0.25 ** 0.27 4.42 63.23
OSAVI × CIred edge y = 3.704x0.619 0.58 ** 0.78 2.96 42.34

WDRVI y = 4.947e2.533x 0.54 ** 0.71 3.03 43.35

Note: n = number of data pairs; x represents the spectral index; and y represents biomass. In addition, x and
e represents power and exponential function in regression equations, respectively. Probability levels of 0.05
and 0.01 are indicated by * and **, respectively; F represents the homoscedasticity value in Levene’s test. If the
associated probability for the F test is larger than 0.05, the assumption of homoscedasticity is met.

The correlation between biomass and NDMI was highest compared with the other spectral indices,
and the corresponding RMSE and RRMSE values for measured (BIOm) and estimated (BIOe) biomass
were 1.80 ton/ha and 25.75%, respectively, which were lower than the values for the other indices
(Table 5 and Figure 2). Therefore, NDMI was selected to estimate winter wheat biomass.
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Figure 2. Regression model between biomass and normalized difference matter index (NDMI) (a);
and model validation (b).

3.2. Data Assimilation for Biomass Estimation

The value of BIOe derived from the NDMI exponential regression equation was used as a variable
to calibrate the AquaCrop model using the PSO algorithm. The results are presented in Figure 3 and
Table 6, and the statistical regression equations are shown in Table 6. The BIOs was consistent with the
BIOm across four years with different winter wheat cultivars, sowing dates, and irrigation management
strategies, and the corresponding R2 and RMSE values were 0.83 and 1.65 ton/ha, respectively.
The estimation accuracies of our experiments varied between years. The R2 and RMSE values were
0.81 and 1.69 ton/ha for 2008/2009, 0.82 and 1.67 ton/ha for 2009/2010, 0.81 and 1.56 ton/ha for
2010/2011, and 0.87 and 1.72 ton/ha for 2011/2012. The RRMSE values ranged from 23.60% to 30.65%.
The deviation between the BIOs and BIOm in 2008/2009 was larger than that for the other years.
Strong relationships between BIOs and BIOm were found, although biomass was often overestimated
when the measured values exceeded 2 ton/ha (Figure 3). However, biomass was underestimated
when the measured values were less than 2 ton/ha. The value of F was from 0.87 to 0.96 between the
simulated and measured biomass (Table 6). The results show that the assumption of homoscedasticity
was met.

Table 6. Equations for regressions between data assimilation biomass (BIOs) and field measurement
biomass (BIOm) of winter wheat for the four experiments.

Year n Regression Equations R2 F RMSE (Ton/Ha) RRMSE (%)

2009 54 y = 0.847x − 0.114 0.81 0.96 1.69 26.68
2010 54 y = 0.853x + 0.847 0.82 0.78 1.67 24.58
2011 27 y = 0.754x − 0.198 0.81 0.84 1.56 30.65
2012 20 y = 0.863x + 0.135 0.87 0.83 1.72 25.94

2009–2012 155 y = 0.872x + 0.310 0.82 0.82 1.70 26.57
C/V a 135/20 b y = 0.865x + 0.066 0.83 0.85 1.65 23.60

Note: a C represents the calibration dataset (2009–2011, n = 135), and V represents the validation dataset
(2012, n = 20). The calibration dataset was used to refine the linear regression relationships between the
data assimilation biomass (BIOs) and field measurement biomass (BIOm) across three years of experiments.
The validation dataset taken in 2012 was used to validate the estimation accuracy of the linear regression
equation based on 2009, 2010, and 2011; b R2 was calculated from 135 calibration datasets, and RMSE was
calculated from 20 validation datasets; x represents simulated biomass; y represents measured biomass; and F
represents the homoscedasticity value for the Levene’s test. If the associated probability for the F test is larger
than 0.05, the assumption of homoscedasticity is met.
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We compared BIOs with BIOe using the spectral index method. The data assimilation method
(R2 = 0.83 and RMSE = 1.65 ton/ha, Table 6) achieved better biomass estimations than the spectral
index method (R2 = 0.77 and RMSE = 1.80 ton/ha, Table 5).
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Figure 3. Comparison of data assimilation biomass (BIOs) and field measurement biomass (BIOm)
values in winter wheat across the four experiments.

3.3. Data Assimilation for Yield

The yield of winter wheat was obtained after the data assimilation. The relationship between the
measured and simulated yields is shown in Figure 4 and Table 7. There was a significant relationship
between simulated (YIELDs) and measured (YIELDm) yield across all four years (R2 and RMSE values
of 0.82 and 0.55 ton/ha, respectively) (Table 7). YIELDs varied between the four growing seasons.
The R2 and RMSE values for YIELDs and YIELDm were 0.79 and 0.51 ton/ha in 2008/2009, 0.83 and
0.57 ton/ha in 2009/2010, 0.81 and 0.52 ton/ha in 2010/2011, and 0.89 and 0.61 ton/ha in 2011/2012,
respectively. The value of RRMSE ranged from 8.77% to 10.69%. There was a wider range of YIELDs
values in 2008/2011 than in 2011/2012 because of the different sowing treatments (Figure 4). A good
relationship between YIELDs and YIELDm was also found. Yield was often overestimated when the
YIELDm was higher than 5 ton/ha (Figure 4) and underestimated when the YIELDm was less than
5 ton/ha. Table 7 shows that the F values ranged from 0.72 to 0.87. The results demonstrated that the
assumption of homoscedasticity was met.

Table 7. Regression equations between data assimilation yield (YIELDs) and field measurement yield
(YIELDm) values of winter wheat across the four experiments.

Year n Regression Equations R2 F RMSE (Ton/Ha) RRMSE (%)

2009 9 y = 0.406x + 3.225 0.79 0.72 0.51 9.42
2010 9 y = 0.482x + 2.775 0.83 0.75 0.57 10.69
2011 9 y = 0.481x + 2.785 0.81 0.76 0.52 9.29
2012 4 y = 0.583x + 2.245 0.89 0.83 0.61 9.79

2009–2012 31 y = 0.490x + 2.768 0.85 0.80 0.57 10.27
C/V a 27/4 b y = 0.460x + 2.911 0.82 0.76 0.55 8.77

Note: a C represents the calibration dataset (2009–2011, n = 27), and V represents the validation dataset
(2012, n = 4). The calibration dataset was used to refine the linear regression relationships between the
data assimilation yield (YIELDs) and field measurement yield (YIELDm) across three years of experiments.
The validation dataset taken in 2012 was used to validate the estimation accuracy of the linear regression
equation based on data from 2009, 2010, and 2011; b R2 was calculated from 27 calibration datasets, and RMSE
was calculated from 20 validated datasets; x represents simulated biomass; y represents measured biomass;
and F represents the homoscedasticity value for the Levene’s test. If the associated probability for the F test is
larger than 0.05, the assumption of homoscedasticity is met.



Remote Sens. 2016, 8, 972 10 of 15
Remote Sens. 2016, 8, 972  10 of 15 

 

 
Figure 4. Comparison of data assimilation yield (YIELDs) and field measurement yield (YIELDm) 
values in winter wheat across thefour experiments. 

4. Discussion 

Spectral data and concurrent biomass and yield were acquired during four winter wheat 
growing seasons. Fifteen spectral indices were related to biomass (Table 5); this is because red edge 
(670–780 nm) and near infrared (short NIR, 800-1100 nm) data contain useful information regarding 
vegetation biomass [13,39,44,50]. In particular, NDMI was found to be highly correlated with 
biomass, with R2 and RMSE values of 0.77 and 1.80 ton/ha, respectively. NDMI does not contain red 
edge or short NIR data because absorption at these wavelengths is strongly influenced by chlorophyll 
content and canopy structure, which reduce the signal compared with that of dry matter. However, 
NDMI contains data at 1649 and 1722 nm, which are more sensitive to changes in dry matter [42]. 
These data were combined to establish NDMI, which includes signals from dry matter. For this 
reason, NDMI was more highly related with biomass than the other spectral indices and achieved 
more accurate biomass estimations. In this study, the linear and nonlinear regression relationships 
between each spectral index and biomass were analyzed to select the best-fitting regression 
equations. The results show that some models were fitted using power regression, and others fitted 
using exponential regression (Table 5). The difference between two regressions may have a close 
relationship with each spectral index and biomass dataset. 

The model’s initial variables (num and eme) and crop parameters (cgc, ccx, cdc, eme, psen, and 
rootdep) were calibrated by combining biomass retrieved from spectral indices and the AquaCrop 
model via the PSO assimilation algorithm, thereby achieving optimal biomass estimations. The 
simulated biomass values were consistent with the measured values. These findings are consistent 
with those of Soddu et al. [58]. Heng et al. [59] showed that the AquaCrop model is used to better 
simulate biomass when irrigation is adequate. Our results suggest that the AquaCrop model could 
be used to simulate winter wheat biomass. The data assimilation method, based on the PSO 
algorithm, achieved better biomass estimations than the spectral index method (Tables 5 and 6). The 
main reasons are as follows: (i) The AquaCrop model can be used to simulate dry biomass 
accumulation on the basis of a plant’s physiological processes, and the effects of field management 
strategies and weather [36,37,59,60]; and (ii) the data assimilation method was used to minimize 
errors between the observed values from field spectroscopic data and the simulated values from the 
AquaCrop model, and the errors in the remote sensing data were reduced during data assimilation 
[10]. Typically, biomass simulated with the data assimilation method was overestimated when the 
measured values exceeded 2 ton/ha, but was underestimated when the measured values were less 
than 2 ton/ha (Figure 3). This explains why the regression equations between NDMI and biomass 

4

4.5

5

5.5

6

6.5

7

7.5

4 4.5 5 5.5 6 6.5 7 7.5

Y
IE

L
D

m
 (t

on
/h

a)

YIELDs (ton/ha)

R2 = 0.82
RMSE = 0.55 ton/ha

RRMSE = 8.77 %

2008/2009

2009/2010

2010/2011

2011/2012

Figure 4. Comparison of data assimilation yield (YIELDs) and field measurement yield (YIELDm)
values in winter wheat across the four experiments.

4. Discussion

Spectral data and concurrent biomass and yield were acquired during four winter wheat growing
seasons. Fifteen spectral indices were related to biomass (Table 5); this is because red edge (670–780 nm)
and near infrared (short NIR, 800-1100 nm) data contain useful information regarding vegetation
biomass [13,39,44,50]. In particular, NDMI was found to be highly correlated with biomass, with R2

and RMSE values of 0.77 and 1.80 ton/ha, respectively. NDMI does not contain red edge or short
NIR data because absorption at these wavelengths is strongly influenced by chlorophyll content and
canopy structure, which reduce the signal compared with that of dry matter. However, NDMI contains
data at 1649 and 1722 nm, which are more sensitive to changes in dry matter [42]. These data were
combined to establish NDMI, which includes signals from dry matter. For this reason, NDMI was
more highly related with biomass than the other spectral indices and achieved more accurate biomass
estimations. In this study, the linear and nonlinear regression relationships between each spectral
index and biomass were analyzed to select the best-fitting regression equations. The results show
that some models were fitted using power regression, and others fitted using exponential regression
(Table 5). The difference between two regressions may have a close relationship with each spectral
index and biomass dataset.

The model’s initial variables (num and eme) and crop parameters (cgc, ccx, cdc, eme, psen,
and rootdep) were calibrated by combining biomass retrieved from spectral indices and the
AquaCrop model via the PSO assimilation algorithm, thereby achieving optimal biomass estimations.
The simulated biomass values were consistent with the measured values. These findings are consistent
with those of Soddu et al. [58]. Heng et al. [59] showed that the AquaCrop model is used to better
simulate biomass when irrigation is adequate. Our results suggest that the AquaCrop model could be
used to simulate winter wheat biomass. The data assimilation method, based on the PSO algorithm,
achieved better biomass estimations than the spectral index method (Tables 5 and 6). The main
reasons are as follows: (i) The AquaCrop model can be used to simulate dry biomass accumulation
on the basis of a plant’s physiological processes, and the effects of field management strategies and
weather [36,37,59,60]; and (ii) the data assimilation method was used to minimize errors between the
observed values from field spectroscopic data and the simulated values from the AquaCrop model,
and the errors in the remote sensing data were reduced during data assimilation [10]. Typically,
biomass simulated with the data assimilation method was overestimated when the measured values
exceeded 2 ton/ha, but was underestimated when the measured values were less than 2 ton/ha
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(Figure 3). This explains why the regression equations between NDMI and biomass were similar.
Therefore, the integration of spectral indices into the AquaCrop model, using the PSO assimilation
algorithm, is a useful tool for winter wheat biomass estimation.

Winter wheat grain yield was simulated according to the optimized values of the initial variables
and calibrated crop parameters using the PSO data assimilation algorithm. A good relationship between
the measured and simulated yields was found across all four years (R2 = 0.82 and RMSE = 0.55 ton/ha).
However, the RRMSE for yield was lower than that for biomass (Tables 6 and 7), mainly because the
latest biomass measurements were taken at the grain filling stage (12 June) rather than at maturity
and biomass simulated with the AquaCrop model becomes more accurate with the development of
winter wheat [37,61]. Our results are in agreement with those of Wang et al. [61] and Jin et al. [37].
The AquaCrop model considers the effects of interannual variations in weather and field management
strategies, as well as interactions between the two, on wheat growth status; therefore, it was used
to analyze the nonlinear interannual variability in crop grain yield [36]. The results suggest that the
AquaCrop model is an effective tool for deriving crop management strategies, and can be used to
simulate biomass and grain yield of winter wheat. First, biomass retrieved from spectral indices is
used to calibrate crop biomass simulated with the AquaCrop model. If crop biomass is accurately
simulated, it can be used to simulate yield. The simulated yield is finally obtained directly from the
AquaCrop model after data assimilation. Simulated grain yield is a useful measurement for informed
decision-making regarding national food security issues. However, it is more important to obtain crop
growth status information and then to improve field crop management for improving grain yield to
ensure national food security, In short, the dynamic simulated biomass of wheat is used to enhance
wheat management and decision-making, and then to ensure wheat yield.

The data assimilation accuracy of biomass and grain yield was acceptable according to the R2,
RSME, and RRMSE values (Tables 6 and 7). The results of Dente et al. [19] and Jiang et al. [23]
indicated that assimilating remote sensing data (ENVISAT ASAR, MERIS, and HJ-1A/B satellites
images) into the CERES-Wheat model with optimization algorithms (variational assimilation algorithm
and Ensemble-Based Four-Dimensional Variational algorithm) can improve the estimation accuracy
of wheat yield. Huang et al. [25] recently suggested that combining the WOFOST model and remote
sensing data (MODIS and Landsat TM images) with a KF algorithm also increases the estimation
accuracy of wheat yield. Our results are in agreement with the results of these studies and demonstrate
that the combination of the AquaCrop model and spectral indices with a PSO algorithm can be
used to enhance the estimation accuracy of winter wheat yield. A good relationship between the
simulated and measured yields was found (Figure 4); however, the relationship between measured and
simulated biomass was not reliable during each growth stage (Figure 3). This can be attributed to the
influence of a large difference in the biomass measurement date on biomass simulation [37], which then
introduced uncertainties into the process of data assimilation. However, the yield simulations were
consistent during all crop growth stages. Therefore, the data assimilation method can improve crop
yield estimations because the AquaCrop model considers the effects of management strategies and
environmental factors on winter wheat growth status, based on a plant’s physiological processes.
Our results suggest that integrating remote-sensing data into the AquaCrop model is a feasible method
for estimating winter wheat biomass and yield.

In this study, the hyperspectral data that were obtained were ground-based data. To improve our
model for estimating biomass and yield in winter wheat, and to make it more practical, it is important
to estimate the accuracy and stability of the model using hyperspectral satellite data. The current
Landsat and Sentinel-2 satellites provide high spatial resolution imagery data (10–60 m) with relatively
short revisit periods. Based on this, Landsat and Sentinel-2 sensors have the potential for improved
estimates of biomass and yield in winter wheat at regional scales. With the development of unmanned
aerial vehicles (UAV), the combination of UAV and hyperspectral imaging data should allow for the
timely estimation of the growth status of crops, with high spatial resolution image data at the field and
farm scales, in the future. In this study, we only carried out experiments at a single-site, and obtained
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good results over four years. The method used in this study is transferrable to other sites. The main
insights from this study are as follows: (i) The crop parameters of the AquaCrop model for different
crops are parameterized to better-simulate different crop biomass and yields, during all growth
stages under different environmental conditions and experimental sites; (ii) different crops should
be accurately classified using high temporal and spatial resolution image data when this method is
applied to regional scales; (iii) PSO will further enhance the advantages of a parallel algorithm to
quickly obtain estimated results at regional scales; (iv) corresponding field crop management strategies
(such as water and fertilizer management) can then be carried out, based on the estimated crop biomass,
resulting in improved crop yields at regional scales; and (v) in addition, this method can be combined
with higher temporal and spatial resolution image data and the AquaCrop model to improve field
crop management, and then to enhance crop yield at the sub-field and sub-farm scales in the future.
The positive results obtained here were based on single-site experiments over four years, however,
further experiments should be carried out to adjust crop parameters of the AquaCrop model under
water and fertilizer stress treatments to maintain the stability of the simulated results. The effect
of the soil parameter variations on the simulated results in the AquaCrop model should be further
investigated to better apply it at regional scales. Further studies are needed to verify these results
for different crops, and in different ecological areas, as this study was limited to winter wheat in
Beijing, China.

5. Conclusions

In this study, the PSO data assimilation algorithm was used to assimilate field spectroscopic data
into the AquaCrop model to improve the estimation accuracy of winter wheat yield under different
planting dates and irrigation management strategies. The conclusions are as follows: (i) Several
spectral indices were highly correlated with biomass in winter wheat. The exponential regression
equation between the normalized difference matter index (NDMI) and biomass was the best model
for estimating biomass, with R2 and RMSE values of 0.77 and 1.80 ton/ha, respectively; (ii) The data
assimilation method (R2 = 0.83 and RMSE = 1.65 ton/ha) achieved more accurate biomass estimations
than the spectral index method; (iii) Yield simulated with the data assimilation method was consistent
with measured yield across all four years (R2 and RMSE values of 0.82 and 0.55 ton/ha, respectively).
In summary, the results indicated that the data assimilation method is an effective method for
estimating biomass and yield of winter wheat. The results provide a guideline for optimizing irrigation
management strategies for winter wheat in this region.
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