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Abstract: Information extraction and three-dimensional (3D) reconstruction of buildings using the
vehicle-borne laser scanning (VLS) system is significant for many applications. Extracting LiDAR
points, from VLS, belonging to various types of building in large-scale complex urban environments
still retains some problems. In this paper, a new technical framework for automatic and efficient
building point extraction is proposed, including three main steps: (1) voxel group-based shape
recognition; (2) category-oriented merging; and (3) building point identification by horizontal hollow
ratio analysis. This article proposes a concept of “voxel group” based on the voxelization of VLS
points: each voxel group is composed of several voxels that belong to one single real-world object.
Then the shapes of point clouds in each voxel group are recognized and this shape information is
utilized to merge voxel group. This article puts forward a characteristic nature of vehicle-borne LiDAR
building points, called “horizontal hollow ratio”, for efficient extraction. Experiments are analyzed
from two aspects: (1) building-based evaluation for overall experimental area; and (2) point-based
evaluation for individual building using the completeness and correctness. The experimental results
indicate that the proposed framework is effective for the extraction of LiDAR points belonging to
various types of buildings in large-scale complex urban environments.

Keywords: vehicle-borne LiDAR; building point extraction; voxel group; horizontal hollow analysis

1. Introduction

With the rise of the “smart city” concept, automatic information extraction and three-dimensional
(3D) reconstruction of buildings in urban areas have become popular research topics in the fields
of photogrammetry and remote sensing, computer vision, etc. [1]. The results of related studies
have been widely used in fields such as intelligent building [2], virtual roaming [3], ancient
architecture conservation [4], disaster management [5], and others. A laser scanning system has
the unique advantage of providing data of directly measured 3D points in building extraction and
3D reconstruction [6]. According to its carrying platform, a laser scanning system can be divided
into satellite-based laser scanning, airborne laser scanning (ALS), vehicle-borne laser scanning (VLS),
and terrestrial laser scanning (TLS) systems [7]. Among these types, ALS has received considerable
attention for applications in urban regions [8], and various methods have been proposed for 3D
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building modeling [9–15], change detection [16,17] and information extraction in roads [18,19], parking
lots [20], buildings [21–23] and land cover [24]. Moreover, the fusion of ALS data and optical image
expands the scope of application and makes up some defects of the ALS data [25].

Compared to ALS, VLS can scan the facades of buildings and obtain denser point clouds with
higher accuracy [18]. VLS is therefore suitable for 3D reconstruction of building facades. However,
highly dense point clouds, with a huge amount of data, means more redundancies and occlusions.
Strong variations of point densities occur on the building’s surface, which are caused by the viewpoint
limitation of the scanner [26,27]. Due to these factors, it is still a technical challenge to accurately and
quickly extract building point information from VLS data.

Some scholars employ a bottom-up approach for building information extraction from VLS data.
Manandhar et al. [28], for example, segmented point clouds into separate scan lines to distinguish
artificial and natural objects, according to the differences of geometric properties or spatial distribution
of the points on each scan line. The scan lines were then classified as artificial objects, which were
combined by prior knowledge for extracting buildings. A few scholars have aimed to identify
specific geometries from point clouds—typically flat or curved surfaces—as a way to extract buildings.
Common methods have included the random sample consensus (RANSAC) algorithm and Hough
transform [29–32]. Moosmann et al. [33] proposed a region-growing method based on local curvature
criterion to quickly divide points into plane. Munoz et al. [34] classified point clouds as pole, scatter
or facade using the associative Markov network. Pu et al. [18] proposed a knowledge-based feature
recognition method to recognize planes and poles from point clouds as basic structures for extracting
building facades or street lamps. However, the above methods did not consider that the strong
variation of the point densities will cause significant changes of accuracy. In order to solve this
problem, Demantké et al. [35] presented an approach for recognizing shape of each point based
on Principal Component Analysis (PCA) and adopted two radius-selection criteria called entropy
feature and the similarity index for choosing the best neighborhood scale. Similarly, a procedure was
introduced by Yang et al. [36] that include Support Vector Machine (SVM), which can divide point
clouds into three main classes: linear, planar, and spherical. On this basis, Yang tried to identify
complex building facades and other objects with semantic knowledge [37].

In addition, some scholars have adopted a top-down approach to extracting building information
from mobile LiDAR data. Li et al. [38] for example, created point clouds projected onto a
two-dimensional (2D) plane grid; according to the density and other information, they then extracted
the building contour. Aijazi et al. [39] proposed a super-voxel-based approach to segment discrete
point clouds. They additionally suggested use of the link-chain method to merge super-voxels into
individual objects; the point clouds are then classified as buildings, roads, pole-like objects, vehicles,
or trees according to the direction of the surface normal, reflection intensity, and geometry properties.
Furthermore, Yang et al. [40] generated a geo-referenced feature image from point clouds, they then
adopted discrete discriminant analysis to segment point clouds into separate objects for extracting
buildings and trees. This method was likewise used to extract building footprints [1]. Among these
methods, high precision building extraction results often depends on the points cloud segmentation
results, which are always difficult to be obtained in extremely complex scene.

Despite that, many related researches have been reported, and further studies are still urgent
as to how to automatically and efficiently extract various types of building points [41], especially
in large-scale complex environments of urban regions, such as skyscrapers, low cottages, ordinary
residences, or stadiums. Different types of urban areas, such as commercial and residential districts,
require different semantic rules, or parameters and thresholds, which are heavily dependent on user
experience. In addition, for most of these methods, each LiDAR point involved in the calculation is to
increase the processing time.

To address these problems, this paper proposes an approach on automatically extracting various
types of buildings, from vehicle-borne laser scanning data acquired from the large-scale complex
environments of urban regions (see Figure 1). First, a new structure, called “voxel group”, is applied to



Remote Sens. 2016, 8, 419 3 of 25

further organize voxels based on the voxelization of VLS points. The method will process each voxel
group instead of discrete point clouds to accelerate the calculation. Then a simple way is applied to
quickly recognize the shape of point clouds in each voxel group. Second, a category-oriented merging
is used for merging voxel group by utilizing the shape information to obtain high precision point
clouds clusters. At last, a novel characteristic nature of vehicle-borne LiDAR building points, called
“horizontal hollow ratio” for efficient extraction of various forms of buildings.
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2. Methods

2.1. Voxel Group-Based Shape Recognition

2.1.1. Voxelization

The voxel is represented by a standard cube that records the serial number of the contained LiDAR
points. A simple but efficient way to segment point clouds, voxelization has been widely used in the
field of forest science. For example, some scholars have segmented the ALS or TLS data with voxels
to analyze forest structure [42,43] or to describe the morphological structures of tree canopies [44],
determine crown-base height [45], and separate point clouds into individual trees [46]. Wu et al. [3]
used a voxel-based method to extract street-lining trees from VLS LiDAR data. Wang et al. [47]
generated DEM using a voxel-based method. Jwa et al. [48] automatically extracted power lines with
a method based on voxelization. Owing to its simplicity and ease of representation both visually
and in data structures [49], voxel-based methods have been suitable for model reconstruction by
LiDAR data. Park et al. [50], Hosoi et al. [51], and Stoker [52] adopted voxel-based methods to
build 3D models of individual trees, Cheng using voxel-based methods for reconstruction of large
multilayer interchange bridge [53] and urban power line [54] while some scholars have applied it for
building-model reconstruction with several good results [44–47].

2.1.2. Generating of Voxel Group

Voxel-based methods can transform the extraction of disorderly distributions of discrete points
into the filtering of voxels with topological relations [54]. This approach is suitable for vehicle LiDAR
points. However, when dealing with large-scale urban LiDAR data, the large volume of voxels remains
an obstacle for rapid process. Therefore a new structure called the “voxel group” has been put forward
to further organize voxels; each voxel group is composed of several voxels that are adjacent to each
other and have the same geometric properties, as shown in Figure 2. Voxel group construction is based
on the following two assumptions: (1) A series of voxels with the same horizontal coordinates, with
elevations adjacent to each other, have a greater possibility of belonging to the same single real-world
object, as depicted in Figure 2b; (2) One voxel and the adjacent voxels with small elevation differences
are more likely belong to the same object, as shown in Figure 3d. The above two hypotheses are derived
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from the respective facts that the object’s structure has continuity in vertical directions, regardless
whether it is an artificial or natural object.Remote Sens. 2016, 8, 419 
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Figure 2. Construction of voxel group. (a) Point clouds distribution of several objects in a 3D voxel
grid system; (b) Street lamp point clouds and the generated voxels; This is a typical case in which the
voxels with the same horizontal and vertical coordinates with adjacent elevations belong to the same
target; (c) Schematic of the process of dividing the voxel distributions on the same vertical direction;
(d) Profile of part canopy of a street tree, a case that adjacent voxel within points belong to one object
have little elevation differences.

The process of establishing a voxel group is as below.
Step 1: Building 3D voxel grid system. Set an appropriate size S to build a regular 3-D voxel grid

system. Each LiDAR point is added to each voxel according to its 3D coordinates. The minimum value
among all LiDAR point coordinates pxmin, ymin, zminq is the origin of the 3D voxel grid system. For
each LiDAR point, the row, column, and layer number pi, j, kq of its corresponding voxel are recorded
to construct a two-way index.

Step 2: Dividing voxels in each column (in vertical direction). On account of a series of voxels
distributed in the same vertical direction, the group of voxels with the same row and column pi, jqmay
belong to a different target, such as pedestrians or vehicles below the canopy of trees along a street.
Therefore, these voxels must be separated to ensure that each voxel group contains only one object’s
points, as shown in Figure 2c. Accordingly, the elevation difference between voxel Vpi,j,kq and the voxel
above it, Vpi,j,k`1q should be calculated:

Dpk,k`1q “ EOPk`1 ´ EOPk (1)
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EOPk`1 indicates the maximum value of the LiDAR point elevation contained within voxel
Vpi,j,k`1q, and EOPk represents the maximum value of the LiDAR point elevation contained within voxel
Vpi,j,kq. Threshold Ts is to be set and if Dpk,k`1q ď TS, then Vpi,j,k`1q will join the voxel column, including

Vpi,j,kq, S “
!

. . . vpi,j,nq, . . . vpi,j,kq
)

, to form a new voxel column, S “
!

. . . vpi,j,nq, . . . vpi,j,kq, vpi,j,k`1q

)

.
Step 3: Merging process in horizontal direction for voxel group. A full λ-Schedule algorithm is to

be taken to merge the voxel columns in horizontal direction. The full λ-Schedule algorithm [55] was
first used to segment SAR images. The segmentation principle is based on the Mumford–Shah energy
equation to judge the difference in object attributes and the complexity of the object boundary [11].
The merging cost value ti,j of each adjacent voxel column pSi, Sjq is calculated as below:

ti,j “

|SA
i |¨

ˇ

ˇ

ˇ
SA

j

ˇ

ˇ

ˇ

|SA
i |`

ˇ

ˇ

ˇ
SA

j

ˇ
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||SE
i ´ SE

j ||

`
`

B
`

Si, Sj
˘˘ (2)

pSi, Sjq are two adjacent voxel columns in horizontal direction. SA
i is the horizontal projection

area of voxel column, which is calculated by the defined length l, width w and the number of the
horizontal projection grids. SE

i is the elevation value of the highest LiDAR point within voxel column.
`
`

B
`

Si, Sj
˘˘

is the length of the shared boundary consists of two parts: the length in vertical direction
and the length in horizontal direction. The details are as below:

i Take a simple region growth for whole voxel columns in horizontal direction based on connectivity
to get several rough clusters: tC1, C2, . . . , Cn, . . .u.

ii Compute all the pairs of adjacent voxel columns within Cn and their merging cost value from
Equation (6) and sort them into a list.

iii Merge the pair (Si,Sj) which own smallest ti,j to form a new voxel column Sij and update the
merging cost value.

iv Repeat the step ii and step iii until the ti,j exceeds the threshold TEnd or all the voxel columns
within Cn into one group.

v Repeat the step ii, iii, iv until all clusters are processed.

The proposed method take a connectivity-based region growth as first in Step 3 is because the
computational complexity of the full λ-Schedule algorithm is o(mglog2(mn))for a 2D image of m ˆ n
pixels [56]. For 3D voxel grid system, the computational complexity will be higher so the origin 3D
voxel grid system must be divided into pieces to reduce the amount of involved voxel columns in one
process. Finally, all voxel columns are combined into a higher-level structure, the voxel group. The
LiDAR points within each voxel group belong to the same single real-world object and have the same
geometric properties or shape information.
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2.1.3. Shape Recognition of Each Voxel Group

Demantke et al. [35] and Yang et al. [36] used a PCA-based method to identify the shapes of point
clouds. They divided whole point clouds into three categories—linear, planar, and spherical and
proved that fusion of point clouds shape information can efficiently segment mobile laser-scanning of
point clouds of large-scale urban scenes into single objects. PCA is a common method for analyzing the
spatial distributions of neighborhoods of points. It results in a set of positive eigenvalues: λ1, λ2, λ3,
pλ1 ą λ2 ą λ3q. Then Demantke et al. [35] proposed the dimensionality features to describe linear (a1d),
planar (a2d) and spherical ((a3d)) within. Vp

R. Vp
R represents the neighboring points of point p with

the neighborhood size R.

a1d “

?
λ1 ´

?
λ2

?
λ1

(3)

a2d “
?

λ2´
?

λ3?
λ1

(4)

a3d “
?

λ3?
λ1

(5)

A proper neighborhood size is the key for good shape recognition results. Demantke et al. [35]
proposed an entropy function that equations the dimensionality of features derived from the
eigenvalues of each point:

E f pVp
Rq “ ´a1dlnpa1dq ´ a2dlnpa2dq ´ a3dlnpa3dq (6)

When E f pVp
Rq achieve the minimum value, Vp

R have the most possibility belong to one
dimensionality feature:

dpVp
Rq “ argmaxpandq

nPr1,3s
(7)

To acquire the optimal neighborhood size of each point, an initial neighborhood size value must be
set; it is then gradually increased until the entropy function attains the minimum value. Yang et al. [36]
fused the intensity of each point in the process of determining the best neighborhood size to improve
the accuracy of estimation of shape features. Both two methods required several calculations of
eigenvectors and eigenvalues for each point when the neighborhood size changes; therefore, it is
time-consuming and not suitable for handling large-scale urban LiDAR data, even though it can
achieve a high accuracy.

Unlike the work of Demantke et al. [35] and Yang et al. [36], this article proposes a simple and
rapid approach that takes advantage of the voxel group concept for estimation of shape features. The
flowchart is shown in Figure 4. Each voxel group is taken as a unit to be estimated its shape. To speed
up the process of shape estimation, a part of points in a voxel group is selected instead of its whole
points. Because each voxel group may contain point clouds of one tiny single real-world object or a
local part of one large single real-world object, the points within one voxel group should have same
geometric properties or shape features. The detailed procedure for shape features identifying can be
described as follows.
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Step 1: Finding the center voxel. The point density of each voxel within one voxel group is
calculated and finds the most dense voxel Vmd. Calculate the center coordinate of points in this voxel:

`

X, Y, Z
˘

“ p

n
ř

i“0
xi

n
,

n
ř

i“0
yi

n
,

n
ř

i“0
zi

n
q (8)

Step 2: Determine the variation range of neighborhood size. Centering on
`

X, Y, Z
˘

, the minimum
neighborhood size Rmin is determined as the radius that includes the minimal number Np of points
required for PCA. Set the increment Ri, the neighborhood size will increase until the radius reach the
boundary of voxel group. Then the variation range of neighborhood size rRmin, Rmaxs is obtained.

Step 3: Calculate the dimensionality features and entropy feature. Then the dimensionality
features a1d, a2d, a3d and entropy feature E f pVp

rq within VR
p (R P rRmin, Rmaxs) are calculated by the

Equation (9). In this paper, P denotes the center coordinate of points in the selected voxel. Then the
optimal neighborhood size can be obtained:

Ropt “ argminpE f pVp
Rqq

RPrRmin,Rmaxs

(9)

Then the dimensionality feature of Vp
Ropt can be identified by Equation (7). The voxel group and

the whole points within it will be labeled the same dimensionality feature.
Every voxel group and point clouds within it are divided into three shape categories: linear,

planar and spherical (see Figure 5d) by the Step 1–3 above. The principal direction of point clouds
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in a linear voxel group, the surface normal direction of point clouds in a planar voxel group, and the
coordinates of center point clouds in a spherical voxel group can be further obtained.
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Figure 5. Voxel group-based shape recognition. (a) Raw LiDAR point clouds include building facades,
street trees, street lamps, cars, and the ground; (b) Generated voxel group, voxels of the same color
belong to the same voxel group; (c) LiDAR points within each voxel group, points of the same color
belong to the same voxel group; (d) Shape recognition results.

2.2. Category-Oriented Merging

As noted, each voxel group and the point clouds within it are divided into one shape category:
linear, planar, or spherical. The proposed method merges discrete voxel groups into a single real-world
object on the ground fusion of the shape information for building detection. This process includes
two steps: removing ground points and category-oriented merging.

2.2.1. Removing Ground Points

When addressing outdoor 3D data, an estimate of the ground plane provides an important
contextual cue [57]. Particularly in large-scale urban regions, advance ground point removal can
greatly reduce the amount of data and improve efficiency. A simple strategy is used to quickly filter
ground points based on the establishment of the voxel group and shape recognition. The steps of this
strategy are outlined below.

Step 1: Extracting the potential voxel group that contains ground points. The difference value
between the lowest and highest points is calculated for each planar voxel group with an angle between
the surface normal vector and horizontal plane that is greater than 85˝:

Dmax “ Phmax ´ Phmin (10)

Phmax is the elevation value of the highest point and Phmin is the elevation value of the lowest point.
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Step 2: Combining the connected region. If the elevation difference between two adjacent
candidate voxel groups contains ground points less than 0.3 m, then the two voxel groups are merged.
Repeat this process and calculate the area of the final combined voxel group:

Area “ NˆS2 (11)

where N is the number of voxels within the combined voxel group.
Step 3: Removing ground points. Set the area threshold 10 m2 to filter the too small combined

voxel group. Then all candidate voxel groups’ average elevation are recorded and the outliers are
rejected, always indicating the suspended flat roof. All the points within the rest of candidate voxel
groups will be labeled as ground points and need to be removed before the next step.

2.2.2. Category-Oriented Merging

A single real-world object may consist of more than one shape, such as a building composed of a
planar roof and linear columns. Therefore, different rules are set for merging adjacent voxel groups
containing non-ground points that have the same or different shape properties based on a region
growing algorithm.

There come several combinations according to the type of the candidate voxel group: (1) two linear
voxel group; (2) two planar voxel group; (3) two spherical voxel group; (4) one linear and one planar
voxel group; (5) one linear and one spherical voxel group. Generally, components of artificial objects are
approximate parallel or perpendicular to each other, such as palisade tissue, billboard and its stanchion,
traffic sign’s cross arm and upright, building’s flashing and facade. When dealing with the combination
1, 2, 4, the principal direction differences or normal vector differences between the two linear voxel
groups or two planar voxel groups and the angle differences between the principal direction of the
linear voxel group and the normal vector of the planar voxel group firstly. Two parallel candidate voxel
groups (differences smaller than 10˝) will be required corresponding judging conditions different from
the two candidate voxel groups perpendicular to each other. The merging rules are shown in Table 1.

Table 1. Rule of merging adjacent voxel groups.

Linear Planar Spherical

Linear

If: arccosθ ă
Ñ
ps,
Ñ
pc ąď 10˝

&&
ˇ

ˇets ´ etp
ˇ

ˇ ď Te
&&

||ospx, y, zq ´ oppx, y, zq|| ă To

Else if: arccosθ ă
Ñ
ps,
Ñ
pc ąě 80˝

&& SMin ď Tmd

If: arccosθ ă
Ñ
ps,
Ñ
nc ąď 10˝

|| arccosθ ă
Ñ
ps,
Ñ
nc ąě 80˝

&& SMin ď Tmd

If: ||ospx, yq ´ oppx, yq|| ă To
&& SMin ď Tmd

Planar
If: arccosθ ă

Ñ
ns,

Ñ
pc ąď 10˝

|| arccosθ ă
Ñ
ns,

Ñ
pc ąě 80˝

&& SMin ď Tmd

If: arccosθ ă
Ñ
ns,

Ñ
nc ąď 10˝

&&
ˇ

ˇets ´ etp
ˇ

ˇ ď Te

Else if: arccosθ ă
Ñ
ns,

Ñ
nc ąě 80˝

&& SMin ď Tmd

Spherical If: ||ospx, yq ´ oppx, yq|| ă To If: ||ospx, y, zq ´ oppx, y, zq|| ă To

Ñ
ps,

Ñ
ns, ets and ospx, y, zq respectively denote the principal direction, surface normal, top elevation,

center coordinates, and the radius of the seed voxel group. The bottom-left voxel group is usually
selected as the seed voxel group. The

Ñ
pc,

Ñ
nc, etc, ocpx, y, zq denote the principal direction, surface

normal, the top elevation and the center coordinates of the candidate voxel group in seed voxel group’s
neighborhood. SMin represents the minimum euclidean distance between the seed voxel group and
candidate voxel group, which indicate whether two candidate voxel group are connect. Te, To and Tmd
are the corresponding threshold values of each condition.

The merging result of testing area without ground points as shown in Figure 6. As can be seen
from Figure 6, voxel groups of one single real-world object with same or different shape can merge
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together. For example, Figure 6b shows that the parallel linear voxel groups, linear voxel groups
perpendicular to each other and the planar voxel groups representing of one bus stop’s components can
merge well. Figure 5d shows that two planar voxel groups perpendicular to each other representing of
one building’s corner can merge together. Figure 6e shows that one linear voxel group representing of
one tree’s trunk and several spherical voxel groups representing of tree’s canopy can merge well also.
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2.3. Horizontal Hollow Ratio-Based Building Point Identification

The laser scanner can give rich surface information of objects but couldn’t penetrate the surface.
Due to that fact, Aljumaily et al. [58] found out that each building appears as a deep hole by viewing
the bottom view of the DEM generated by ALS data. In addition, he extracted building using this
character. It is indicated that the defects of LiDAR data can be transformed into some advantages
that can be utilized. VLS building point clouds primarily remain on the facade but are lacking in the
top and inner structures because of scanner angle constraints and the resistance of building materials.
Compared to objects commonly found in urban environments, such as vehicles or street trees, the ratio
that the building point cloud projection area occupies, which is surrounded by the contour, is relatively
small. In other words, from top view, building point clouds are more “hollow” than other object point
clouds, as shown in Figure 7.



Remote Sens. 2016, 8, 419 12 of 25

Remote Sens. 2016, 8, 419 

 

opposite situation. For a more accurate analysis, the horizontal hollow ratio of every object is 
presented in Figure 8 to compose a graph as follows. 

(a)

 
(b)

 
(c)

Figure 7. Horizontal hollow ratio-based building point identification (a–c). Left: top view of segments 
of point clouds of several buildings, trees and cars. Right: overlay of a convex hull and point clouds 
of each segment. 

Figure 7. Horizontal hollow ratio-based building point identification (a–c). Left: top view of segments
of point clouds of several buildings, trees and cars. Right: overlay of a convex hull and point clouds of
each segment.

As shown in Figure 7, a patch with a different color represents the range of particular a convex
hull generated by each segment’s point clouds. It can be directly found out that the area occupied
by building’s point clouds is much smaller than the area of convex hull while tree and car have the
opposite situation. For a more accurate analysis, the horizontal hollow ratio of every object is presented
in Figure 8 to compose a graph as follows.
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Figure 8. Horizontal hollow ratios of buildings, cars, and trees in Figure 6 (one point represents one
object in Figure 6).

X-axis (NACH Ratio) represents the normalization ratio between the area of each object’s convex
hull and the maximum convex hull area common to this type of object. This ratio indicates the
morphological changes of objects. The Y-axis represents the horizontal hollow ratio. The horizontal
hollow ratio of tree is very close to the horizontal hollow ratio of car while building’s horizontal hollow
ratio is significantly smaller than that of the other two kinds. A detailed procedure for building points
extraction based on horizontal hollow ratio can be described as follows.

Step 1: Extracting outline. The proposed method makes every segment’s voxels project to the
horizontal plane to form two-dimensionality grids and employ the simple and efficient method
proposed by Yang [1] to extract the contour grid: if eight neighbor grids of one background grid
(contains no points) are not all background grid, it will be labeled as contour grid. The aim of this step
is to reduce the amount of calculation in next step.

Step 2: Generating convex hull. When get the contour grids of one segment, the convex hull of
this segment is calculated by the Graham’s Scan method. Furthermore, the convex hull area SC of this
segment can be calculated.

Step 3: Calculating horizontal hollow ratio. The proposed method defines the horizontal hollow
ratio of each voxel cluster to indicate the above feature:

RH “
Sg

SC
(12)

Sg is the area of this segment’s two-dimensionality grids:

Sg “ N ˆ l ˆw (13)

where N is the number of two-dimensionality grids.
Step 4: Calculating threshold. OTSU is an automatic and unsupervised threshold selection

method. Based on this method, the optimal threshold selection should be made with the best separation
of the two types obtained by the threshold segmentation. The interclass separability criterion is the best
statistical difference between class characteristics of maximum or minimum differences within class
characteristics [59]. The building’s hollow ratio is far smaller than that of other objects, as indicated by
Figure 7; therefore, using the OTSU method to obtain threshold T of the hollow ratio of the divided
building and other objects should achieve a good effect:

T “ Arg Max
0ďtďL´1

”

PApωA ´ω0q
2
` PBpωB ´ω0q

2
ı

(14)
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where L is the maximum value of the hollow ratio among all the voxel clusters, and PA and PB are the
probabilities of respective building voxel clusters and non-building voxel clusters. ωA and ωB are the
average hollow ratio values of building voxel clusters and non-building voxel clusters. Only voxel
clusters with the average height of H ě 2.5m and cross-sectional area of Csa ą 3m2 are used by the
OTSU algorithm. If a voxel cluster’s hollow ratio is less than threshold T, it is deemed a building voxel
cluster and all points within it are considered building points.

3. Results and Discussion

The algorithm proposed was programmed in C# on Microsoft Visual Studio platform. The
hardware system was a computer with 8 GB of RAM and a quad-core 2.40 GHz processor.

3.1. Study Area and Experimental Data

The region of the Olympic Sports Center, Jianye District, Nanjing City, China, is chosen as the
experimental area (Figure 9). To capture the vehicle LiDAR data, we employed an SSW mobile
mapping system, developed by Chinese Academy of Surveying and Mapping, with a 360˝ scanning
scope, a surveying range of 3 to 300 m, reflectance of 80%, and a point frequency of 200,000 points/s.
The survey was conducted in 2011 and a topographic map of 1:500 was used for data correction. The
overall data were approximately 4 GB, which covered a 1.4 km ˆ 0.8 km area with 147,478,200 points.
The point density is 270 points/m2. Due to the amount of testing data being huge, the proposed
method is unable to process it in one time. Therefore, we clip the raw testing data into 12 parts
according to the road segments in practice. The experimental region contained both downtown area
and urban residential area with a number of commercial and residential architecture. A shopping mall,
a skyscraper, an apartment building, and a high-rise office building are the main architecture buildings
in the study area. Due to the good road greening, a large number of street trees exist in the study area,
which cause strong variation of point densities of building façade. On the other hand, it is sometimes
difficult separate the buildings and the trees surround it.

Figure 9. Experimental area. (a) Aerial orthophotos of the experimental area, red line denotes the SSW
mobile mapping system’s driving route; (b) Raw VLS data of the experimental area.
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The proposed method consists of four parts: Voxel group generating, shape recognition,
category-oriented merging, and building points identification. As a few parameters and thresholds
are set in each part, the summarization on the setting of the key parameters and threshold is given
in Table 2. The setting basis of these thresholds and parameters includes three types: data source,
calculation, and empirical. The term “data source” indicates that the values are adjusted according
to the experimental data and area. The term “calculation” means that the values are calculated
automatically. As for the term “empirical”, it means that the values are set empirically. In the proposed
method, they are always controlled by the voxel size. The value set according to data source can be
determined based on the shape property and the distribution of the objects in the experimental area.
However, the optimal value set according to empirical must to be determined by several repeated test.
This is the main difference among “data source” and “empirical”.

Table 2. The key thresholds and parameters of the proposed approach.

Items Values Description Setting Basis

Voxel group
generating

S 0.5 m The voxel size Empirical

TS 0.2 m To divide the adjacent voxel in vertical
direction Data source

TEnd 0.85 To terminate the growth of voxel groups’
generating Chen et al. [11]

Shape recognition Np 5 pts Minimum number of points for PCA Empirical
Ri 0.1 m The increment of the search radius Empirical

Category-oriented
merging

Te 0.1 m Maximal difference of elevation between
two voxel groups Data source

To 0.5 m Maximal distance between two voxel
groups’ center Empirical

Tmd 0.15 m Maximal minimum euclidean distance
between two voxel groups Data source

Building point
identification

T Automatic The threshold of the horizontal hollow
ratio to identify building points Calculation

H 2.5 m Minimum average height of voxel cluster Data source

Csa 3 m2 Minimum Cross-sectional area of voxel
cluster Data source

During the generating of voxel group, we set the size S = 0.5 m to form a regular 3-D voxel grid.
The size of the voxel is closely related to the extraction of the building points. Some of the buildings
lost part of the facade and other appendants, like the podium building, when the voxel size is too
small. If the voxel size chosen is too large, the tree and brush close to the building will be classified to
building points incorrectly. Some small and low-rise building will be identified as tree or brush due
to the same reason. On the other hand, the smaller the voxel size is, the long the execution time is.
The threshold to divide the adjacent voxel in vertical direction is set according to the data source. The
threshold to terminate the growth of voxel groups’ generating is set according to Chen et al. [11]. By
this test, 0.85 is the best value.

During the shape recognition of the points in each voxel group, the minimal number of points to
initialize the minimum search radius and the increment of the search radius is set empirically. The
voxel size is one influential factor of the values.

During the category-oriented merging with voxel groups, voxel groups are merged by utilizing
the shape information on several rules. The maximal difference in elevation, maximal minimum
Euclidean distance between two voxel groups can be setting according to the data source. The maximal
distance between two voxel groups’ centers can be set empirically. This value is depending on the
voxel size. The bigger the voxel size was set, the greater the value.
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During the building point identification, the horizontal hollow ratio of each voxel cluster meets
the conditions is calculated. The threshold of the horizontal hollow ratio to identify building points
is calculated automatically by the OTSU method. The minimum average height and the minimum
cross-sectional area of voxel clusters need to be set according to the data source. These two values are
the approximate size of a newsstand, which can be often viewed along the urban street of Nanjing and
be considered as the smallest building.

3.2. Extraction Results of Building Points

The raw vehicle LiDAR point clouds and aerial orthophotos are used to manually extract the
building points. The aerial orthophotos were acquired at the same time period when collecting LiDAR
data and they can be matched. The spatial resolution of the aerial orthophotos is 0.2 m and presented
in 3 bands red-green-blue (RGB). The extraction results were then used as the validation data. Building
point boundaries were connected to determine the building regions as the ground truth, referred
to herein as the true building region. Figure 10 illustrates the extraction results of building points.
LiDAR points are marked in blue for buildings, red for the ground, and green for the other features.
As shown in Figure 10b–d, our method extracted not only high-rise and low-rise buildings, but also
buildings with special exteriors or complex structures. Moreover, as shown in Figure 10e, the proposed
method recognized buildings with missing parts of facade that were caused by field measurement
conditions or equipment factors. The SSW vehicle-borne laser scanning system accomplished the
objective of obtaining 192 relatively complete buildings from the experimental area with a total of
235 buildings. A relatively complete building refers to the scanning point cloud of the building with
at least two facades. The types of buildings in the study area included low cottages, middle-rise
residential buildings, high-rise commercial buildings, and unique structures, such as bell towers
and theaters.
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partial structures. 

3.3. Evaluation of Extraction Accuracy 

In this section, the extraction accuracy of the proposed method is validated from two aspects: 
building-based evaluation for overall experimental area (a whole building taken as an evaluation 
unit) and point-based evaluation for individual building (a point taken as an evaluation unit). To 
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Figure 10. Building point extraction results. (a) Extraction results of buildings in the experiment
region; (b,c) Proposed method successfully detected various building shapes, including skyscrapers
and low cottages; (d) Proposed method effectively separated a building and the trees attached to it;
(e) Results show that the method could also recognize buildings with sparse LiDAR points or lack of
partial structures.

3.3. Evaluation of Extraction Accuracy

In this section, the extraction accuracy of the proposed method is validated from two aspects:
building-based evaluation for overall experimental area (a whole building taken as an evaluation unit)
and point-based evaluation for individual building (a point taken as an evaluation unit). To analyze
the proposed algorithm in details, this article divided the buildings into three types: low- (one to
two stories), middle- (three to seven stories), and high-rise structures (more than seven stories).

The correctness and completeness of the method are used as indexes for the evaluation, as follows:

Completeness “
TP

TP` FN
(15)

Correctness “
TP

TP` FP
(16)

In the evaluation for overall experimental area, where TP is the number of true buildings, FP is
the number of wrong buildings, and FN is the number of mis-detected buildings. The buildings
derived by manual operation are taken as reference data. By overlaying one extracted building and the
corresponding reference data, the overlapped area of them is calculated. If the ratio of this overlapped
area to area of the extracted building is larger than 70%, the extracted building is taken as true one.
Otherwise, it is considered as a wrong one. If a building is not be detected by the automatic process,
it is considered to be a mis-detected building.

In the evaluation for individual building, where TP is the number of true points belonging to it, FP
is the number of wrong points belonging to it, and FN is the number of mis-detected points belonging
to it. The extracted building points and true building points are put together. The points of overlapped
region are regarded as true points (blue points in Figure 11c); points existing only in the truth regions
are deemed misdetections (yellow points in Figure 11c), and points existing only in the extracted
regions are considered wrong points (red points in Figure 11c).
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3.3.1. Building-Based Evaluation for Overall Experimental Area

There are 192 buildings involved in the evaluation in this section, including 42 low-rise buildings,
126 medium-rise buildings, and 24 high-rise buildings.

As the height of the building increased, the completeness of extraction results increased; the
high-rise buildings’ completeness reached 100%, whereas that of the low-rise buildings reached only
86.3%. This was due to the low-rise buildings’ top and internal structures being more apt to scanning
by the mobile laser scanner; therefore, the low-rise buildings’ hollow ratios calculated by the algorithm
reached lower values than those of the high-rise buildings. Hence, if a very tall building and a low-rise
building were in the same region, the low-rise building with a low hollow ratio may have been
incorrectly identified as a vehicle, bush, or other object. The overall completeness and correctness were
94.7% and 91%, respectively. As a comparison, one automatic building detection method reported by
Truong-Hong and Laefer [41] conducted in the similarly dense urban area achieved 95.1% completeness
and 67.7% correctness from ALS data.

Two primary types of incorrect detections occurred. Firstly, because some vehicles were in
high-speed motion, these vehicles’ point clouds were stretched, or adjacent vehicles’ point clouds may
have merged, which caused them to be incorrectly detected as buildings owing to the high hollow
ratio values they incurred. Secondly, because their shapes can be similar to building facades, high
fences resulted in high hollow ratios and they were consequently incorrectly detected as buildings.
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3.3.2. Point-Based Evaluation for Individual Building

In this evaluation, to further evaluate the effect of the proposed method, complex buildings are
entered into a separate category (a new type of buildings), named complex buildings in Table 2. The
individual evaluation results in Table 3 show that the middle-rise buildings have better extraction
results than the low-rise and high-rise buildings. The average completeness and correctness of the
middle-rise buildings are 95% and 95.7%, respectively. The low-rise buildings yield the worst extraction
results, with a completeness and correctness of 94.8% and 93.1%, respectively. These latter results are
due to the relative complexity of the vicinities of low-rise buildings; the proposed method employs the
voxel group to segment the point clouds. This combined some of the buildings’ point clouds and those
of adjacent bushes, trees, and other objects into one group, which reduced the accuracy.

Table 3. Completeness and correctness of the extracted building points.

Type Number of Points Completeness
(%)

Correctness
(%)

Average
Com (%)

Average
Corr (%)TP FN FP

Low-rise

15,744 500 1239 96.9 92.7

94.8 93.1

54,399 2233 349 96.1 99.4
6750 0 598 100 91.9
6830 377 135 94.8 98.1

30,752 3234 3827 90.5 88.9
38,580 0 5122 100 88.3
20,751 1705 512 92.4 97.6
8048 0 1147 100 87.5

23,606 3234 336 87.7 98.6
12,083 1473 1639 89.1 88.1

Medium-rise

167,478 934 2126 99.4 98.7

95.0 95.7

85,670 543 1408 99.4 98.4
194,255 1560 3210 99.2 98.4
198,123 846 1042 99.6 99.5
125,507 6835 773 94.8 99.4
237,798 11,732 10,592 95.3 95.7
50,687 10,466 5872 82.9 89.6

219,639 9897 5396 95.7 97.6
45,340 3699 1146 92.5 97.5
25,536 2229 5587 92.0 82.0

High-rise

115,343 14,306 388 89.0 99.7

91.0 99.4

186,558 6697 2993 96.5 98.4
253,489 14,368 1152 94.6 99.5
206,176 6467 1388 97.0 99.3
209,904 38,477 3387 84.5 98.4
320,217 26,779 432 92.3 99.9
153,428 26,186 0 85.4 100.0
144,498 10,957 0 93.0 100.0
54,596 9874 0 84.7 100.0

133,353 9248 652 93.5 99.5

Complex

313,922 22,428 1716 93.3 99.5

91.9 99.0

34,455 1798 254 95.0 99.3
26,540 739 613 97.3 97.7
11,945 4250 0 73.8 100.0
17,711 2415 136 88.0 99.2

608,188 24,904 0 96.1 100.0
281,385 26,653 342 91.3 99.9
282,115 11,010 2341 96.2 99.2
19,957 832 687 96.0 96.7

312,765 27,144 4336 92.0 98.6

The high-rise buildings demonstrate the highest correctness and lowest completeness at 99.4%
and 91%, respectively. This is due to the limitation of the scanner angle; i.e., the vehicle-borne laser
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scanning system was unable to obtain the point clouds of upper stories and facades that did not
face the road. This prevented some of the building point clouds being added to the main part of the
building in regional growing process. On the other hand, for high-rise buildings, such as commercial
and office buildings, the surrounding environments were relatively simple; objects adjacent to these
buildings had very distinct elevations and shapes. Therefore, the high-rise building extraction results
had the lowest completeness but highest correctness.

The complex buildings have an irregular shape and complicated structure, so it is hard to identify
all the parts of a complex building. The complex building’s average completeness is 91.9%, on the
whole in a satisfactory level. However, from the ten chosen complex building, it is can be found find
that the completeness of each building has a large span, from 73.8% to 97.3%, which indicate that the
method may face a challenge when dealing with some special building.

3.4. Experiment Discussion

Overall, the detection results in Figure 10 and the evaluation outcomes showed that the proposed
method can work well in dense urban areas. The voxels generated by the raw point clouds were
divided into voxel columns. A full λ-Schedule algorithm, which considers the complexity of the object
boundary, was used for the voxel columns merging and an optimal regularization parameter can be
drawn. As a contrast, the termination rules of a 3D region growing approach are difficult to determine.
Although the 3D region growing method can construct voxel groups more efficient but the results are
always over-segmentation. Five combinations based on two voxel groups’ shapes were presented.
Each combination has its own merging rule and high-precise segmentation results were achieved
by region growing. The method have more potential for acquiring a further improvement by using
machine learning (e.g., Support Vector Machine, SVM) and fusing with intensity or color information
of point clouds.

The proposed method and the method of Yang et al. [37] show some similarity in the strategy
of the segmentation of point clouds, so a comparison was undertaken in this section. The method
of Yang et al. [37] generates multi-scale supervoxels from VLS data and segments these supervoxels.
Then a set rules was defined for merging adjacent segments with semantic knowledge. We divided
both the strategy of the segmentation of point clouds of the proposed method and Yang’s method
into three steps: the point organization, shape recognition and merging. Region 5 (red rectangle in
Figure 10a) with 458,259 points is the test area for the comparison between the proposed method and
Yang’s method. Point clouds are assigned to 1400 voxel groups or 7282 supervoxels. It can be found
that the objects with simple structure, like building facade, have greatly fewer voxel groups than
supervoxels. There are many more small areas of flat facade of the building were classified into linear
or spherical structure incorrectly by Yang’s method. This is due to that the voxel group is bigger than
supervoxel in size, so the voxel group can contain more complete structure of the single real-world
object. The points of the building are divided into one segment by the proposed method while they
were separated into several segments by Yang’s method. Through the comparison of the two methods’
result, the proposed method handles the shape recognition and segmentation of building facade better
than the method of Yang et al. [37]. Table 4 shows that the proposed method needs less execution time
than Yang’s method in each step.

Table 4. Time performance of the proposed method and the method of Yang et al. [37].

Point Organization Shape Recognition Merging Total

The proposed method(s) 4.32 9.91 9.45 23.68
Yang’s method(s) 7.67 10.44 16.96 35.07

Figure 12 illustrates the comparative experiments result of building extraction by the proposed
method and the method of Yang et al. [37]. Region 4 (red rectangle in Figure 9a) is the test area with
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5,298,460 points and five buildings. Both methods extract all buildings and no misclassification error
has occurred. Figure 12a–c shows that the proposed method can extract more details of the building
(see black rectangles), like beam and bay window. Figure 12d,e shows that the proposed method
can reduce the error caused by the noise around the building (e.g., bush, tree, and car) and as far as
possible to retain the accessory structures of the building at the same time. On the other hand, Yang’s
method has wrongly identified the bottom of all the extracted buildings as ground points while the
proposed method avoids this mistake.
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4. Conclusions

The study proposed an approach for automatic extraction of building points using vehicle-borne
laser scanning data. From experimental results, the following points can be drawn.

(1) The proposed approach, including voxel group-based shape recognition, category-oriented
merging, and horizontal hollow-based building point identification, can be applied in the various
types of buildings, in large-scale and complex urban environments.

(2) The category-oriented merging with voxel group-based shape recognition is effective in
improving the accuracy of segmentation and to develop the new voxel group structure for accelerating
processing and simplifying shape recognition.

(3) The concept of horizontal hollow ratio for building point cloud identification can accurately
extract various forms of buildings, from low cottages and common residential buildings to the towering
skyscrapers and remarkable stylish theaters, without requiring complex semantic rules. This point
indicated that some characteristics of LiDAR data caused by the constraints of the laser sensor are not
obstacles, but some good indicators for particular objects. This is a new concept in the classification of
LiDAR data fields.

Our future work will focus on fusing VLS data with ALS data and optical images, such as street
images, to obtain more complete and accurate building point detection results. Otherwise, the huge
data amount of mobile LiDAR data largely reduces the efficiency of information extraction for specific
applications. Future work is to develop high-performance computation technology for mobile LiDAR
data processing.
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