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Abstract: In this paper, we analyze the robustness of the parameter inversion provided by general
polarimetric model-based decomposition methods from the perspective of a quantitative application.
The general model and algorithm we have studied is the method proposed recently by Chen et al.,
which makes use of the complete polarimetric information and outperforms traditional decomposition
methods in terms of feature extraction from land covers. Nevertheless, a quantitative analysis on
the retrieved parameters from that approach suggests that further investigations are required in
order to fully confirm the links between a physically-based model (i.e., approaches derived from the
Freeman–Durden concept) and its outputs as intermediate products before any biophysical parameter
retrieval is addressed. To this aim, we propose some modifications on the optimization algorithm
employed for model inversion, including redefined boundary conditions, transformation of variables,
and a different strategy for values initialization. A number of Monte Carlo simulation tests for typical
scenarios are carried out and show that the parameter estimation accuracy of the proposed method
is significantly increased with respect to the original implementation. Fully polarimetric airborne
datasets at L-band acquired by German Aerospace Center’s (DLR’s) experimental synthetic aperture
radar (E-SAR) system were also used for testing purposes. The results show different qualitative
descriptions of the same cover from six different model-based methods. According to the Bragg
coefficient ratio (i.e., β), they are prone to provide wrong numerical inversion results, which could
prevent any subsequent quantitative characterization of specific areas in the scene. Besides the
particular improvements proposed over an existing polarimetric inversion method, this paper is
aimed at pointing out the necessity of checking quantitatively the accuracy of model-based PolSAR
techniques for a reliable physical description of land covers beyond their proven utility for qualitative
features extraction.

Keywords: model-based decomposition; polarimetric synthetic aperture radar (PolSAR); quantitative
analysis; Monte Carlo simulations

1. Introduction

In the past few decades, many studies have shown that polarimetric decomposition is a
useful technique to interpret physically the scattering mechanisms present in the scene when fully
polarimetric synthetic aperture radar (PolSAR) data are available. A classical and a recent review
of this methodology can be found in [1,2], respectively. The two most used types of incoherent
PolSAR decomposition techniques are eigenvalue-eigenvector-based method and model-based
methods [3]. The Freeman–Durden three-component decomposition and Yamaguchi four-component
decomposition are the original works of model-based incoherent decomposition methods [4,5].
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Based on these two methods, many improvements and advancements have been proposed [6–26].
Among them, a very active research topic is focused on a more general decomposition model and on the
exploitation of the complete information in the covariance or coherency matrix [2]. A representative
study of this category is the general polarimetric model-based decomposition method proposed
recently by Chen et al. [22]. In this method, the decomposition model considers four different
volume models previously proposed in the literature, a general surface scattering model involving
orientation effect, a general double-bounce scattering model also involving orientation effect, and also
a helix scattering model. This general approach can be used to obtain simultaneously all model
parameters using a nonlinear least squares optimization technique. It overcomes the well-known
limitations in traditional three-component and four-component decomposition methods such as model
inversion priority, branch conditions, and negative powers. The experiments based on space-borne
and airborne PolSAR data over urban areas demonstrated that this approach can efficiently improve
the decomposition performance. Theoretically, this decomposition method is one of the most complete
and general within the topic. However, most of the existing model-based decomposition studies are
not focused on the retrieval of physical parameters (e.g., soil moisture or trunk dielectric constant)
from the outputs of the decomposition, and they do not provide any other conclusion beyond the
retrieved power of every scattering mechanism and its exploitation for target detection and land
classification [27–36]. Thus far, very few studies have performed an in-depth analysis of the incoherent
model-based decomposition concept (i.e., Freeman–Durden concept) for quantitative remote sensing
applications. Some cases are the works by Jagdhüber et al. [37], Huang et al. [38], Di Martino et al. [39],
and He et al. [40] focused on soil moisture inversion, which has actually been an active research line
since some years ago. Nevertheless, the current state of the start on PolSAR decomposition techniques
suggests that quantitative accuracy of parameters retrieved from model-based incoherent approaches
is still an open issue. This statement is supported on the fact that all well-known model-based
decompositions after Freeman–Durden have been designed to alleviate the initial limitations on
the original approach. For such purpose, the strategy that has been initially followed has been
constrained by the objective of finding a more reliable balance on the backscattering powers assigned
to each mechanism. All these techniques are supported by physically-based models, which means
that their outputs should be linked in a straightforward fashion to physical parameters such as
dielectric constants or features of vegetation particles. Likewise, the backscattering powers of every
scattering mechanism are reasonably expected to exhibit some correlation (depending on the scene)
with biophysical parameters as it has been demonstrated in lots of both pioneering and current
works by using the polarimetric channels as inputs and then by obtaining empirical or semi-empirical
relationships to retrieve land cover features. Nevertheless, this assessment is lacking within the
topic since the parameter accuracy has not been addressed so far in the way we propose in this study.
The question we treat in this paper is how reliable are the retrieved backscattering powers from different
scattering mechanisms, or backscattering ratios (i.e., α and β), or vegetation particle descriptors.

In this paper, we focus on this issue and a performance analysis of the whole parameter set is
carried out on the basis that the approach proposed by Chen et al. in [22] is general enough for this
purpose. This approach makes use of a nonlinear optimization procedure to retrieve model parameters,
which is prone to yield non-physical solutions. Therefore, the objective is to check the consistency of
these retrievals and propose modifications to improve the performance accuracy. These modifications
include a redefinition of boundary conditions, a transformation of variables, and a different criterion
for values initialization. In order to analyze the performance of the proposed improvements, a series
of Monte Carlo simulation tests over different scattering cases are performed. A detailed comparative
analysis of the results provided by both the proposed algorithm and Chen’s one has been conducted.
Finally, L-band E-SAR PolSAR images with ground measurements from the AgriSAR2006 campaign
are employed for testing purposes as well.

The paper is organized as follows. In Section 2, the general polarimetric decomposition framework
proposed by Chen et al. [22] is briefly reviewed. Section 3 describes the proposed modifications
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on the optimization algorithm employed for model parameter inversion. Section 4 presents a
number of Monte Carlo simulation tests and the corresponding result analysis. Then, in Section 5,
other decomposition models that are frequently used by PolSAR practitioners have been implemented
and their outputs for L-band E-SAR data are compared to both Chen’s results and the ones we obtained
in this study. Further discussions are given in Section 6. Finally, conclusions of this work are drawn in
Section 7.

2. General Polarimetric Decomposition Model

In this paper, the starting point is the general polarimetric decomposition model proposed by
Chen et al. [22]. It includes four scattering components, i.e., volume scattering, surface scattering,
double-bounce scattering, and helix scattering. More importantly, it actually exploits a number of
advances and key ideas that were previously proposed in the literature.

2.1. Volume Scattering Model

In the research field of polarimetric decomposition, volume scattering from vegetation is often
described as from randomly oriented dipoles with different probability density functions (pdf) with
respect to orientation angle and particle anisotropy. For instance, in the classic Freeman–Durden
three-component decomposition, the pdf is considered as a uniform distribution (named hereafter
random dipoles model) [4]. Another two usual pdfs are sine and cosine distribution, first proposed in
the Yamaguchi four-component decomposition method, and hence we can name them as horizontal
and vertical dipoles models [5]. The general model of Chen includes these three classic volume
scattering models, and it also considers another representative model, i.e., the highest entropy model
proposed by An et al. [9,10]. The coherency matrix of the general volume scattering model can be
expressed as [22]

Tv = fv

 a d e
d∗ b f
e∗ f ∗ c

, (1)

where the diagonal elements are real-valued and the others are complex-valued. Then, the four types
of volume scattering models in Chen et al. [22] can be rewritten as

Tvol−random =
1
4

fv

 2 0 0
0 1 0
0 0 1

 Tvol−entropy =
1
3

fv

 1 0 0
0 1 0
0 0 1

,

Tvol−horizontal =
1

30
fv

 15 5 0
5 7 0
0 0 8

 Tvol−vertical =
1

30
fv

 15 −5 0
−5 7 0
0 0 8

,

(2)

In the inversion, the type of volume scattering model that best fits the data is selected, for which a
residue minimization is applied as explained later in the text.

2.2. Surface Scattering Model

The basic surface scattering model adopted by Chen et al. [22] is the Bragg scattering model, which
is also assumed in both Freeman–Durden and Yamaguchi decomposition models [4,5]. The Bragg
scattering model, also known as Small Perturbation Model, is a special case of Integral Equation
Method (IEM) model for slightly rough surfaces [41]. The coherency matrix of Bragg scattering model
has the form [41,42]
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Ts = fs


1 β∗ 0

β |β|2 0

0 0 0

, (3)

where β is theoretically a complex value. However, in the model inversion, we can ignore the
imaginary part of β(β ≈ Re (β)) in most natural scenes for microwave regime, because its value is
often a negligible number. The value of β depends on horizontal (H) and vertical (V) Bragg reflection
coefficients (RH , RV) for horizontally and vertically polarized waves and it has the form

β =
RH − RV
RH + RV

, (4)

where these two coefficients depend on the local incidence angle θ and the relative dielectric constant
of the surface εS. The expressions are written as [3]

RH =
cosθ −

√
εS − sin2θ

cosθ +
√

εS − sin2θ

RV =
(εS − 1)

(
sin2θ − εS

(
1 + sin2θ

))
(

εScosθ +
√

εS − sin2θ

)2

, (5)

Chen et al. [22] proposed considering the orientation effect by terrain slopes which induces a
rotation along the radar line of sight on the coherency matrix [13,14]. The general form of rotation
coherency matrix with a rotation angle ψ is

R3 (ψ) =


1 0 0
0 cos2ψ sin2ψ

0 −sin2ψ cos2ψ

, (6)

Therefore, the most general surface scattering model can be expressed as

Ts (ψS) = R3 (ψS) TsRH
3 (ψS), (7)

where H denotes conjugate transposition operator.

2.3. Double-Bounce Scattering Model

The double-bounce scattering mechanism is modeled by dihedral scattering from two orthogonal
reflection planes with same or different dielectric properties, such as ground-trunk for forest areas,
ground-wall for urban areas, etc. [4]. In this case, the coherency matrix of double-bounce scattering
model can be described mainly by Fresnel reflection coefficients and has the form [3]

Td = fd

 |α|
2 α 0

α∗ 1 0
0 0 0

, (8)

where α is a complex value which depends on the horizontal and vertical Fresnel reflection coefficients
R of the two reflection planes and on a phase difference between the HH and VV channels φ that may
be caused by a differential propagation introduced by a vegetation layer if present. The expression is
written as [3]
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α = (RTH RSH − ejφRTV RSV)/(RTH RSH + eiφRTV RSV), (9)

with

RiH =
cosθi −

√
εi − sin2θi

cosθi +
√

εi − sin2θi

RiV =
εicosθi −

√
εi − sin2θi

εicosθi +
√

εi − sin2θi

, (10)

where i ∈ {T, S} for vertical plane and surface plane, respectively. The local incidences for the two
reflection planes are θS = θ and θT = π/2− θS, respectively. Similarly, in the model of Chen, a possible
orientation effect on the double-bounce scattering has also been considered and is modeled by a
rotation matrix. The resulting general double-bounce scattering model can be written as

Td (ψD) = R3 (ψD) TdRH
3 (ψD), (11)

2.4. Helix Scattering Model

The helix scattering component proposed by Yamaguchi et al. is aimed at describing the reflection
asymmetry case. The coherency matrix of helix scattering is roll-invariant and has the form [6]

Tc =
1
2

fc

 0 0 0
0 1 ±j
0 ∓j 1

, (12)

3. Parameters Inversion

3.1. Inversion Model

The general decomposition for the observed coherency matrix T is given by [22]

T = Tv + Ts (ψS) + Td (ψD) + Tc + Tresidual , (13)

where Tresidual describes the difference between observations and models, including the errors from
model mismatch and observation noise.

3.2. Inversion Algorithm

Because T is a Hermitian matrix and the diagonal elements are real-valued, it can provide up to
nine real independent observations. In the general decomposition model, the number of unknowns is
also nine (X = { fv, fs, fd, Re (α) , Im (α) , β, ψS, ψD}). Chen et al. [22] adopted a nonlinear least squares
optimization method for inverting this model, and the optimization criterion is the minimization of
the sum of squares of residuals [22]

min : ‖Tresidual‖2
2, (14)

As it is usual in nonlinear optimization, one has to set initial values and boundary conditions
for the optimization algorithm. In Chen et al. [22], the trust-region-reflective algorithm is used in
the optimization [43,44], the initial values correspond to the outputs from the traditional Yamaguchi
four-component decomposition, and the boundary conditions are [22]

0 ≤ fv, fs, fd ≤ SPAN 0 ≤ fc ≤ 2 |Im (T23)|

−π

4
≤ ψS, ψD ≤

π

4
|β| , |α| < 1

, (15)
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3.3. Modification of the Inversion Algorithm

It is known that solutions in nonlinear optimization algorithms may fall to local minima which
do not correspond to the global optimum or may correspond to physically non-feasible solutions.
This can be due to several reasons, such as a poor selection of initial values, unfeasible boundary
conditions, or problem overparameterization. Therefore, we propose some modifications to improve
the optimization procedure used for inversion. They are grouped into two categories: modifications in
the variables and a selection of better initial values.

3.3.1. Modification in the Variables

The ways we adopt to modify the variables considers two aspects: redefined boundary conditions,
and transformation of variables, which are described next.

Redefined Boundary Conditions

The basic idea to redefine the boundary conditions is based on making use of some physical prior
information and implicit conditions in the decomposition model itself. In the decomposition model,
there are two parameters, i.e., α and β, which depend on relative dielectric constants and incidence
angle. Besides, α depends on the phase difference φ whose theoretical range is [−180◦, 180◦], and it
will be zero for the random volume case. Therefore, for every specific incidence angle and a particular
value of the phase difference, we can compute all the possible values of α in a 2-D space according to
the model and the range of both relative dielectric constants. Then we can calculate its maximum and
minimum value. Similarly, the possible values of β in a 1-D space can be obtained using a range of soil
dielectric constants and a specific incidence angle. Based on these computations, we can analyze the
dependence of α and β on these parameters according to the model and redefine their boundaries.

In our case, we adopt an empirical physical range of dielectric constant, i.e., ε ∈ [2, 41]. This is
not the largest feasible range for the dielectric constant in all cases, however, it covers a wide enough
interval for soil moisture in most real scenarios [38,39,41,45]. In addition, such an interval (or a similar
one, but never a much wider one) should be kept for many applications, not only for soil moisture
retrieval, because any soil dielectric constant outside this range would correspond to a soil with
non-physical properties. Figure 1 shows the maximum and minimum values of the magnitude |α| and
the argument Arg (α) assuming different polarimetric phase differences φ after selecting a range of
incidence angles (e.g., 25 to 55 degrees corresponding to real data provide by E-SAR sensor) and the
mentioned range of dielectric constants (2 to 41). There are two couples of incidence angles providing
equal results, i.e., (θ = 35◦, θ = 55◦) and (θ = 40◦, θ = 50◦). From the graphs in Figure 1, it is
clear that |α| achieves the maximum values at φ = ±180◦ and the minimum values at φ = 0, whereas
Arg (α) achieves the maximum value when φ is around −90◦ and the minimum value when φ is
around 90◦. In any case, the extreme values depend on the incidence angle. The maximum of the
magnitude |α| can be greater than 1, even when the phase difference is zero in the case of the steep
incidence angles. Figure 2 shows a 2-D chart including all possible values of |α| at θ = 25◦ and φ = 0.
As seen, at steep incidences the value of |α| is larger than 1 for all dielectric conditions of soil whenever
the dielectric constant of trunk is low, i.e., a very dry trunk [46]. On the contrary, Arg (α) exhibits both
positive and negative values and the maximum and minimum values are always constrained in the
[−π/2, π/2] interval. It means that the complex parameter α will be always located into the first and
fourth quadrant in the complex plane, i.e., the real part is always positive.

Based on these analyses, we found that at a fixed incidence angle, the boundaries of |α|
and Arg (α) depend strongly on the range of the polarimetric phase difference φ. Nevertheless,
as in a real case the value of φ is not known, we need to make some assumptions. To this aim,
we resort to the physical interpretation of Pauli decomposition. As it is well-known, the HH + VV
and HH − VV channels represent surface and horizontal double-bounce scattering mechanisms,
respectively. Therefore, in the coherency matrix that corresponds to double-bounce scattering the T11
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element is less than the T22 element after assuming the power of HH + VV must be less than that of
HH − VV. Under this assumption, the corresponding boundary conditions for α are set as: |α| < 1.
By doing so the range of the polarimetric phase difference φ will be automatically limited under the
constraint of α. However, we cannot directly define the boundary conditions of real and imaginary
part of α from this assumption when we try to use the same unknown vector as Chen’s method.
Therefore, in order to embed this constraint into the parameter solving system (i.e., Equation (13)),
the unknown parameters about α should be magnitude and argument instead of real and imaginary
part. Then, in the nonlinear optimization system, the unknown vector should be transformed to
X = { fv, fs, fd, fc, |α| , Arg (α) , β, ψS, ψD}. Therefore, considering the model and this assumption,
the redefined boundary conditions of α for any pixel i should be:

|α|min {φ = 0, θ = θi} < |α| < 1

Arg (α)min {φ = 90◦, θ = θi} < Arg (α) < Arg (α)max {φ = −90◦, θ = θi}
, (16)

where |α|min {φ = 0, θ = θi} denotes the minimum value of magnitude of α with zero
polarimetric phase difference at the incidence angle of pixel i. Arg (α)min {φ = 90◦, θ = θi} and
Arg (α)max {φ = −90◦, θ = θi} represent the minimum and maximum value of argument of α with
polarimetric phase difference of ±90◦ at the incidence angle of pixel i, respectively. Similarly, we show
in Figure 3 the dependence of β on the dielectric constant of soil εs at different incidence angles. It can
be seen that the values of β decrease with the increase of εs and all the values are negative. The domain
of β becomes wider from near-range (steep incidence angles) to far-range (shallow incidence angles).
In the case of β, its boundaries can be determined directly by the model. Accordingly, the redefined
boundary condition of β for pixel i is

βmin {θ = θi} ≤ β ≤ βmax {θ = θi} , (17)

where βmin {θ = θi} and βmax {θ = θi} represent the minimum and maximum values of β at the
incidence angle of pixel i, respectively.

The redefinition of upper and lower bounds for ground backscattering coefficients is done by
considering some implicit conditions. For the polarimetric model-based decomposition methods,
the power of surface scattering and double-bounce scattering should be always less than the span, i.e.,

0 ≤ Ps = fs

(
1 + |β|2

)
≤ SPAN

0 ≤ Pd = fd

(
1 + |α|2

)
≤ SPAN

, (18)

Since the α and β are also unknown parameters in equations, directly adding Equation (18)
as constraints is like adding two additional inequality conditions inside the parameters inversion,
hence obviously it would make the problem more complicated and maybe it would lead to other
numerical issues. As a compromise solution, the redefined boundary conditions for both parameters
can be derived as

0 ≤ fs ≤
SPAN(

1 + |β|2min

) 0 ≤ fd ≤
SPAN(

1 + |α|2min

) , (19)

In summary, compared with the general boundary conditions employed in Chen et al. [22],
in agreement with the scattering models, the redefined boundary conditions provide: (1) the lowest
possible values of |α|; (2) the largest and lowest possible values of Arg (α); (3) the largest and lowest
possible values of β; and (4) the largest possible values of fs, fd. Moreover, the boundary conditions
change adaptively for different local incidence angles at pixel level.
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Variable Transformation

The second improvement consists of applying a variable transformation based on the boundary
conditions and specific transformation functions. The basic idea of this transformation is to change this
variable constrained problem to a variable unconstrained case after choosing a transformation function.
The main advantage of this change is that any unconstrained optimization algorithm could be directly
used to solve this problem [47] and the ranges of all the parameters would be the same, hence making
the problem to be solved more easily [48]. In our case, all model parameters are dual-bounded, i.e.,
they exhibit lower and upper bounds. Therefore, we utilize an inverse tangent function to do the
transformation. For a dual-bounded scalar or vector of variables X, the boundary conditions are
LB ≤ X ≤ UB. Then the arc-tangent transformation is

X = LB + (UB− LB)× (atan (U) + π/2) /π, (20)

where the range of atan(.) is [−π/2, π/2]. Figure 4 shows a plot representing the relationship between
the original variable and the new one after variable transformation. From this figure, it is obvious to
see that the range of X has not been changed and is also [LB, UB]; however, the new variables U are
unbounded. Then, by applying this transformation to the optimization object function, the optimization
problem becomes an unconstraint optimization depending on the vector of variables U.
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Figure 1. Dependence of magnitude and argument of α on polarimetric phase difference φ at different
incidence angles: (a) maximum of magnitude; (b) maximum of argument; (c) minimum of magnitude;
and (d) minimum of argument. εs = εt ∈ [2, 41], φ ∈ [−180, 180], θ ∈ [25, 55].
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Figure 2. Dependence of absolute value of α on the dielectric constant of soil and trunk when incidence
angle is 25 degrees and with zero polarimetric phase difference. εs = εt ∈ [2, 41].
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3.3.2. Modification for Initial Values

Besides the aspects treated above, initial values are also an important aspect with large impact in
nonlinear optimizations. The optimization in Chen et al. [22], makes use of initial values taken directly
from the output of the conventional decomposition methods, such as Yamaguchi decomposition. In our
tests, we found that in some cases these initial values are beyond the physical ranges we defined before.
Hence, this strategy leads directly to unacceptable results. The reason is derived from the last step of
Freeman–Durden or Yamaguchi decomposition. It is indeed an undetermined problem since there are
four unknowns and three equations [21] as follows

fs + fd |α|2 = S

fs |β|2 + fd = D

fsβ∗ + fdα = C

, (21)

The traditional way to solve this problem is to fix α or β according to the relative higher
contribution of either surface or double-bounce scattering. This strategy is valid whenever the target
matches this assumption but it fails when there exists a mixed scattering process which is also a
common behavior in many scenarios. Therefore, from the viewpoint of quantitative analysis, these are
not actual solutions of model parameters and will lead to wrong results.

An alternative and simple way to set the initial values for α and β consists in using just the
mean value within their physically feasible ranges. Then, we go back to equations to solve fs and
fd using a least squares method, because now the parameters solving equation system becomes an
overdetermined problem with more equations than unknowns. In summary, our method to set initial
values of parameters is

• fv, fc from Yamaguchi decomposition method
• α, β from the center of physical ranges
• fs, fd from the least squares estimation based on the initial values of α, β

• ψS, ψD from the negative value of the polarization orientation angle derived by Lee et al. [13].

4. Simulation Tests

4.1. Monte Carlo Simulation for PolSAR Data

For simulating PolSAR data, the algorithm proposed in [3] can be used. The basic idea of this
algorithm is to use a Gaussian random number generator to generate a complex Gaussian distribution
random vector with zero mean and identity covariance matrix, and then to simulate a multi-look
averaged covariance or coherence matrix based on a given covariance matrix. For every realization,
the basic procedure is shown below [3]:

(1) Eigenvalue decomposition for the given covariance matrix C and computation of the
matrix C1/2

VHCV = D

C1/2 = V ×
√

D , where C1/2 × (C1/2)
H
= C

, (22)

(2) Simulate a normal complex Gaussian random vector v using Gaussian random
number generators.

(3) Compute the simulated single look complex vector u:

u = C1/2v, (23)

(4) Compute the n-looks averaged covariance matrix Csim:
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Csim =
1
n

n

∑
1

uuH , (24)

(5) The corresponding coherency matrix is obtained by a special unitary transformation matrix.
Alternatively, the coherency matrix simulation could be directly used from the beginning of the
simulation, i.e., without conversion to covariance matrix.

4.2. Results and Analysis

We have synthesized covariance matrices according to the model described above and then we
have obtained simulated data sets for testing purposes. We have simulated three typical cases to test
our algorithm: (a) Case 1, without dominant component; (b) Case 2, with dominant surface scattering
component; and (c) Case 3, with dominant double-bounce component. In our tests, we have adjusted
the relationship between fd and fs to generate simulated measurements of different cases and for
simplification, the volume model we adopted is Tvol−random defined in Equation (2). The input model
parameters used for the three cases are shown in Table 1, respectively. In every case, we performed
1000 realizations and the number of looks for reducing speckle noise is 15 × 15. Then we obtained
1000 samples of the multi-looked coherency matrix to test the algorithms. As we have proposed three
modifications, we have analyzed first each single modification separately from the others in order to
understand the individual contribution to the final results. Then, the combination of all of them is also
analyzed. The histograms of the outputs provided by the different versions of the inversion approach
are shown in Figures 4–6. In all cases, the results obtained with the original algorithm proposed by
Chen et al. [22] are also used for comparison.

Table 1. Values for input parameters in three typical cases.

fv fs fd fc ψS ψD α β θ φ εS εT

Case 1 5 5 5
Case 2 5 5 2.5 0.01 −10◦ −15◦ 0.3515–0.0768i −0.3377 45◦ 10◦ 10 30
Case 3 5 2.5 5
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Figure 5. The histograms of inversion result of 9 parameters with different algorithms in Case 1:
(a) Volume scattering coefficient; (b) Surface scattering coefficient; (c) Double-bounce scattering
coefficient; (d) Helix scattering coefficient; (e) Rotation angle in surface scattering model; (f) Rotation
angle in double-bounce scattering model; (g) Absolute value of double-bounce model parameter α;
(h) Argument of double-bounce model parameter α; and (i) Surface scattering model parameter β.
The vertical dashed line denotes the true value.
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Figure 6. The histograms of inversion result of 9 parameters with different algorithms in Case 2:
(a) Volume scattering coefficient; (b) Surface scattering coefficient; (c) Double-bounce scattering
coefficient; (d) Helix scattering coefficient; (e) Rotation angle in surface scattering model; (f) Rotation
angle in double-bounce scattering model; (g) Absolute value of double-bounce model parameter α;
(h) Argument of double-bounce model parameter α; and (i) Surface scattering model parameter β.
The vertical dashed line denotes the true value.
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As shown in Figures 5–7, the different strategies are labeled with solid lines in different colors:
redefined boundary in red, variable transform in green, initial values in blue, combination in black
and Chen algorithm in pink. From the histograms, we can see that the inversion of the nine model
parameters with the combination of all proposed strategies, as well as with just the redefined boundary
strategy, show more robustness in a noisy scenario than the rest of strategies, including the original
Chen’s algorithm. Moreover, the combination of all proposed strategies exhibits the highest accuracy.
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Figure 7. The histograms of inversion result of 9 parameters with different algorithms in Case 3:
(a) Volume scattering coefficient; (b) Surface scattering coefficient; (c) Double-bounce scattering
coefficient; (d) Helix scattering coefficient; (e) Rotation angle in surface scattering model; (f) Rotation
angle in double-bounce scattering model; (g) Absolute value of double-bounce model parameter α;
(h) Argument of double-bounce model parameter α; and (i) Surface scattering model parameter β.
The vertical dashed line denotes the true value.

In order to further analyze the inversion performance of different model parameters, we divide
them into three groups: (1) backscattering coefficients: fv, fs, fd, fc; (2) parameters related to dielectric
constants for quantitative applications: α, β; and (3) parameters related to rotation angles: ψS, ψD.

For all three cases, in the result of Chen’s algorithm, the histograms of backscattering coefficient
parameters for double-bounce and surface reveal a bias from the actual values, whereas the histograms
of other parameters seem weird and more fluctuant and many of the solutions are located on the
boundaries, such as Arg (α) in Case 1 and Case 2, and β in all three cases. It suggests that when
employing Chen’s algorithm in qualitative applications, the result is acceptable, whereas it is unreliable
to use the inversion results in quantitative applications. On the contrary, the histograms of the results
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obtained by the proposed algorithm indicate that the estimation error is low enough for a reliable
quantitative analysis based on the whole set of parameters. As for the inversion of the two rotation
angle parameters, the results of all algorithms show that the double-bounce orientation angle ψD is
better estimated than the surface orientation angle ψS in all three cases. These results show consistency
with the results tested in build-up areas by using Chen’s algorithm in [22] .In addition, compared
with Chen’s algorithm, the combination strategy achieves a noticeable improvement in the retrieval of
both angles.

We have also calculated the bias and RMSE (Root Mean Square Error) of the inverted parameters
with all different strategies as shown in Tables 2–4. These two statistic indexes show that:

(1) On average, all individual modification strategies are valid and in general they improve the
parameter inversion accuracy with respect to the results of Chen’s algorithm.

(2) The proposed algorithm can provide the best result and the redefinition of boundaries
contributes more to the final result than other modifications.

(3) The algorithm is robust enough for different simulated scenarios considering different
contributions for the main three scattering mechanisms.

Table 2. Bias and RMSE of different strategies in case 1.

Redefined
Boundary

Variable
Transform Initial Values Combination Chen Algorithm

Mean
Bias RMSE Mean

Bias RMSE Mean
Bias RMSE Mean

Bias RMSE Mean
Bias RMSE

fv_est 0.7098 0.8275 0.7455 0.8926 0.7294 0.8538 0.6848 0.8069 0.8059 0.9364
fs_est 0.5810 0.7129 1.0825 1.2653 1.6000 1.7485 0.5531 0.6896 1.3885 1.5279
fd_est 0.4088 0.5119 1.1306 1.2997 1.6198 1.7766 0.3728 0.4752 1.6500 1.8344
fc_est 0.2079 0.2642 0.1792 0.2513 0.2120 0.2700 0.1977 0.2541 0.2036 0.2595

ψS_est 0.0688 0.0803 0.2422 0.3839 0.1980 0.3844 0.0741 0.0854 0.2384 0.4093
ψD_est 0.0158 0.0192 0.0269 0.0326 0.0312 0.0367 0.0158 0.0189 0.0329 0.0392
|α| _est 0.1046 0.1328 0.3127 0.3449 0.4935 0.5353 0.0797 0.1018 0.4647 0.5117

Arg (α) _est 0.1521 0.1926 1.7071 2.1068 0.3015 0.6247 0.1462 0.1894 1.4241 1.9032
β_est 0.0979 0.1064 0.6186 0.7166 0.4950 0.5266 0.0519 0.0617 0.6829 0.7861

Avg_Mean 0.2607 0.6717 0.6312 0.2418 0.7657

Avg_RMSE 0.3164 0.8104 0.7507 0.2981 0.9120

Table 3. Bias and RMSE of different strategies in case 2.

Redefined
Boundary

Variable
Transform Initial Values Combination Chen Algorithm

Mean
Bias RMSE Mean

Bias RMSE Mean
Bias RMSE Mean

Bias RMSE Mean
Bias RMSE

fv_est 0.6906 0.8135 0.6408 0.7474 0.6389 0.7460 0.6346 0.7488 0.6681 0.7717
fs_est 0.6267 0.7600 0.6301 0.7791 0.9768 1.1526 0.5477 0.6829 0.8993 1.0719
fd_est 0.2987 0.3736 0.6181 0.7087 0.7783 0.8539 0.2464 0.3071 0.8058 0.8779
fc_est 0.1648 0.2111 0.1338 0.1872 0.1595 0.2062 0.1584 0.2035 0.1592 0.2056

ψS_est 0.0663 0.0785 0.2083 0.3719 0.1567 0.3276 0.0673 0.0784 0.2275 0.4232
ψD_est 0.0295 0.0353 0.0396 0.0465 0.0461 0.0537 0.0277 0.033 0.0475 0.0551
|α| _est 0.1906 0.2433 0.3169 0.3663 0.5499 0.5856 0.1332 0.1747 0.5117 0.5591

Arg (α) _est 0.2351 0.3112 0.7519 1.3160 0.4842 0.9534 0.2324 0.3029 0.7271 1.2781
β_est 0.0924 0.0988 0.1936 0.2149 0.2685 0.2843 0.0456 0.0523 0.2717 0.2915

Avg_Mean 0.2661 0.3926 0.4510 0.2326 0.4798

Avg_RMSE 0.3250 0.5264 0.5737 0.2871 0.6149
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Table 4. Bias and RMSE of different strategies in case 3.

Redefined
Boundary

Variable
Transform Initial Values Combination Chen Algorithm

Mean
Bias RMSE Mean

Bias RMSE Mean
Bias RMSE Mean

Bias RMSE Mean
Bias RMSE

fv_est 0.7918 0.9048 0.7749 0.8807 0.7642 0.8686 0.7602 0.8705 0.8432 0.9374
fs_est 0.4959 0.5901 0.6363 0.7938 0.806 0.9114 0.4806 0.5829 0.6753 0.7995
fd_est 0.3702 0.4631 0.8417 1.0466 1.0689 1.2076 0.3572 0.4513 1.112 1.3721
fc_est 0.2088 0.2686 0.1758 0.2397 0.2064 0.2567 0.2072 0.2624 0.2137 0.2743

ψS_est 0.1337 0.1536 0.3726 0.5464 0.1431 0.2777 0.1451 0.1621 0.4234 0.6151
ψD_est 0.0149 0.0182 0.0215 0.0261 0.0276 0.0316 0.0142 0.0174 0.0254 0.0312
|α| _est 0.0906 0.1111 0.1978 0.2221 0.3004 0.3205 0.0831 0.0962 0.2418 0.2652

Arg (α) _est 0.1260 0.1612 0.9457 1.3741 0.2045 0.4336 0.1289 0.1677 1.0018 1.4308
β_est 0.0847 0.0878 0.4705 0.5976 0.564 0.5979 0.0379 0.0436 0.5479 0.6877

Avg_Mean 0.2574 0.4930 0.4539 0.2460 0.5649
Avg_RMSE 0.3065 0.6363 0.5451 0.2949 0.7126

Assessment of the Residual

Both Chen’s and the proposed method use residual minimization as a measure for optimal
parameter solving. For further comparison, we have employed a normalized version of the residual as
a quality index [22]

Rmin = ‖Tresidual‖2
2

/
‖T‖2

2 (25)

Because the coherency matrix is a Hermitian matrix, only the upper triangular elements participate
in the optimization calculation. Then, the L2-norm is computed accordingly. The mean values of
Rmin for Chen’s method are 1.55 × 10−4, 1.96 × 10−4 and 1.64 × 10−4 for the three cases, whereas
those for proposed combination method are a little larger (1.89 × 10−4, 2.32 × 10−4 and 1.89 × 10−4,
respectively). The main reason for that comes from the boundary conditions in Chen’s method,
which are more relaxed and thus it leads to smaller residuals in the nonlinear optimization processing.
However, in order to achieve this, the solutions of the unknowns will absorb larger errors with respect
to the true values.

5. Test with Real Data: AgriSAR2006 Campaign

5.1. Data Description

The airborne PolSAR dataset we have tested was acquired during the ESA-funded AgriSAR2006
campaign, which involved 16 European institutions during a four month period in 2006. The test site
is located in Western Pomerania in Northeast Germany, which is well established for simultaneous
measurements of both airborne and in situ data. The detailed descriptions about the measurement
accuracy and data processing can be found in [49]. Besides some forest and building areas, there are a
variety of different crop types, including maize, sugar beet, winter wheat, winter barley and winter
rape. Figure 8 shows the land cover map of the test site. In this campaign, full-polarimetric L-band
images were acquired by the DLR E-SAR system with an incidence range of 25◦–55◦. For this study
we have employed an image acquired on the first date of the campaign where some of the fields
corresponded to bare rough surfaces and others were in the early stages of development of crops with
plants up to 19 centimeters high at most. The acquired date of this image is 19 April 2006 and the
resolution is 2 m in the range direction and 1.2 m in the azimuth direction.
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Figure 8. Land cover map with location of fields. The flight direction is from east to west (i.e., left to
right in this picture). Near range is on the top and far range on the bottom.

5.2. Results and Analysis

Figure 9 shows the photographs of all crops types at the date of the radar observation.
In addition to the farmland area, two forest areas (one in near-range, the other in far-range) and
one building area are also selected to test the decomposition performance. In order to assess the
performance, we have also obtained the solutions from a number of traditional incoherent model-based
decomposition methods, namely: Y4O (Yamaguchi four-component decomposition, Y4O [5]), Y4R
(Yamaguchi four-component decomposition with rotation, Y4R [15]), S4R (Yamaguchi four-component
decomposition with rotation plus dihedral volume scattering model, S4R [18]), G4U (General
four-component decomposition with unitary transformation, G4U [21]). A spatial multilook with a
9 × 9 boxcar filter to reduce speckle noise was applied. The conventional RGB composites obtained
from the six decomposition methods are shown in Figure 10, whereas a comparative analysis of the
results for each crop type is presented next.
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Figure 9. Photographs of the five crop types at the time of the radar acquisition: (a) sugar beet;
(b) winter wheat; (c) maize; (d) rape; and (e) winter barley.

In this paper, we will concentrate on the following fields (see location in Figure 8):

(1) Sugar beet: Fields 102 and 460;
(2) Winter wheat: Fields 230 and 250;
(3) Maize: Field 222;
(4) Rape: Fields 101, 110, 130, and 140; and
(5) Winter barley: Fields 440 and 450.

Sugar beet: On the day of radar acquisition, Field 102 is a bare soil with few vegetation residual
and Field 460 is a completely bare soil. The decomposition power contributions and best-fit volume
scattering models for the two fields are shown in Tables 5 and 6 respectively. It can be seen that,
as expected, surface scattering is the dominant scattering mechanism in all the decomposition methods.
Compared with Y4O method, the volume scattering components of the other five methods are
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smaller because of the orientation compensation. The double-bounce scattering components of
Chen’s and proposed method increase and the volume scattering components decrease, respectively,
when compared with other traditional methods. In addition, the proposed method maintains a high
surface scattering component, similar to the traditional methods, whereas that of Chen’s method is
the lowest one. For these two fields, the most used best-fit volume scattering models for Chen’s and
the proposed method are the vertical dipoles model. However, because of the residuals, the results in
the traditional methods show almost all vertical dipoles model in Field 102, whereas the mixture of
vertical dipoles model and random dipoles model in Field 460. In general, it can be stated that for all
methods there always exists some coupling of either double-bounce or volume components (or both)
even in case of a bare rough surface. This suggests some limitations of the Bragg scattering model
and its improvements for accounting for depolarization effects even at L-band. This is clearly seen
in the volume component for all four traditional methods where it ranges between 17% and 24% of
the total backscattered power. Otherwise the double-bounce is negligible in those cases. On the other
hand, Chen’s and the proposed methods tend to balance the “residual” power not assigned to surface
scattering between double-bounce and volume scattering. This negative effect is even more noticeable
in the original method by Chen.

Winter Wheat: On that date, the winter wheat is in the early vegetative stages with an average
height about 17–18 cm. It can be seen from Tables 7 and 8 that a mixture of scattering components
appears in the two fields from all decomposition methods. For both wheat fields, the best-fit volume
scattering model for the traditional methods is the random dipoles model, the proposed method mostly
chooses the vertical dipoles model, whereas Chen’s method mostly adopts the horizontal and vertical
dipoles model. In addition, it must also be noted that the retrieved strongest scattering mechanism on
Field 230 for the traditional methods is the direct surface whereas it happens to be the double-bounce
for Chen’s and new methods. Otherwise, on Field 250, which is located at far range, the scattering
mechanisms tend to be more similar among all them since the increase of the volume component leads
to a redistribution of the power among mechanisms. This agrees with the expected behavior related to
a higher incidence angle.

Maize: From Figure 9, we can see that the maize field at that date is a bare soil with some
vegetation residuals. In Table 9, it is obvious that the dominant contribution in this field is surface
scattering for all methods. The mostly used best-fit volume scattering model in traditional methods
is the random dipoles model, whereas in Chen’s and the proposed methods is the vertical dipoles
model. More interestingly, as happens for sugar beet fields (especially Field 102), the double-bounce
is negligible (as expected) but, however, the volume scattering is 22.6% of the total power for Y4R,
S4R, and G4U. While being a lower power than that provided by Y4O it becomes evident that none
of the traditional methods is able to properly cope with the overestimation of volume component
which seems to be an undesirable and essential attribute of these type of decompositions. In case of
Chen’s and more clearly in the proposed method, it can be interpreted that they are able to diminish
this drawback since it seems they tend to redistribute the residual power between double-bounce and
volume scattering as it happened in sugar beet field. Notwithstanding this improvement, there is
still 25% of the backscattered power in the best case (which is the proposed method) that is assigned
to scattering mechanisms not expected on a bare surface at L-band. This effect clearly points out a
recurrent flaw that must be further investigated. In this regard, the different scattering model choices
in both traditional and Chen’s and proposed methods can be also indicative on the role that volume
component could play in the decomposition as they could be acting as mere fitting components.

Rape: Results for four rape fields are shown in Tables 10–13, respectively. As an overall comment
beyond the numerical differences among methods, these results epitomize the noticeable disagreement
between both types of decomposition methodologies. As shown, in rape Fields 110, 130, and 140,
the traditional methods show similar levels of both surface scattering and volume with higher
percentages than double-bounce scattering which represents 11% of total power at most. The least
frequently used volume scattering model in these three fields is the vertical dipoles model, whereas the
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most frequently chosen volume model alternates between horizontal dipoles and randomly oriented
ones. On the other hand, Chen’s and proposed methods retrieve in Fields 110, 130, and 140 a mixture
of three scattering mechanisms without an obvious dominant scattering mechanism. According to
these results and even though we have some knowledge of the status of rape fields on that date
(see Figure 9) we cannot provide any conclusive statement on which decomposition methodology
characterizes better the scattering processes on rape Fields 110, 130, and 140. Considering now the
rape Field 101 located at the furthest point from nadir, a different decomposition behavior is observed.
In all methods, volume scattering is the dominant scattering component, which is consistent with a
shallower incidence since the sensor becomes more sensitive to the volume. However, the volume
power for the traditional methods is about 72%, which is clearly higher than 56% for Chen’s method
or 62% for the proposed one. Regarding the selection of the type of volume model, there is again an
obvious disagreement among the set of traditional methods, Chen’s and the proposed method. Among
all them, the vertical dipoles model is hardly ever chosen.

Winter barley: From Table 14, it can be seen that in Field 440 the surface scattering and volume
scattering are the two dominant scattering mechanisms in traditional methods, whereas Chen’s and
proposed methods exhibit double-bounce and volume scattering mechanisms as the two strongest
mechanisms but the surface component is also noticeable. On the other hand, for Field 450 whose
results are shown in Table 15, all methods retrieve surface and double-bounce scattering as the two main
scattering components. In this regard, both sets of techniques yield the same qualitative description for
this field. In addition, for both fields, the mostly used volume scattering model in traditional methods
is the random dipoles model, whereas in Chen’s and proposed methods are the horizontal and vertical
dipoles model, respectively. It is important to emphasize that the incidence angle has hardly changed
between Fields 440 and 450. This allows stating that: (1) all different decomposition methods adapt
to the structural changes of soil and plants; and (2) whether these disagreements are due to design
flaws on either one group of methods or the other or both cannot be ascertained according to the
present study.

Forest: We tested two forest areas in the image, one in the near-range region and the other in
the far-range region. From the results in Tables 16 and 17, it is clear that volume scattering is the
dominant scattering mechanism in these two forest areas in all methods, as expected. It is noted that
in the traditional decomposition processing, the power of the surface and double-bounce scattering
components are forced to be zero when the sum of the volume and helix scattering components is
over the total span. Then the decomposition algorithm jumps to a two-component decomposition
and the volume scattering will be directly calculated by just using the difference of total span and
the helix power. For the forest area in near-range, after computation, there are 85.29%, 39.78%,
39.78%, and 39.78% of pixels in Y4O, Y4R, S4R, and G4U methods, respectively, in which this happens.
For the forest area in the far-range, the percentages are 81.70%, 34.90%, 34.90%, 34.90%, respectively.
Note that as the results of Chen’s and proposed methods are the optimized and adapted solutions
by the algorithm, they do not suffer from this limitation. In addition, it must be highlighted that
the random dipoles model is the mostly used volume scattering model in traditional decomposition
methods, whereas the entropy model is the mostly selected volume scattering model in both Chen’s
and proposed methods. It is also pointed out that some contribution of double-bounce mechanism is
also expected from forest areas at L-band according to a number of previous works in the literature.
As shown, Chen’s and the proposed methods fulfill this expectation better than all four traditional
methods. However, at this moment we cannot provide any conclusive statement on this issue.

Building: According to the results, as expected, it is evident from Table 18 that the double-bounce
scattering is the dominant component in all methods. The volume scattering components in S4R
and G4U are reduced because of the effect of the selection of the volume model caused by the
oriented dihedral structures. The mostly used volume model in Chen’s and proposed methods is the
entropy model, and the volume scattering component is further reduced compared with the traditional
method. Finally, the proposed method shows the highest double-bounce scattering contribution,
which demonstrates its consistency also for build-up area.
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Table 5. Decomposition mean power statistics and volume scattering models statistics over the sugar
beet Field 102.

Method Ps
(%)

Pd
(%)

Pv
(%)

Pc
(%)

Tv_h
(%)

Tv_v
(%)

Tv_r
(%)

Tv_Dihedral
(%)

Tv_Entropy
(%)

Y4O 78.99 1.05 18.49 1.47 0 99.71 0.29 - -
Y4R 79.59 1.42 17.52 1.47 0 99.71 0.29 - -
S4R 79.59 1.42 17.52 1.47 0 99.71 0.29 0 -
G4U 80.56 0.45 17.52 1.47 0 99.71 0.29 0 -
Chen 63.97 21.13 13.84 1.06 10.4 85.71 2.58 - 1.31

Proposed 78.81 9.48 10.24 1.46 2.88 94.80 1.19 - 1.13

Table 6. Decomposition mean power statistics and volume scattering models statistics over the sugar
beet Field 460.

Method Ps
(%)

Pd
(%)

Pv
(%)

Pc
(%)

Tv_h
(%)

Tv_v
(%)

Tv_r
(%)

Tv_Dihedral
(%)

Tv_Entropy
(%)

Y4O 71.33 2.44 24.24 1.99 0.01 52.45 47.55 - -
Y4R 73.37 5.84 18.80 1.99 0.04 47.68 52.28 - -
S4R 73.79 5.87 18.35 1.99 0.02 47.65 52.12 0.21 -
G4U 75.01 4.65 18.35 1.99 0.02 47.65 52.12 0.21 -
Chen 61.08 21.50 15.70 1.73 25.57 72.30 0.99 - 1.14

Proposed 70.69 14.63 12.69 1.98 25.64 66.06 6.72 - 1.57

Table 7. Decomposition mean power statistics and volume scattering models statistics over the winter
wheat Field 230.

Method Ps
(%)

Pd
(%)

Pv
(%)

Pc
(%)

Tv_h
(%)

Tv_v
(%)

Tv_r
(%)

Tv_Dihedral
(%)

Tv_Entropy
(%)

Y4O 37.99 28.73 29.88 3.41 4.30 2.73 92.97 - -
Y4R 38.54 29.26 28.79 3.41 4.28 2.79 92.93 - -
S4R 40.01 29.37 27.21 3.41 2.74 2.66 82.31 12.29 -
G4U 40.24 29.14 27.21 3.41 2.74 2.66 82.31 12.29 -
Chen 33.19 37.77 25.69 3.36 35.78 34.93 14.68 - 14.61

Proposed 30.83 40.58 25.18 3.41 10.25 63.16 6.03 - 20.56

Table 8. Decomposition mean power statistics and volume scattering models statistics over the winter
wheat Field 250.

Method Ps
(%)

Pd
(%)

Pv
(%)

Pc
(%)

Tv_h
(%)

Tv_v
(%)

Tv_r
(%)

Tv_Dihedral
(%)

Tv_Entropy
(%)

Y4O 21.14 31.11 42.36 5.39 0.22 38.62 61.16 - -
Y4R 22.55 32.91 39.15 5.39 0.33 38.00 61.67 - -
S4R 27.62 33.69 33.30 5.39 0.15 25.11 39.01 35.74 -
G4U 27.38 33.93 33.30 5.39 0.15 25.11 39.01 35.74 -
Chen 29.07 35.32 30.38 5.23 43.74 23.93 7.30 - 25.03

Proposed 27.96 35.67 30.99 5.38 5.01 73.36 1.20 - 20.43

Table 9. Decomposition mean power statistics and volume scattering models statistics over the maize
Field 222.

Method Ps
(%)

Pd
(%)

Pv
(%)

Pc
(%)

Tv_h
(%)

Tv_v
(%)

Tv_r
(%)

Tv_Dihedral
(%)

Tv_Entropy
(%)

Y4O 68.98 0.17 29.53 1.33 0 46.49 53.51 - -
Y4R 74.18 1.89 22.6 1.33 0 35.06 64.94 - -
S4R 74.18 1.89 22.6 1.33 0 35.06 64.94 0 -
G4U 74.41 1.66 22.6 1.33 0 35.06 64.94 0 -
Chen 64.72 18.49 15.94 0.86 29.84 65.76 2.52 - 1.87

Proposed 72.41 11.45 14.83 1.32 8.40 84.68 2.38 - 4.55
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Table 10. Decomposition mean power statistics and volume scattering models statistics over the rape
Field 101.

Method Ps
(%)

Pd
(%)

Pv
(%)

Pc
(%)

Tv_h
(%)

Tv_v
(%)

Tv_r
(%)

Tv_Dihedral
(%)

Tv_Entropy
(%)

Y4O 12.38 5.79 77.37 4.46 42.82 0.05 57.13 - -
Y4R 14.74 8.16 72.64 4.46 35.52 0.08 64.40 - -
S4R 14.74 8.16 72.64 4.46 35.52 0.08 64.40 0 -
G4U 15.17 7.73 72.64 4.46 35.52 0.08 64.40 0 -
Chen 16.45 22.64 56.67 4.25 35.65 27.81 12.54 - 24.00

Proposed 12.86 20.58 62.08 4.47 42.98 3.74 28.91 - 24.37

Table 11. Decomposition mean power statistics and volume scattering models statistics over the rape
Field 110.

Method Ps
(%)

Pd
(%)

Pv
(%)

Pc
(%)

Tv_h
(%)

Tv_v
(%)

Tv_r
(%)

Tv_Dihedral
(%)

Tv_Entropy
(%)

Y4O 45.73 10.60 40.64 3.03 59.02 1.95 39.03 - -
Y4R 46.41 11.18 39.38 3.03 57.44 2.06 40.50 - -
S4R 46.41 11.18 39.38 3.03 57.44 2.06 40.50 0 -
G4U 46.81 10.78 39.38 3.03 57.44 2.06 40.50 0 -
Chen 35.96 26.71 34.47 2.87 34.26 42.68 11.25 - 11.81

Proposed 32.73 28.20 36.04 3.03 65.91 14.32 12.56 - 7.22

Table 12. Decomposition mean power statistics and volume scattering models statistics over the rape
Field 130.

Method Ps
(%)

Pd
(%)

Pv
(%)

Pc
(%)

Tv_h
(%)

Tv_v
(%)

Tv_r
(%)

Tv_Dihedral
(%)

Tv_Entropy
(%)

Y4O 45.65 3.86 47.07 3.42 18.63 5.25 76.12 - -
Y4R 48.51 5.01 43.05 3.42 17.12 6.46 76.42 - -
S4R 48.51 5.01 43.05 3.42 17.12 6.46 76.42 0 -
G4U 48.46 5.06 43.05 3.42 17.12 6.46 76.42 0 -
Chen 26.58 37.8 32.78 2.85 31.77 60.04 4.25 - 3.94

Proposed 33.20 31.57 31.83 3.40 25.77 50.62 10.41 - 13.20

Table 13. Decomposition mean power statistics and volume scattering models statistics over the rape
Field 140.

Method Ps
(%)

Pd
(%)

Pv
(%)

Pc
(%)

Tv_h
(%)

Tv_v
(%)

Tv_r
(%)

Tv_Dihedral
(%)

Tv_Entropy
(%)

Y4O 49.43 2.21 45.36 3.00 65.36 0 34.64 - -
Y4R 50.50 2.85 43.65 3.00 62.15 0 37.85 - -
S4R 50.50 2.85 43.65 3.00 62.15 0 37.85 0 -
G4U 50.40 2.95 43.65 3.00 62.15 0 37.85 0 -
Chen 30.76 33.64 33.31 2.28 48.70 49.11 1.68 - 0.50

Proposed 37.21 27.74 32.07 2.98 81.82 8.87 6.37 - 2.95

Table 14. Decomposition mean power statistics and volume scattering models statistics over the winter
barley Field 440.

Method Ps
(%)

Pd
(%)

Pv
(%)

Pc
(%)

Tv_h
(%)

Tv_v
(%)

Tv_r
(%)

Tv_Dihedral
(%)

Tv_Entropy
(%)

Y4O 46.14 8.75 42.00 3.11 0.43 4.51 95.06 - -
Y4R 46.72 9.32 40.85 3.11 0.43 4.66 94.90 - -
S4R 46.72 9.32 40.85 3.11 0.43 4.66 94.90 0 -
G4U 47.31 8.73 40.85 3.11 0.43 4.66 94.90 0 -
Chen 25.13 37.09 34.90 2.88 49.52 36.57 5.77 - 8.14

Proposed 27.00 35.56 34.35 3.10 1.22 91.76 2.28 - 4.74
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Table 15. Decomposition mean power statistics and volume scattering models statistics over the winter
barley Field 450.

Method Ps
(%)

Pd
(%)

Pv
(%)

Pc
(%)

Tv_h
(%)

Tv_v
(%)

Tv_r
(%)

Tv_Dihedral
(%)

Tv_Entropy
(%)

Y4O 51.24 24.40 17.74 6.62 0.04 27.22 72.74 - -
Y4R 51.83 25.12 16.49 6.56 0.04 28.64 71.32 - -
S4R 51.94 25.13 16.37 6.56 0.04 28.36 69.71 1.89 -
G4U 51.88 25.19 16.37 6.56 0.04 28.36 69.71 1.89 -
Chen 37.02 42.32 14.02 6.65 30.84 29.01 16.44 - 23.71

Proposed 39.93 39.83 17.72 6.52 2.54 88.17 1.12 - 8.17

Table 16. Decomposition mean power statistics and volume scattering models statistics over the
near-range forest area.

Method Ps
(%)

Pd
(%)

Pv
(%)

Pc
(%)

Tv_h
(%)

Tv_v
(%)

Tv_r
(%)

Tv_Dihedral
(%)

Tv_Entropy
(%)

Y4O 0.22 1.35 93.49 4.94 34.63 0.03 65.34 - -
Y4R 1.25 5.77 88.05 4.94 21.07 0.54 78.39 - -
S4R 1.31 5.82 87.93 4.94 20.79 0.54 78.38 0.30 -
G4U 1.26 5.87 87.93 4.94 20.79 0.54 78.38 0.30 -
Chen 14.24 16.17 64.73 4.86 11.17 8.15 2.62 - 78.06

Proposed 2.98 14.46 77.57 4.99 17.95 0.71 35.04 46.30

Table 17. Decomposition mean power statistics and volume scattering models statistics over the
far-range forest area.

Method Ps
(%)

Pd
(%)

Pv
(%)

Pc
(%)

Tv_h
(%)

Tv_v
(%)

Tv_r
(%)

Tv_Dihedral
(%)

Tv_Entropy
(%)

Y4O 0.24 1.98 91.95 5.83 46.45 2.39 51.16 - -
Y4R 1.11 6.84 86.22 5.83 28.86 2.41 68.73 - -
S4R 1.14 6.84 86.19 5.83 28.86 2.37 68.65 0.13 -
G4U 1.04 6.94 86.19 5.83 28.86 2.37 68.65 0.13 -
Chen 14.83 18.3 61.10 5.77 14.30 8.58 2.54 - 74.58

Proposed 3.15 16.02 74.94 5.89 32.14 3.71 23.06 - 41.10

Table 18. Decomposition mean power statistics and volume scattering models statistics over the
building area.

Method Ps
(%)

Pd
(%)

Pv
(%)

Pc
(%)

Tv_h
(%)

Tv_v
(%)

Tv_r
(%)

Tv_Dihedral
(%)

Tv_Entropy
(%)

Y4O 11.26 62.31 21.99 4.44 67.78 5.01 27.21 - -
Y4R 11.85 65.05 19.24 3.86 67.28 6.00 26.72 - -
S4R 14.22 65.93 15.98 3.86 38.56 5.28 21.92 34.24 -
G4U 14.08 66.08 15.98 3.86 38.56 5.28 21.92 34.24 -
Chen 24.54 57.91 11.37 6.17 27.23 28.93 8.14 - 35.70

Proposed 8.97 71.60 15.58 3.86 27.94 23.92 14.69 - 33.45
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If we analyze the whole scene within the defined regions of interest (i.e., crops, forests and built-up
areas), the mean values of the normalized minimum residuals Rmin are 0.0020 and 0.0062 for Chen’s
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and the proposed method, respectively. The values are both low enough, even though the proposed
method shows a larger residual because of the tighter boundary conditions.

Regarding the retrieved values of β, the feasible range according to the model (Figure 3) is from
−0.5695 to −0.0516 for our tested E-SAR data. Figure 11 shows the histograms of the values of β

in all fields from all different methods. Since the traditional methods impose no limitation on the
final retrievals and we found the values of some pixels are very high or low, in order to show the
histograms, we limit them to the interval [−1,1]. It is evident that due to the assumption made in
traditional decomposition methods the values of β are zero in many cases. On the other side, the result
from Chen’s method is very likely to fall outside the physical range, whereas the proposed method
yields solutions that are distributed in the physical range.
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Figure 11. Histograms of the values of β from different methods: (a) Y4O decomposition;
(b) Y4R decomposition; (c) S4R decomposition; (d) G4U decomposition; (e) Chen decomposition;
and (f) Proposed decomposition. The red lines denote the feasible range according to the model.

For α, because of adopting the magnitude and angle of α as the unknown parameters in the
equations solving system and adding the constraint of the magnitude in the proposed method, there are
no cases where the absolute value of α is higher than one. However, 61.01% of pixels in Chen’s method
exhibit retrieved α higher than one. This is a consequence of using real and imagery parts of α as
unknowns in the nonlinear optimization processing and without adding the constraint of magnitude
in the system.

6. Discussion

6.1. Necessity of Checking PolSAR Decomposition Results from Quantitative Perspective

According to the actual state of the art of PolSAR decomposition techniques, multiple approaches
rooted in the Freeman–Durden concept exist, which are approximately consistent among them as long
as we are concerned on the type of dominant scattering components. Nevertheless, the estimated values
of the physical entities making up the derived models lead to different interpretations, even though
the underlying physical principles of all these decomposition approaches are the same. For qualitative
applications, e.g., target detection and land classification, the existing decomposition methods are
fairly accepted as well established techniques since they have demonstrated their usefulness in radar
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remote sensing applications. In this context, the evaluation of results usually is based on a visual
interpretation and identification according to the dominant scattering mechanisms and no further
information regarding the rest of the outputs of the decomposition is retrieved. To our knowledge
there exist very few cases [31,32] where this type of techniques (i.e., Freeman–Durden concept) was
exploited for a quantitative application. Nevertheless, they are primarily focused on soil moisture
inversion but they lack the in-depth analysis we propose in this paper.

According to the results of this work (i.e., from simulations and real test) the proposed
improvements lead to very similar results obtained by using classical methods from a qualitative
perspective. Contrarily, we have shown that these modifications allow an overall improvement of
the final estimates of the whole set of parameters. Consequently, as an important conclusion from
the present paper, we would like to stress the necessity of checking the quantitative accuracy of
model-based PolSAR techniques for a reliable physical description of land covers beyond their proven
utility for qualitative features extraction. In addition, two limitations of the present approach must be
noted. First, a Gaussian distribution is assumed for the data, which may not be the case for some forest
areas exhibiting a K-distribution [3]. Secondly, we make use of a particular kind of matrix structure,
which only matches specific kinds of land cover. Hence, these issues prevent the generalization of
these conclusions in a wide sense.

6.2. Selection of the Model-Based Decomposition Method

The general decomposition framework we chose is the method proposed by Chen et al. [22],
where all scattering components contributing to the model in this decomposition method are assigned
the same priority in the inversion strategy. The unknowns are simultaneously determined by using a
nonlinear least squares optimization without prior subtracting or fixing any of them. Then, we have
focused this work on the improvement of the performance of the optimization algorithm in order to
obtain physically feasible parameter values.

It is noteworthy to emphasize that Chen’s method exploits a number of advances and key ideas
that were previously proposed separately in the literature regarding model-based decompositions.
Therefore, in our opinion the joint application of those concepts in a proper way makes Chen’s approach
one of the most complete and general decompositions within the topic since it is capable of dealing with
a wider variety of scattering scenarios than any other previous model-based decomposition scheme.
Consequently, we chose Chen’s method to quantitatively check the accuracy of parameters retrieved
from model-based decomposition approaches. It must be noted that the methodology employed in
this paper can be applied in a straightforward way to test separately any of the previous existing
decomposition methods.

6.3. Future Research Directions

Future work should be mainly focused on three aspects. First, it is noted that instead of
just nine unknowns, there is actually also an extra variable that depends on the type of volume.
In this study, the decomposition framework followed the discretization proposed by Chen et al. by
considering four typical cases to select the volume model matrix with minimum residual term in an
optimal way. However, in the future more representative volume scattering models together with
iterative inversion schemes should be included and/or developed to improve the decomposition
performance. In addition, as one reviewer proposes, the inversion approach could be modified
by directly replacing, as independent parameters to retrieve, |α|, Arg(α) and β with the dielectric
constants and the differential phase. This would involve even more complicated equations but
it would directly yield the physical parameters. Second, the ideas discussed in this paper can be
exported to the PolInSAR decomposition framework. Third, we followed the classical Monte-Carlo
simulation method to simulate PolSAR dataset for quantitative analysis in this study but, however,
it is based on the assumption that Chen’s decomposition model is general enough for generating
the coherency matrix. Certainly, the use of a particular model to simulate the corresponding
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covariance/coherency matrix elements is by definition an intrinsic constraint which hinders the
generalization of results. Alternatively, the use of a rigorous 3D electromagnetic model to compute the
second order scattering elements could lead to stronger evidences on the performance of model-based
decomposition techniques. Actually, this strategy corresponds to the highest levels of evidence and
this should be the future line to follow for a conclusive assessment of target decomposition schemes.
However, it is also noted that rigorous electromagnetic modeling also relies on assumptions which can
be also subject to multiple criticisms, corrections and adjustments regarding the models involved for
quantifying the scattering processes. Hence, this could be an arduous and overwhelming task and,
perhaps, this is the reason why all model-based decomposition methods have been mostly applied for
qualitative studies so far. Consequently, we think there is gap in model-based decompositions topic that
must be filled, which concerns the assessment of all the existing methods. In our opinion, the present
paper does not fill completely this gap but it does contribute to do so. Finally, the performance of these
methods for a quantitative description of land covers should be further investigated in real scenarios.
In this regard, validation tests should be designed to check the accuracy of those parameters useful for
practical applications, i.e., effective dielectric constants of depolarizing targets and volume descriptors.

7. Conclusions

In this paper, we have addressed the feasibility of parameters retrieved from general polarimetric
model-based decompositions from the perspective of quantitative applications. To do so, we have
chosen the method recently proposed by Chen et al. since it is one of the most complete and general
decompositions published so far. However, this approach exhibits a number of flaws concerning the
numerical inversion which prevent in many cases a correct parameter retrieval. In order to obtain more
physically feasible decomposition results, we have proposed a new inversion algorithm by revising
the way to generate the initial values, by redefining variables boundaries, and by implementing a
transformation of variables. Different Monte Carlo simulation tests have shown that the estimation
accuracy of all parameters is significantly increased after implementing these changes, although the
residuals are slightly increased as a consequence of adding stricter and realistic boundary conditions.
Among all the modifications, the redefinition of variables boundaries in agreement with the direct
physical model provides the largest contribution for improving the decomposition results.

Fully polarimetric L-band SAR data acquired by E-SAR platform together with ground
measurements over an agricultural and forested area from AgriSAR2006 campaign have also been
employed to test the performance of the proposed algorithm. Regarding the use of L-band data, it is
noted that this a frequency band well suited for a wide variety of vegetated scenarios either with
short or tall and dense vegetation. However, attending to the different scattering physics expected for
different frequencies, our conclusions regarding the real data analysis must be limited to the employed
frequency band. Other higher frequencies such as C- and X-band will certainly yield different responses
and should be object of further investigations.

Besides Chen’s and the proposed method, other classical incoherent model-based decomposition
methods (i.e., Y4O, Y4R, S4R, and G4U) have been also included for the comparative analysis. On the
one hand, our analysis on the outputs of both groups of techniques reveals different qualitative
descriptions of the same cover, which suggests that additional studies are required to progress in
polarimetric decomposition models. On the other hand, some results, such as those provided by the
Bragg coefficient ratio (i.e., β), show that, despite the well-known utility of the classical methods for
qualitative description and classification of land covers, they are prone to provide wrong numerical
inversion results which could prevent any subsequent quantitative characterization of specific areas in
the scene. According to the current state of the art, a possible strategy to exploit the existing approaches
would be a two-level approach consisting on using the well-known decomposition techniques for
qualitative studies (land feature classification) and more specialized approaches designed according to
the specificity of the land cover to be monitored for quantitative assessments.
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