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Abstract: Optical remote sensing data have been considered to display signal saturation phenomena
in regions of high aboveground biomass (AGB) and multi-storied forest canopies. However, some
recent studies using texture indices derived from optical remote sensing data via the Fourier-based
textural ordination (FOTO) approach have provided promising results without saturation problems
for some tropical forests, which tend to underestimate AGB predictions. This study was applied to
the temperate mixed forest of the Liangshui National Nature Reserve in Northeastern China and
demonstrated the capability of FOTO texture indices to obtain a higher prediction quality of forest
AGB. Based on high spatial resolution aerial photos (1.0 m spatial resolution) acquired in September
2009, the relationship between FOTO texture indices and field-derived biomass measurements was
calibrated using a support vector regression (SVR) algorithm. Ten-fold cross-validation was used to
construct a robust prediction model, which avoided the over-fitting problem. By further comparison
the performance of the model estimates for greater coverage, the predicted results were compared
with a reference biomass map derived from LiDAR metrics. This study showed that the FOTO
indices accounted for 88.3% of the variance in ground-based AGB; the root mean square error (RMSE)
was 34.35 t/ha, and RMSE normalized by the mean value of the estimates was 22.31%. This novel
texture-based method has great potential for forest AGB estimation in other temperate regions.

Keywords: AGB; high spatial resolution image; aerial photos; FOTO indices; SVR; temperate
forest; LiDAR

1. Introduction

Carbon dioxide is an important factor in climate change. The increase in CO2 accompanied
by increasing atmospheric temperature may affect human activities as well as global sustainable
development. Forests store carbohydrates synthesized from carbon dioxide during photosynthesis.
Human and natural activities such as deforestation and degradation cause substantial releases of
carbon dioxide, thus leading to great uncertainty about global change [1,2]. The influence of forest
biomass on carbon cycles has long been recognized; therefore, an accurate assessment of forest biomass
is required for understanding ecosystem changes. In general, three approaches are commonly applied
for biomass estimations: field measurements, geographic information system (GIS), and remote sensing
methods [3–6]. The traditional method of field measurement has historically been considered the
most precise method, although field measurement is time consuming, labor intensive, subject to
inaccessibility in remote areas, and may collect insufficient sample plots. GIS-based approaches have
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not been extensively applied to biomass estimations because of the inconvenience of establishing
spatial and attribute databases [6]. Remote sensing techniques have attracted substantial attention for
estimating aboveground biomass (AGB) because they enable relatively convenient data acquisition
while maintaining an acceptable accuracy for AGB predictions in large areas.

Very high spatial resolution (VHSR) images contain abundant texture information, which
characterizes the spatial and structural distribution of forest canopies. Thus, VHSR data possess
an advantage over spectral responses to biomass estimation in forests with complex structures [7].
Texture indices derived from remote sensing data have been recognized as strong predictors for AGB
estimation for forests [7–11]. Due to the promising performance for providing texture information,
a well-establish texture-based method known as Fourier-based textural ordination (FOTO) was used
in this research. The FOTO method uses a combination of Fourier transform and principal component
analysis (PCA) to detect forest canopy structural heterogeneity [12,13]. Many studies have indicated
that FOTO texture indices could be regarded as good predictors of AGB in tropical forests. The FOTO
method has been applied to VHSR remote sensing data to derive forest biomass models in French
Guiana [8,14–16], Malaysian Borneo [17,18], Brazil Amazonia [8], and the Western Ghats of India [19].
Theoretically, optical remote sensing technologies have a limited capability of predicting forest biomass,
particularly for those mature forests which spectral responses become saturated [5,7]. Proisy et al. [14]
implemented FOTO for coastal mangrove forests in French Guiana using IKONOS data; the results
showed that saturation phenomena did not appear even for high biomass levels greater than 450 t/ha.
Singh et al. [18] indicated that the FOTO approach proved powerful in distinguishing different forest
types and in developing individual biomass estimate models for various forest types in Malaysian
Borneo. FOTO texture indices also demonstrated a strong correlation with forest AGB in Central Africa
for R2 = 0.85; residual standard error (RSE) = 15% [11]. The above cases confirm the great potential of
the FOTO method for generating remote sensing based AGB models for tropical regions.

With the development of Light Detection and Ranging (LiDAR) techniques since the 1990s, the
capability of laser pulses to penetrate the forest canopy to the ground has allowed forest stand heights
to be obtained with high accuracy. Lefsky et al. [20] proved that canopy height profiles are highly
correlated with basal area and aboveground forest biomass. Due to the limitation of obtaining adequate
field measurements, insufficient training data sets may decrease the accuracy and generalization of the
prediction model. However, biomass maps derived from LiDAR data with sufficiently high precision
could be used for validating other less proven predictions when estimating vertical structure, such as
forest stand height and canopy height, as well as AGB over large areas [21–23].

The objective of this study is to explore the potential of FOTO indices for AGB estimation in
a temperate forest. Based on the VHSR aerial photos (1.0 m spatial resolution) acquired in 2009,
a machine learning (ML) model was used to calibrate the relationship between FOTO texture indices
and field-derived biomass. ML techniques are increasingly used in remote sensing research to provide
a robust method of modeling results and a higher generalization performance than linear or nonlinear
models [13,24,25]. A support vector regression (SVR) algorithm was used for regression purposes
in this study. The resulting maps of AGB were compared against estimations derived from airborne
LiDAR data over the same area.

2. Materials

2.1. Study Area

The study site is situated in the Liangshui National Reserve (centered at 47˝1015311N, 128˝5312011E,
UTM Zone 52) of the province of Heilongjiang in Northeastern China (Figure 1). The Liangshui
National Reserve was established in 1980 and protects the ecological system of conifer and broadleaf
mixed forests. The study site covers an area of approximately 120 km2, and the forest cover accounts
for more than 95%. Altitudes range from 280 to 707 m above sea level. The terrain is a hilly landscape
with surface slopes of mountainous areas reaching up to 40˝. The region receives approximately



Remote Sens. 2016, 8, 230 3 of 13

680 mm of precipitation per year, and the relative humidity is approximately 78%. The annual mean
temperature is approximately ´0.3 ˝C. The climate conditions of this subzone can be described as
windy springs, with high temperatures and concentrated rainfall in summer, cool autumns, and long,
cold, dry and snowy winters [26]. Undisturbed original red pines (Pinus koraiensis) are the dominant
tree species, covering approximately 41 km2 in this reserve [27]; other protected tree species are present,
including Betula platyphylla, Tilia amurensis, Populus davidiana, Quercus mongolica, Phllodendron amurense
and Juglans mandshurica [28].

Remote Sens. 2016, 8, 230 3 of 14 

 

hilly landscape with surface slopes of mountainous areas reaching up to 40°. The region receives 
approximately 680 mm of precipitation per year, and the relative humidity is approximately 78%. 
The annual mean temperature is approximately −0.3 °C. The climate conditions of this subzone can 
be described as windy springs, with high temperatures and concentrated rainfall in summer, cool 
autumns, and long, cold, dry and snowy winters [26]. Undisturbed original red pines (Pinus 
koraiensis) are the dominant tree species, covering approximately 41 km2 in this reserve [27]; other 
protected tree species are present, including Betula platyphylla, Tilia amurensis, Populus davidiana, 
Quercus mongolica, Phllodendron amurense and Juglans mandshurica [Error! Reference source not 
found.]. 

 

Figure 1. Location map of Liangshui National Nature Reserve in Northeastern China, aerial data were
obtained for 26 flight strips in September of 2009. Seventy-four field plots measured in August 2009 are
marked in red spots. Subplots of (a–d) show the samples for different forest canopy sizes (the average
crown size for subplot (a) is 3.35 m; (b) is 4.69 m; (c) is 5.86 m and (d) is 7.57 m).
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2.2. Field Data

The ground survey was conducted in August 2009. To achieve a robust prediction model, the
stratified sampling frame was used, which contained three strata of coniferous forest, broadleaf forest,
and mixed forest. For each strata, plots with different AGB levels were sampled. Seventy-four circular
samples with a radius of 13.8 m were established (Figure 1). The plot area is approximately 600 m2,
which is consistent with forest inventory plots in Heilongjiang. When the field plots are laid out,
a rule was established so that each plot represents a large stand of over 3 ha. Within each plot, the
diameter at breast high (DBH), tree species, tree height, under-branch height, and crown diameter
of all of the individual trees with DBH greater than 5 cm was measured. DBH was recorded using
a caliper. Two measurements of principal directions (north–south and east–west) for canopy crowns
were obtained using measuring tape. The crown diameter was computed as the average of these two
measurements. Tree height and under-branch height were measured with a laser altimeter (TruPulse
360B, Laser Technology Inc., Centennial CO, USA). The statistical results for some of the main field
measurements are given in Table 1. The skewness for DBH is the largest of the three parameters (DBH,
tree height, and crown diameter), which indicates that the number of individual trees with a large size
(>40 cm) is less than the number of trees with a medium size (10–40 cm). The distributions of tree
height and crown diameter are more dispersive. Figure 2 shows the distribution for the recorded data
from lower to higher tree height levels as well as from fine to coarse crown shapes. The position of each
plot was recorded by a Trimble GeoXT GPS (GeoXT, Trimble Navigation Limited, Sunnyvale, USA); the
position errors were less than 1 m after differential processing. Forest biomass was calculated using the
allometric model developed by Wang [29], given in Equation (1), where a and b are the coefficients of
the regression model. AGB for all of the individual trees was summed for each plot then converted to
biomass density in tons per hectare (t/ha). The estimated AGB for 74 plots ranged from 25 to 445 t/ha,
with an average biomass of 153.98 ˘ 103.47 t/ha.

AGB “ aDBHb (1)

Table 1. Statistical results for the field measurements.

Variables Mean Standard Deviation Min Median Max Skewness Kurtosis

DBH (cm) 16.33 11.33 2.10 13.31 98.70 2.47 8.47
Tree height (m) 14.72 6.48 1.80 14.04 38.90 0.55 ´0.21

Crown diameter(m) 4.36 1.64 0.15 4.12 15.80 1.04 1.97Remote Sens. 2016, 8, 230 5 of 14 
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density of 2 points per m2. The total coverage of the measurement area reached approximately 
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2.3. Remote Sensing Data

Remote sensing data collection was conducted on 4 September 2009 using a 22-megapixel
DigiCAM-H/22 CCD camera. Weather that was cloud-free or with low cloud cover at a height
above flight altitude was selected for the flight condition. A high sun elevation angle provides good
illumination conditions and minimizes the topographic effect on optical data. Data collection occurred
from 10:00 a.m. to 14:00 p.m. A Yun-5 fixed wing aircraft flew from north to south at a flight speed of
150 to 193 km/h and at a flight altitude of 1070 m above sea level. Data were obtained for 26 flight
strips during the test flight. Aerial imagery acquired for this research consisted of data for three
bands (the red band at 700 nm, the green band at 540 nm, and the blue band at 480 nm) with 1.0 m
spatial resolution (Figure 1). Preprocessing steps required for the CCD raw data included radiometric
correction, atmospheric correction, and orthorectification. The three visible bands were averaged
to generate a gray-level (0–255) image for the FOTO texture analysis. Some of the main technical
parameters for airborne sensors are given in Table 2.

Table 2. Main technical parameters for airborne sensors.

DigiCAM-H/22

Sensor size 5440 ˆ 4080 Pixel size 9 µm
Sensor dimensions 36.72 mm ˆ 48.96 mm Focal length 50 mm

Riegl LMS-Q560 (Full Waveform Digitization)

Wavelength 1550 nm Point density 2 points/m2

Pulse firing rate 100 kHz Scan angle range ˘30˝

Pulse length 3.5 ns Surface point accuracy
(horizontal/vertical), excluding GPS errors 0.1 m/0.03 mSampling interval 1 ns

Airborne LiDAR data were collected concurrently with the aerial imagery. An LMS-Q560 LiDAR
scanner (Riegl Laser Measurement Systems GmbH, Horn, Austria) was used to collect LiDAR point
clouds during the flight. This small footprint LiDAR system achieved an average point density
of 2 points per m2. The total coverage of the measurement area reached approximately 200 km².
The reference AGB map derived from LiDAR was generated by calibrating the relationship between
LiDAR metrics and the AGB of the field plots. LiDAR point cloud data were classified onto ground
points, vegetation points, and other points. A digital elevation model (DEM) was interpolated using
ground points. Then, the heights of vegetation points were normalized according to their terrain
elevation. We chose returns above 2 m as the vegetation point threshold for further LiDAR metrics
calculation [30]. Several attributes were derived from the LiDAR point cloud data, including: every
10th percentile for the first return, i.e., 10% (h10), 20% (h20), . . . , 90% (h90), 100% (h100), every one-tenth
accumulation of canopy density, i.e., 10% (d10), 20% (d20), . . . , 90% (d90), 100% (d100), and the mean
height (hm) [31–33]. These LiDAR metrics data had a 10 m spatial resolution. Multiple linear regression
was applied to calibrate the regression model. The optimal predicted model from the LiDAR data had
a R2 of 0.82 and RMSE of 44.8 t/ha [28]. We produced a wall-to-wall forest AGB map and resampled
the results to a 10 m spatial resolution (Figure 3). The white regions in Figure 3 represent the highest
AGB, while black regions represent the lowest AGB. The AGB in the Liangshui Reserve (the center of
the data) is higher than that of the surrounding forests.
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3. Methodology

The FOTO texture-based method extracted FOTO indices from the aerial photos, and an SVR
algorithm was then used to calibrate the relationship between the FOTO texture indices and the
biomass of the field plots. Figure 4 describes the workflow of AGB estimation and evaluation in
this research.
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3.1. FOTO Method

We developed the texture-based FOTO analysis in the IDL environment (Interactive Data
Language, Exelis Visual Information Solutions, Inc., Boulder, CO, USA). The gray-level image was
first divided into 100 m ˆ 100 m square subsets by windowing the data successively from left to
right and top to bottom. A window size was set to include at least five repetitions of the largest tree
crown diameter [19,34]; a small window was unable to adequately capture large canopy features,
whereas large windows could characterize landscape features rather than canopy crowns. A window
size of 100 m was applied to derive FOTO indices in our research. Each window was subjected
to two-dimensional fast Fourier transform (2D-FFT) analysis. Fourier analysis is based on the
assumption that any continuous function can be decomposed into a series of sine and cosine waves
of differing amplitudes and frequencies [35]. The canopy structure can be decomposed into a few
spatial frequencies after 2D-FFT. A power spectrum called the radial spectrum (“r-spectrum”) was
then computed. A detailed description of r-spectra was presented in Couteron et al. [7]. R-spectrum
provides the frequency distribution for the repetitive structure of forest canopy. The r indicates the
number of times that a pattern, here referring to the spatial structure of the forest canopy, reproduces
itself within the given window. Therefore, an image with a coarse texture will yield a radial spectrum
which is skewed toward low frequencies, while fine texture is expected to generate more balanced
spectra [18]. FOTO indices are very sensitive to canopy structure; some situations such as gaps, fallen
trees and the natural decaying of trees will cause bias in the computation of r-spectra. Therefore,
incorrect cycle images should be removed from the procedure [17].

A general data table was constructed in which the row was the r-spectrum of each window, and
the columns contained the spectral values related to a given wavenumber [36]. Principal component
analysis (PCA) was then applied to this r-spectra, and the first three most prominent axes were used as
FOTO texture indices. These three indices explained more than 85% of the variance, and the remaining
axes could be ignored. Outputs for FOTO indices had the spatial resolution set equal to the window
size in the previous selection.

3.2. SVR and Validation

We derived AGB models based on the FOTO texture variables and the field measured data using
machine learning techniques such as support vector regression (SVR). ML models typically contain
support vector machines (SVM), artificial neural networks (ANN), and classification and regression
trees (CART). ML models are often superior to linear or logistic regression models because they
make fewer assumptions about the data and the processes; moreover, they consider the accuracy
of prediction as the ultimate goal. Linear models often assume that variables come from a known
statistical distribution, which is often an oversimplification [37]. SVM is a supervised non-parametric
statistical machine learning technique. Support vector classification (SVC) focuses on the purpose
of classification decisions, whereas support vector regression focuses on the regression problem [21].
The choice of the kernel function and the hyper-parameters will affect the regression performance
of the SVR. The kernel function enables SVR algorithms to project the training dataset from a low
dimensional space into a higher dimensional feature space in which the regression optimization
problem can be solved in a linearized manner [38]. The linear kernel corresponds to non-kernel SVR;
the polynomial kernel performs well globally but achieves poorer performance in partial samples.
The RBF function shows a superior performance and robust results over the linear kernel [39].

Some kernels are as follows:

I. The linear kernel:
K

`

xi, xj
˘

“ xi¨ xj (2)

II. The polynomial kernel:
K

`

xi, xj
˘

“ ppxi¨ xjq ` 1qd (3)
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III. The radial basis function (RBF) kernel:

K
`

xi, xj
˘

“ expp´

ˇ

ˇxi ´ xj
ˇ

ˇ

2

σ2 q (4)

IV. The sigmoid kernel:
K

`

xi, xj
˘

“ tanhpkpxi¨ xjq ´ δq (5)

where d is the degree of the polynomial, σ2 denotes the radius of the RBF kernel, and k is the
inclination factor of the sigmoid function.

The SVR algorithm was implemented based on the Libsvm toolbox [40]. This toolbox has powerful
functions to solve the problem of classification, regression, and distribution estimation. The process
involves extracting a training dataset to obtain the regression model. After the Libsvm machine
training process, the optimal model can predict information for the testing dataset [41]. In this study,
the RBF kernel was applied to map the training data to a higher feature space. Outputs of the toolbox
are the hyper-parameters of the regression model, including the mean squared error (MSE), the penalty
parameter C, and the kernel parameter σ2. The ability to generalize the RBF kernel becomes weaker as
the parameter σ2 increases. The penalty parameter C is used to account for the penalized loss when
the training error occurs. It specifies the trade-off between the SVR function and the input variables
for which deviations larger than the loss function are tolerable [42].

The determination coefficient (R2) indicates the fitting degree of the independent variables based
on the model to the dependent variables. A high value of R² does not necessarily mean a good model.
It may be easy to over-fit the training data, but the predictions on new data will become worse. It is
essential to separate the samples into two parts to create a robust model. The “training data” were used
for training a prediction model and the “validation data” were used for evaluating the adaptability
of that model. To obtain a robust SVR model, ten-fold cross-validation was used, which avoids the
over-fitting problem. Ten-fold cross-validation relies on the random grouping of data into 10 equivalent
subsamples. Each subsample successively plays the role of a validation sample, which means that
one tenth of the entire dataset was not included in the AGB model generated each time. After this
operation, the cross-validation model with the smallest estimated risk would be selected [43,44].
We used 74 field-derived biomass measurements to calibrate and validate the FOTO model; then, the
comparison between FOTO-predicted AGB and LiDAR-derived results was conducted by selecting
validation samples (n = 417) randomly across the study area, and the validation samples were included
different levels of AGB.

4. Results and Discussion

4.1. Forest AGB Estimation Using FOTO Texture Indices

The first three principal components of the r-spectra table explained 87% of the total variance
in high resolution aerial data. Therefore, these FOTO texture indices were considered as predictors
for biomass estimation purposes. The performance of the SVR model was evaluated by considering
the accuracy of the ten models over ten computations. The best performance estimation results are
shown in Figure 5. The FOTO method achieved a very strong correlation between field-measured
AGB and SVR-predicted AGB, with R2 reaching 0.88 and an RMSE of 34.35 t/ha (the corresponding
relative RMSE is 22.31%), which captures biomass variations at a high accuracy. The predicted results
show good agreements because they are very close to the 1:1 correspondence lines with both higher
(AGB > 350 t/ha) and lower (AGB < 50 t/ha) values (Figure 5a). Figure 5b illustrates the residuals
between field-measured AGB and SVR-predicted AGB, which are unbiased with ˘80-t/ha deviations
over the full range of biomass. Figure 6 shows the result of the SVR-predicted AGB map, with
considerable variation from 26.51 to 465.73 t/ha.
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4.2. Intercomparison of FOTO Estimated Forest AGB Using a LiDAR-Derived AGB

A LiDAR-derived biomass map was used for comparison with the FOTO estimated forest AGB.
The FOTO-derived AGB map (Figure 6) has the same spatial pattern as the LiDAR-derived AGB
map displayed in Figure 3 and has a similar shape on visual inspection (the regions of both high
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and low levels of AGB correspond to each other). Statistics results are 245.27 ˘ 92.91 t/ha and
242.67 ˘ 87.78 t/ha for LiDAR-derived AGB and FOTO-derived AGB, respectively. The FOTO-derived
AGB map has a coarser resolution (100 m) compared to the LiDAR-derived AGB map (10 m) because
the spatial resolution of the FOTO output corresponds to the window size used for the 2D-FFT
frequency analysis. A pixel-based validation analysis was performed after resampling the LiDAR map
to the 100-m spatial resolution FOTO-derived map.

The scatterplots in Figure 7 allow for a comparison of the sampled LiDAR-derived results with
the FOTO-predicted results. The regression model for the FOTO-predicted estimates coincides well
with the LiDAR reference data at the pixel-scale, with an R2 of 0.79 and an RMSE of 51.08 t/ha
(corresponding to a relative RMSE of 33.17%). Residuals between the LiDAR-derived AGB and the
FOTO-predicted AGB were within an acceptable range, from ´120 to 160 t/ha over the full range of
AGB. Nevertheless, the residuals chart indicates that positive errors between the LiDAR-derived data
and the FOTO-predicted biomass were larger than the negative errors. Specifically, underestimated
situations appeared in more cases in the study area than overestimates. The statistical results
listed in Table 1 suggest that the areas of larger biomass (greater than 300 t/ha) were insufficient
in the field survey compared with areas of medium level biomass (100 to 300 t/ha); the optimal
generalization results were obtained only when the training data sets were balanced in AGB
distribution. The generalization ability of the FOTO indices was assessed by relating LiDAR-derived
samples to FOTO-predicted samples; some uncertainty may appear due to the relationship between
the above two datasets was a relative accuracy, not the absolute accuracy compared to field-derived
AGB measurements.Remote Sens. 2016, 8, 230 11 of 14 
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4.3. Discussion

The purpose of this study was to analyze the relationships of FOTO indices and VHSR aerial
images and the generalization performance of FOTO-predicted map over greater coverage. SVR model
based on FOTO textural indices was developed to estimate forest AGB. The R2 of the best models
developed for the study area was high and the RMSE was low; estimation results did not appear
significantly overestimated or underestimated, and were thus promising.

Nevertheless, some critical points need to be highlighted. We orthorectified aerial images
before the textural analysis, which might have had an effect on image quality, thus effecting texture
information. Admittedly, it was difficult to mosaic the aerial photos together without orthorectifion.
The vertical strips created by the flight trace and image mosaic affected the texture feature, while the
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window size adopted by the FOTO technique and the PCA method, which employed the r-spectra
table, might have attenuated the edge effect of those vertical strips.

Texture measures are very sensitive to the spectral reflectance of forest canopy. Observations
by Eckert [45] and Sarker [46] confirm that the more homogeneous a forest canopy structure is, the
stronger the correlation between biomass and textural parameters. The shadow of canopy generated
by terrain factors and solar elevation angles might have additionally affected the FOTO-derived results.
Further investigation is required to understand the extent to which the FOTO estimation quality was
affected by the terrain.

5. Conclusions

In this study, the FOTO texture-based approach was used to characterize texture information
that was related to such forest structural parameters as canopy crown size. The AGB estimates
derived from FOTO indices with an SVR modeling framework showed a strong correlation with
the field-measured AGB, with R2 = 0.88 and RMSE = 34.35 t/ha. The comparison of FOTO-derived
AGB against LiDAR-derived results showed a high accuracy, with R2 = 0.79 and RMSE = 51.08 t/ha,
which highlights the potential of the FOTO method for estimating biomass in larger regions with
good accuracy. This promising performance shows that FOTO texture indices have great potential
for estimating forest biomass without saturation in temperate zones; it demonstrates once again that
VHSR aerial photos could be used for AGB estimation. Because high spatial resolution satellite and
airborne optical images are becoming more widely available, FOTO will help to improve the efficiency
and the estimation accuracy of forest monitoring and the tracking of forest biomass.
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