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Abstract: Land-use classification from remote sensing images has become an important but
challenging task. This paper proposes Hierarchical Coding Vectors (HCV), a novel representation
based on hierarchically coding structures, for scene level land-use classification. We stack multiple
Bag of Visual Words (BOVW) coding layers and one Fisher coding layer to develop the hierarchical
feature learning structure. In BOVW coding layers, we extract local descriptors from a geographical
image with densely sampled interest points, and encode them using soft assignment (SA). The Fisher
coding layer encodes those semi-local features with Fisher vectors (FV) and aggregates them to
develop a final global representation. The graphical semantic information is refined by feeding the
output of one layer into the next computation layer. HCV describes the geographical images through
a high-level representation of richer semantic information by using a hierarchical coding structure.
The experimental results on the 21-Class Land Use (LU) and RSSCN7 image databases indicate the
effectiveness of the proposed HCV. Combined with the standard FV, our method (FV + HCV) achieves
superior performance compared to the state-of-the-art methods on the two databases, obtaining the
average classification accuracy of 91.5% on the LU database and 86.4% on the RSSCN7 database.
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1. Introduction

Scene level land-use classification aims to assign a semantic label (e.g., building and river)
to a remote sensing image according to its content. As remote sensing techniques continue to
develop, overwhelming amounts of fine spatial resolution satellite images have become available. It
is necessary to develop effective and efficient scene classification methods to annotate the massive
remote sensing images.

By far, the Bag of Visual Words (BOVW) [1,2] framework and its variants [3,4] based on spatial
relations have become promising remote sensing image representations for land-use classification. The
pipeline for the BOVW framework consists of five main steps: feature extraction, codebook generation,
feature coding, pooling, and normalization. For BOVW, we usually extract local features from the
geographical images, learn a codebook in the training set by K-means or Gaussian mixture model
(GMM), encode the local features and pool them to a vector, and normalize this vector as the final
global representation. The representation is subsequently fed into a pre-trained classifier to obtain the
annotation result for remote sensing images.

In a parallel development, deep learning methods have attracted continuous attention in the
computer vision community in recent years. Deep neural networks (DNNs) [5] build and train
deep architectures to capture graphical semantic information, achieving a large performance boost
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compared to the previous hand-crafted system with mid-level features. Although their methods
can describe the geographical images from low level features with a more abstract and semantic
representation of deep structures, it is computationally expensive to directly train effective DNNs for
scene level land-use classification. One important property of the DNNs is its hierarchical organization
in layers of increasing processing complexity. We adopt a similar idea, and concentrate on a shallow
but hierarchic layer framework based on off-the-shelf encoding methods [6,7].

Inspired by the success of DNNs in computer vision applications and encoding methods for
remote sensing applications, we proposed Hierarchical Coding Vectors (HCV), a new representation
based on hierarchically coding structures, for scene level land-use classification. We apply the
traditional coding pipeline as corresponding to the layers of a standard DNN and stack multi-BOVW
coding layers and one Fisher coding layer to develop the hierarchical feature learning structure. The
complex graphical semantic information is refined by feeding the output of one layer into the next
computation layer. Through hierarchical coding, the HCV contains richer semantic information and
is more powerful to describe those remote sensing images. Our experimental results on the 21-Class
Land Use (LU) and RSSCN7 geographical image databases demonstrate the excellent performance
of our HCV for land-use classification. Furthermore, HCV provides complementary information
to the traditional Fisher Vectors (FV). When combining traditional FV with our HCV, we obtain
superior classification performance compared to the current state-of-the-art results on the LU and
RSSCN7 databases.

There are two main contributions of our work:

‚ We devise the Hierarchical Coding Vectors (HCV) by organizing off-the-shelf coding methods
into a hierarchical architecture and evaluate the parameters of HCV for land-use classification on
the LU database.

‚ The HCV achieves excellent performance for land-use classification. Further, combining HCV
with standard FV, our method (FV + HCV) outperforms the state-of-the-art performance reported
on the LU and RSSCN7 databases.

The remainder of this paper is organized as follows. Section 2 discusses the related work
on both computer vision and remote sensing applications. Section 3 describes the details of our
proposed Hierarchical Coding Vectors (HCV). Section 4 presents the experimental results. Section 5 is
the conclusion.

2. Related Work

In both the computer vision and remote sensing communities, the recent efforts in scene
classification can be divided into three directions: (1) the development of more elaborate hand-crafted
features (e.g., Scale Invariant Feature Transformation (SIFT) [8], Histogram of Oriented Gradient
(HOG) [9], GIST [10], Local Binary Pattern (LBP) [11]); (2) more sophisticated encoding methods
(e.g., Hard Assignment (HA) [12], Soft Assignment (SA) [6], Local Coordinate Coding (LCC) [13],
Locality-constrained Linear Coding (LLC) [14], Vector of Locally Aggregated Descriptors (VLAD) [15],
FV [7]), and (3) more complex classifiers (e.g., Support Vector Machine (SVM) [16], Extreme Learning
Machine (ELM) [17]). Recently, the second direction (i.e., encoding methods) has attracted more
attention and become an effective representation for scene level land-use classification. Typical
encoding methods are based on the BOVW framework. The traditional BOVW methods, including
HA, SA, LCC, and LLC, are designed from the perspective of activation concept to obtain 0-order
statistics of the distribution from descriptors space, and the core issue is to decide which visual word
will be activated in the ‘visual vocabulary’ and to what extent they will be activated. Then, the Fisher
Kernel introduced by Jaakkola [18] has been used to extend the BOVW framework. It describes the
difference between the distribution of descriptors in an input image and that of the ‘visual vocabulary’,
encoding multi-dimensional information (0th, 1st, 2nd) from the descriptors space. The typical Fisher
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Kernel methods conclude Fisher Vector (FV) and Vector of Locally Aggregated Descriptors (VLAD).
The VLAD can be viewed as a simplified nonprobabilistic version of the FV.

Some researchers have also attempted to use the multi-layers model to further improve the
classification performance in the remote sensing community. Chen [3] stacks two BOVW layers with
the HA coding method to represent the spatial relationship among local features. A two-layer sparse
coding method is used in [19]. The authors apply two different optimum formulas to guarantee the
image sparsity and category sparsity simultaneously, improving the discriminability of the output
coding result. In the computer vision community, the hierarchical structure helps DNN [5] to achieve a
large performance boost. However, it is difficult to be directly applied for the scene level land-use due
to its huge computational cost. Xiaojiang Peng et al. [20] stacked multiple Fisher coding layers to build
a hierarchical network for action recognition in video. The Fisher coding method causes increasing
dimensions of the layer output. Thus, the dimensions of the final representation exponentially increase
with the number of layers. A dimensionality reduction method has to be used between calculation
layers. Inspired by the success of DNNs in computer vision applications and encoding methods for
remote sensing applications, we use the off-the-shelf encoding methods to construct the hierarchical
structure and stack multi-BOVW coding layers with only one Fisher coding layer to solve the dilemma
in [20]. The overall framework and methods used in each layer of HCV are different from those in [20].
Generally speaking, our HCV develops the hierarchical feature learning structure by stacking N + 2
coding layers, which produces a much higher level representation of richer semantic information and
achieves superior performance for scene level land-use classification.

3. Hierarchical Coding Vector

The conventional coding methods effectively encode each local feature in an image into a
high-dimensional space and aggregate these codes into a single vector by a pooling method over the
entire image (followed by normalization). The representation describes the geographical image in terms
of the local patch features, which cannot capture more global and complex structures. Deep neural
networks [5] can model complex graphical semantic structures by passing an output of one feature
computation layer as the input to the next and by hierarchical refining of the semantic information.
Along the line of a similar idea, we devised a hierarchical structure by stacking multi-BOVW coding
layers and one Fisher coding layer, which we call the Hierarchical Coding Vector. The architecture of the
Hierarchical Coding Vector (HCV) is depicted in Figure 1.

We devised the HCV to describe the whole geographical image with higher level representation
of richer semantic information by a hierarchical coding structure. As shown in Figure 1, the HCV
framework contains N + 2 coding layers (N + 1 BOVW coding layers and one Fisher coding layer). The
coding result of one coding layer is fed into the next as the input. These coding layers are then stacked
into a hierarchical network. We used BOVW coding layers to describe the local patches. Multi-BOVW
coding layer superposition does not trigger dimension disaster because of the stable coding dimension
of BOVW methods. The BOVW coding layers refine the local semantic information layer-by-layer
and then feed the information into the Fisher coding layer to produce global deep representation.
Multi-BOVW coding layers provide a better coding ‘material’ for the Fisher coding layer, giving the
global representation (i.e., HCV) stronger discriminability for scene classification.

Theoretically, a HCV with more coding layers can learn more complicated abstract features,
but this may significantly increase the complexity of the model. Considering the effectiveness and
efficiency, in this paper, we consider a HCV with two coding layers (i.e., one BOVW coding layer
and one Fisher coding layer), because it has already provided compelling quality. The HCV can be
generalized to more layers without difficulty. The BOVW coding layer uses a Soft Assignment
(SA) [6] coding method to map the low-level descriptors X = (x1,x2,...,xk, . . . ,xK)P REˆK from
the geographical image to the coding space D = (d1,d2,...,dk . . . ,dK)P RMˆK using the K-means
codebook B1= (b1,b2,...,bm,...,bM)P REˆM. After local pooling and normalization, the semi-local
features F= (f1,f2,...ft . . . ,fT)P RMˆT are fed into the Fisher coding layer. With the Gaussian Mixture
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Model (GMM) codebook B2= (b1,b2,...bn,...,bN)P RMˆN , the Hierarchical coding Vector HCVP RMˆ2N

is produced by Fisher vector (FV) coding. Finally, HCV is input into a classifier such as a Support
Vector Machine (SVM) for scene-level land use classification. The detailed description of each layer is
as follows. The parameters used in this paper are summarized in Table 1.
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Figure 1. The architecture of the proposed Hierarchical Coding Vector (HCV). The representation
of HCV is deeper with richer semantic information by constructing a hierarchical coding structure.
SVMs, Support Vector Machines; FV, Fisher Vectors; BOVW, Bag of Visual Words; SIFT, Scale Invariant
Feature Transformation.

Table 1. The definitions of parameters used in this paper.

Parameter Dim. Definition

X E ˆ K Low-level descriptors
B1 E ˆM K-means codebook
D M ˆ K Coding result of BOVW coding layer
F M ˆ T Semi-local features
B2 M ˆ N Gaussian mixture model (GMM) codebook
G M ˆ 2N Hierarchical coding Vector
xk E The k-th low-level descriptor
dk M The k-th coding result in D
bm E The m-th codeword in B1
bn M The n-th codeword in B2
ft M The t-th semi-local feature

gp1q
n M Gaussian mean difference

gp2q
n M Gaussian variance difference
E 1 Dimension of low-level descriptors
T 1 Number of semi-local features
M 1 Size of K-means codebook
N 1 Size of GMM codebook
K 1 Number of low-level descriptors
P - Local pooling region

êpxk, bmq 1 Euclidean distance between xk and bm
β 1 Smoothing factor in SA coding
α 1 Smoothing factor in Power-normalization

αtpnq 1 Soft assignment weight of ft to bn
wn 1 Mixture weights of bn
µn 1 Means of bn
σn 1 Diagonal covariance of bn
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3.1. The BOVW Coding Layer

The BOVW coding layer maps the input descriptors XP REˆK to the semi-local features FP RMˆT.
The pipeline of the BOVW coding layer is shown in Figure 2. Let X be a set of D-dimensional local
descriptors extracted from a geographical image XP REˆK with densely sampled interest points.
Through clustering, a codebook is formed with M entries B1P REˆM. The codebook is used to express
each descriptor and to develop the coding result DP RMˆK. Then, pooling and normalization methods
are used to produce the local patch coding representation (i.e., a semi-local features FP RMˆT). Finally,
the features, F, are fed into the next Fisher coding layer as the input.
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3.1.1. BOVW Coding

The BOVW coding step was based on the idea of using overcomplete basis vectors to map the
local descriptors XP REˆK to the coding result DP RMˆK.

Given a geographical image, we first extracted the D-dimensional local descriptors X with densely
sampled interest points. The raw input local descriptors X were usually strongly correlated, which
created significant challenges in the subsequent codebook generation [12]. The feature pre-processing
approach, Whitening, was used to realize the decorrelation. The overcomplete basis vectors
(i.e., codebook B1P REˆM) were computed on the training set using the K-means clustering method [21].
To retain spatial information, the dense local descriptors (e.g., Scale Invariant Feature Transformation
(SIFT) [8]) were augmented with their normalized x, y location before codebook clustering.

We chose the SA coding method rather than another BOVW coding methods such as HA [12],
LCC [13], and LLC [14], which led to strong sparsity in the semi-local features F. The strong sparsity
caused great challenges in the next Fisher coding layer. SA chose to activate the entire codebook and
used the kernel function of distance as the coding representation:

dk “
expp´βêpxk, bmqq

řM
m“1 expp´βêpxk, bmqq

(1)

SA : êpxk, bmq “ ||xk ´ bm||2 (2)

where β is the smoothing factor that controls the softness of the assignment, and the Euclidean distance
ê is used. Smoothing factor β, the sole parameter in SA coding, determines the sensitivity of likelihood
to the distance ê and is critical to the coding and classification performance.

3.1.2. Spatial Local Pooling

Spatial local pooling aggregates the coding result DP RMˆK into the semi-local features FP RMˆT,
thus achieving greater invariance to image transformations and better robustness to noise and clutter.
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Compared to the regions used in the traditional global pooling, the regions are much smaller and
sampled much more densely in our HCV framework. The semi-local feature representation captures
more complex image statistics with the spatial local pooling.

In the HCV, we performed the spatial local pooling in adjacent scales and spaces. The 2 ˆ 2
pooling region is illustrated in Figure 2. The optimal spatial structure for local pooling will be evaluated
in the following experiment. We used the Max-pooling method in this step, which avoids the semi-local
features being strongly influenced by frequent yet often uninformative descriptors [22].

Max : ft “ maxptdkukPPq (3)

where ft is the tth element in the semi-local features F and the dk is the coding result. P refers
to the local pooling region. The Max-pooling method has demonstrated its effectiveness in many
studies [6,13,14,23].

3.1.3. Normalization

Normalization is used to make the semi-local features have the same scale. Unlike the traditional
BOVW coding pipeline, we injected power normalization before the L2 normalization method as a
pre-processing step.

L2 : ft “ ft{||ft||2 (4)

Power : ft “ signpftq |ft|
α (5)

where 0 ď α ď 1 is a smoothing factor of normalization (we set α “ 0.5 the same as [24]). Power
normalization is usually used in the Fisher coding method to further improve the classification
performance [7]. Meanwhile, BOVW coding methods generally do not apply due to the minimal effect
on the performance. However, in our proposed HCV framework, the output of the BOVW coding layer
is not used for classification but as the input for the Fisher coding layer. The Fisher vector captures
the Gaussian mean and variance differences between the input features and the codebook, and it is
very sensitive to the sparsity of the input features. Power normalization deceases the sparsity of the
semi-local features F and make their distribution smoother, improving the classification performance
of HCV (with the experiment on the LU database, we found that the power-normalization can improve
the classification accuracy 3%~5%).

To retain the spatial information, the semi-local features F were also augmented with their
normalized x, y location before they were fed into the next layer.

3.2. The Fisher Coding Layer

The Fisher coding layer maps the input semi-local features FP RMˆT into the final global
representation Hierarchical coding vector HCVP RMˆ2N using the Fisher vector (FV) coding method. The
pipeline of the Fisher coding layer is shown in Figure 3. All the semi-local features were decorrelated
using Whitening technology before being fed into the Fisher coding layer.
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The FV coding method is based on fitting a parametric generative model (e.g., GMM) to the input
semi-local features F and then encoding the derivatives of the log-likelihood of the model with respect
to its parameters [25]. The GMMs with diagonal covariance are used in our HCV framework, leading
to a HCV representation that captures the Gaussian mean (1st) and variance (2nd) differences between
the input semi-local features F and each of the GMM centers.

gp1qn “
1

T
?

wn

T
ÿ

t“1

αtpnqp
ft ´ µn

σn
q (6)

gp2qn “
1

T
?

2wn

T
ÿ

t“1

αtpnqp
pft ´ µnq

2

σ2
n

´ 1q (7)

where twn, µn, σnun are the respective mixture weights, means, and diagonal covariance of the GMM
codebook B2 = (b1,b2,...bn,...,bN)P RMˆN . ft is one semi-local feature fed into the Fisher coding layer
and T is the number of the semi-local features. αtpnq is the soft assignment weight of the t-th semi-local
features ft to the n-th Gaussian.

αtpnq “
wnNpft; µn, σnq

řN
n“1 wnNpft; µn, σnq

(8)

where Npft; µn, σnq is a M-dimensional Gaussian distribution and N is the size of GMM codebook.
Finally, global representation HCVP RMˆ2N is obtained by stacking the first and second differences:

HCV : G “ rgp1q1 , gp2q1 , gp1q2 , gp2q2 , ¨ ¨ ¨ gp1qn , gp2qn , ¨ ¨ ¨ , gp1qN , gp2qN s (9)

The output vector is subsequently normalized using the power + L2 scheme, and serves as the
final scene representation of HCV.

4. Experiment

We now evaluate the effectiveness of the proposed HCV framework and traditional FV for remote
sensing land-use scene classification using two standard public databases, the 21-class Land Use (LU)
database and the RSSCN7 [26] database. The classification performances of the proposed method are
compared with several state-of-the-art methods.

4.1. Experimental Data and Setup

The 21-Class Land Use (LU) database [1] is one of the first publicly available geographical
image databases (http://vision.ucmerced.edu/datasets.html) with ground truth, which is collected
by University of California at Merced Computer Vision Lab (UCMCVL). The database consists
of 21 land-use classes, and each class contains 100 images of the same size (i.e., 256 pixels ˆ 256 pixels).
The pixel resolutions of all images are 30 cm per pixel. Sample images of each land-use class are shown
in Figure 4. To be consistent with other researchers’ experimental settings on the LU database [1,27–29],
the database was randomly partitioned into five equal subsets. Each subset contained 20 images
from each land-use category. Four subsets were used for training, and the remaining subset was used
for testing.

The RSSCN7 database [26] is the recently public remote sensing database (https://sites.google.
com/site/qinzoucn/documents) and was released in 2015. It contains 2800 remote sensing scene
images that are from seven typical scene categories. There are 400 images with sizes of 400ˆ 400 pixels
for each class. Each scene category is of four different scales with 100 images per scale. Sample images
from RSSCN7 are shown in Figure 5. The same experimental setup in [26] is used. Half of the images
in each category were fixed for training and the rest for testing.
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Figure 4. Sample images from each of the 21 categories in the Land Use (LU) database: (a) agricultural;
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In the paper, we adopted Scale Invariant Feature Transformation (SIFT) as the local feature and the
SIFT features were extracted from the interest point every six pixels in both the x and y directions under
four scales (16, 24, 32, 48). The one vs. rest linear SVM classifier was employed in our experiments.
The experiments were repeated ten times by randomly selecting the training and testing data with the
experimental settings above. The average classification accuracy was set as the evaluation index.

4.2. Experimental Results

We evaluated the classification performance by the default parameters on the two databases. On
the LU database, the classification accuracy of our proposed HCV was 90.5%. We also evaluated the
traditional FV [7] with the same size of the GMM codebook in HCV. The classification accuracy of the
traditional FV was 88.2%. On the RSSCN7 database, the results were similar (i.e., HCV: 84.7% and FV
82.6%). On the two databases, the HCV achieved better performance than the traditional FV, which
has shown great success in computer vision [7,20,24,25,30].

Furthermore, the proposed HCV also provided complementary information to the traditional
FV. We used the multiple kernel learning [31] method with the average kernel to combine HCV with
FV. When combining FV and HCV, we achieved a mean classification accuracy of 91.8% on the LU
database and 86.4% on the RSSCN7 database.

To further investigate the performance of HCV, FV, and the combination of the two, we illustrate
the per-class accuracies of the LU database in Figure 6.
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From Figure 6, we observe that the proposed HCV is effective for almost all geographical classes
on the LU database. Except for the intersection, overpass, and sparse residential categories, the HCV
has better or comparable performance to FV in all other categories. The performance improvement
is especially profound over the Tennis Courts category, which is approximately 30%, as shown in
Figure 6.

Figure 7 shows some geographical images from three categories on the LU database that were
predicted correctly by HCV, but not by the traditional FV. The traditional FV misclassified the two
images in Figure 7a as buildings and the two images in Figure 7b as runways. The rivers in the Figure 7b
do not have any curves and can easily be misclassified as runways, even by a human observer. The two
images in Figure 7a are similar to buildings, and the storage tanks are not in a conspicuous position.
The four images in Figure 7c were misclassified as other classes (e.g., parking lot, river, and sparse
residential) by the traditional FV. Those images contain visually deceptive information, which makes



Remote Sens. 2016, 8, 436 10 of 17

the recognition challenging. The correct classification requires sufficient semantic information. HCV
described those geographical images correctly through higher level representation of richer semantic
information by hierarchical coding structure.Remote Sens. 2016, 8, 436 10 of 17 
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Figure 7. Some images are predicted correctly by the HCV, but not by the FV on the LU database:
(a) storage tanks images; (b) river images; (c) tennis courts images.

Moreover, the classification performance was improved by the combination for almost all
geographical classes, as shown in Figure 6, due to the complementarity between FV and HCV. By
using HCV to capture the deep visual semantic information and combining FV with HCV, our method
(FV + HCV) achieved very good classification performance.

4.3. Evaluation of the Parameters in HCV

In the proposed Hierarchical Coding Vector (HCV) framework, the dictionary size of each of the
coding layers, the key parameter β in the SA coding method, and the different spatial structures in local
pooling are the important parameters. We investigated these parameters on the LU database and chose
the optimum HCV parameters for scene level land-use classification. The evaluation was carried out
for one parameter at a time and the other ones were fixed to the default. The most important parameter
(i.e., the codebook size of each coding layers) was investigated first and then we studied the key
parameter β. In the end, the different spatial structures in local pooling were evaluated. Furthermore,
we also evaluated the effect of the number of coding layers.

4.3.1. The Effect of Different Codebook Size

First, we estimated the optimum codebook sizes for each coding layer. The BOVW coding layer
used the K-means codebook. The FV coding layer used the GMM codebook. We set β = 0.01 and the
spatial structure as 2 ˆ 2. The classification results of HCV with varying K-means/GMM codebook
size on the LU database are listed in Table 2.

The sizes of the K-means and GMM codebooks are critical to the classification performance of HCV.
Too small of a codebook cannot capture enough graphical statistics. Meanwhile, too large of a codebook
can cause over-partitioning in the descriptor space. As shown in Table 2, the classification performance
increased with the larger codebooks and reached a plateau (even decreased) when the codebooks’
size exceeded a threshold for both K-means and GMM codebooks. Based on the experimental results,
we chose the codebook size of K-means/GMM as 1000/8 in terms of the classification accuracy and
computational complexity.
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Table 2. Classification accuracy (%) of HCV with varying K-means/GMM codebook size on the
LU database.

K-means/GMM 2 4 8 16 32

50 71.55 76.98 81.62 84.33 87.62
100 77.05 82.02 85.79 85.98 87.93
200 83.00 84.74 87.31 88.10 88.21
600 86.86 88.69 89.50 89.45 88.81

1000 88.36 89.29 90.00 88.57 88.40
1400 88.26 89.76 89.17 88.49 88.36

4.3.2. The Key Parameter β in the SA Coding Method

To show the effect of β on the HCV more clearly, we selected five images from five different
land-use classes and visualized those coding results under different values of β. The visualization
result is illustrated in Figure 8. Each vertical column represents the coding result with a different value
of β for the same image. Each horizontal row represents the coding result with the same value of β for
the different images. The left-most column is the visualization of the semi-local feature ftP RM output
by the BOVW coding layer, and the remaining part is the visualization of HCV. The visualizations
of the semi-local feature ft (output of the BOVW coding layer) for the five different images are quite
similar, so we have only displayed one representative of the feature ft for each value of β in Figure 8.
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Each horizontal row represents the coding result of same β for different images.

When β is too small (e.g., β “ 10´5), SA coding is not sensitive to the distance ê between
descriptors xk and codeword bm. The codebook is almost activated in the same intensity. The BOVW
coding layer cannot capture enough discriminable image information, and the HCV is not able to
represent the complex semantic structure. We can observe that the BOVW layer output seems to be
meaningless and the HCV of the five images are very similar in this situation, as shown in Figure 8.
It is easy to cause misclassification. With the increase of β, the SA coding method can express the
distance information ê appropriately and the BOVW layer output appears to be undulating. The HCV
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output by the Fisher coding layer of different images shows the obvious difference and increasing
classification performance is expected. When β becomes too large, the SA coding response decreases
rapidly with the increasing distance ê. Figure 8 shows that the sparsity of the BOVW layer output
increases and the HCV of the five images becomes similar. The increasing sparsity is a challenge for
the Fisher vector coding and weakens the discriminability of the HCV.

With the visualization result, we found the value of parameter β is critical to the classification
performance of HCV. We evaluated the effect of different values of β on the classification performance
of HCV and determined the optimal value. Sizes of 1000 and 8 were our choices for the K-means
codebook and GMM codebook, respectively. The spatial structure is 2 ˆ 2. The classification accuracy
of HCV for the different parameters β on the LU database is shown in Figure 9.
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The experiment results confirm our previous analysis. The parameter β is a key factor for HCV.
Too small or too large value of a β weakens the classification performance by a large margin. Based on
the results in Figure 9, we chose β = 0.01.

4.3.3. The Effect of Different Spatial Structures in Local Pooling

Local pooling aggregates the coding results of SIFT features under four scales inside the spatial
structure. We evaluated the effect of different spatial structures on the classification performance of
HCV in this section. The five different spatial structures (1 ˆ 1, 2 ˆ 2, 3 ˆ 3, 4 ˆ 4, and 5 ˆ 5) were
evaluated on the LU database. The Max-pooling method was applied. We set β = 0.01 and the size of
K-means/GMM codebook was 1000/8. The classification performance of different spatial structures
for HCV is illustrated in Figure 10.

As seen from Figure 10, the classification performance of HCV gradually decreases with the larger
spatial structure, which can be explained by two factors: (1) the increasing spatial structure leads to the
repeated expression of some mutation points, creating a new challenge in the FV coding; and (2) the
number of the input points of the Fisher coding layer proportionately decreases with the larger spatial
structure, weakening the discriminability of the HCV.

Based on the experiment results, the spatial structure 1 ˆ 1 was applied in our HCV framework.
Inside the 1 ˆ 1 spatial structure, the coding results dkP RM of the SIFT features xkP RD under four
scales were aggregated to semi-local feature ftP RM using the Max-pooling methods.
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4.3.4. The Effect of the Number of Coding Layers

We also evaluated the effect of the number of coding layers. The classification accuracy over
different number of coding layers in the HCV framework is shown in Figure 11. One coding layer
represents only the Fisher coding layer used in the HCV. Two coding layers contain one BOVW coding
layer and one Fisher coding layer. Similarly, the three coding layers consist of two BOVW coding
layers and one Fisher coding layer.
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From Figure 11, we can observe that the performance has been improved significantly from
one layer (88.2) to two layers (90.5) due to the hierarchical structure. However, as the layer number
continued to increase, there was no further substantial improvement in the classification performance
due to the parameter tuning. With an increasing number of layers, the number of parameters to tune
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grows exponentially. The lack of the good parameter tuning for the larger models (i.e., three layers and
four layers) prevented the optimal performance of HCV. This is a problem that needs to be solved in
the future.

For a good tradeoff between effectiveness and efficiency, we only used two coding layers
(i.e., one BOVW coding layer and one Fisher coding layer) to perform scene level land-use classification
in this paper.

4.4. Comparison with the State-of-the-Art Methods

To prove the effectiveness of our proposed method, a comparison of its performance with the
state-of-the-art performance reported in the literature was performed on the two public databases
under the same experimental setup. The comparison results of LU database are reported in Table 3.

Although the MS-CLBP described in [27] achieves comparable performance with HCV, the
Extreme Learning Machine (ELM) and Radial Basis Function (RBF) nonlinear kernel were used in their
approach. The nonlinear classifier has to bear additional complexity and bear the poor scalability, which
is important for real application. Our proposed method relies on the one vs. rest linear SVM classifier.
The linear classifier makes the framework simpler and more conducive to practical application. The
classification performance of our method should be improved further with a sophisticated classifier.

As shown in Table 3, our method (FV + HCV) outperformed the current state-of-the-art results on
the LU database, which demonstrates the effectiveness of our method (FV + HCV) for remotely sensed
land use classification. Furthermore, the statistical z-test was used to test whether the performance
improvement is meaningful. The z-test is a hypothesis test based on the Z-statistic, which follows the
standard normal distribution under the null hypothesis [32]. It is often used to determine whether the
difference between two means is significant. When the Z ě 1.96, the difference is significant (p ď 0.05).
On the contrary, when the Z < 1.96, the difference is not significant (p > 0.05). A comparison of our
method to other methods is provided in Table 3; p ď 0.05 for our method (FV + HCV). The minimum
value of Z is 1.99 when compared to MS-CLBP and the p is still less than 0.05. The performance boost
of our method is statistically significant.

Table 3. Comparison of our approach (FV + HCV) with the state-of-the-art performance reported in
the literature on the LU database under the same experimental setup: 80% of images from each class
are used for training and the remaining images are used for testing. The average classification accuracy
(mean ˘ SD) is set as the evaluation index.

Method Accuracy (%)

BOVW [1] 76.8
SPM [1] 75.3

BOVW + spatial co-occurrence kernel [1] 77.7
Color Gabor [1] 80.5

Color histogram [1] 81.2
SPCK [4] 73.1

SPCK + BOW [4] 76.1
SPCK + SPM [4] 77.4

Structural texture similarity [33] 86.0
Wavelet BOVW [29] 87.4 ˘ 1.3

Unsupervised feature learning [34] 81.1 ˘ 1.2
Saliency-guided feature learning [35] 82.7 ˘ 1.2

Concentric circle-structured BOVW [2] 86.6 ˘ 0.8
Multifeature concatenation [36] 89.5 ˘ 0.8
Pyramid-of-spatial-relations [3] 89.1

CLBP [27] 85.5 ˘ 1.9
MS-CLBP [27] 90.6 ˘ 1.4

HCV 90.5 ˘ 1.1
Our method 91.8 ˘ 1.3
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The comparison results for RSSCN7 database are listed in Table 4. It was observed that our
method improved the performance significantly with a noticeable margin on the RSSCN7 database.
We also used the statistical z-test and the result showed that the performance boost is statistically
significant. It should be noted that our method here directly used the parameters tuning results on
the LU database, thereby showing that this parameters set has some reasonable applicability to other
datasets. The classification performance on the RSSCN7 database should be further improved by
integral fine parameter tuning.

Table 4. Comparison of our approach (FV + HCV) with the state-of-the-art performance reported in the
literature on the RSSCN7 database under the same experimental setup: half of images from each class
are used for training and the rest are used for testing. The average classification accuracy (mean ˘ SD)
is set as the evaluation index. DBN: Deep Belief Networks.

Method Accuracy (%)

GIST * 69.5 ˘ 0.9
Color histogram * 70.9 ˘ 0.8

BOVW * 73.1 ˘ 1.1
LBP * 75.3 ˘ 1.0

DBN based feature selection [26] 77.0
HCV 84.7 ˘ 0.7

Our method 86.4 ˘ 0.7

* Our own implementation.

4.5. Computational Complexity

Many approaches with a nonlinear classifier have to pay a computational complexity O(n2)
or O(n3) in the train phase and O(n) in the testing phase, where n is the training size. It implies
a poor scalability for the real application. Our method, using a simple linear SVM, reduces the
training complexity to O(n), and obtains a constant complexity in testing, while still achieving
a superior performance. In the end, we evaluated the computation complexity of our method
(HCV + FV) and used the 21-class land-use (LU) database to obtain the processing time. Our codes
are all implemented in MATLAB 2014a and were run on a computer with an Inter (R) Xeon (R)
CPU E5-2620 v2 @ 2.1GHZ and 32G RAM in a 64-bit Win7 operation system. As observed from our
experiment, the train phase takes about 27 min and the average processing time for a test remote sensing
image (size of 256 ˆ 256 pixels) is 0.55 ˘ 0.02 second (including dense local descriptors extraction,
HCV, and FV coding to get the final representation).

5. Conclusions

In this paper, we proposed using Hierarchical Coding Vectors (HCV), a novel representation
based on hierarchically coding structures, for scene level land-use classification. We have shown that
the traditional coding pipelines are amenable to stacking in multiple layers. Building a hierarchical
coding structure is sufficient to significantly boost the performance of these shallow encoding methods.
The experimental results on the LU and RSSCN7 databases demonstrate the effectiveness of our
HCV representation. By combining HCV with the traditional Fisher vectors, our method (FV + HCV)
outperforms the current state-of-the-art methods on the LU and RSSCN7 databases.
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Abbreviations

The following abbreviations are used in this manuscript:

HCV Hierarchical Coding Vector
BOVW Bag of Visual Words
HOG Histogram of Oriented Gradient
LBP Local Binary Pattern
SA Soft Assignment
FV Fisher Vectors
VLAD Vector of Locally Aggregated Descriptors
LU 21-Class Land Use
GMM Gaussian Mixture Model
DNN Deep Neural Network
SIFT Scale Invariant Feature Transformation
SPCK Spatial Pyramid Co-occurrence Kernel
CLBP Completed Local Binary Pattern
HA Hard Assignment
LCC Local Coordinate Coding
LLC Locality-constrained Linear Coding
SVC Super Vector Coding
UCMCVL University of California at Merced Computer Vision Lab
SVM Support Vector Machine
ELM Extreme Learning Machine
RBF Radial Basis Function
DBN Deep Belief Networks
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