Supplementary Materials: Combining Sun-Induced Chlorophyll Fluorescence and Photochemical Reflectance Index Improves Diurnal Modeling of Gross Primary Productivity. Remote Sens. 2016, 8, 574

Anke Schickling, Maria Matveeva, Alexander Damm, Jan H. Schween, Andreas Wahner, Alexander Graf, Susanne Crewell and Uwe Rascher

Table S1. Parameters characterizing the relation between NDVI and $f_{\text {APAR. }}$. Given are the axis interception (k) and the slope (m) of the linear fit $f_{\text {APAR }}=\mathrm{m} \times$ NDVIG $_{\mathrm{G}}+\mathrm{k}$, the correlation coefficient (r), the number of data points (N) and the significance of correlation (p-value $<0.05=$ significant ${ }^{(*)}$).

DOY	\mathbf{k}	\mathbf{m}	\mathbf{r}	\boldsymbol{N}	\boldsymbol{p}-Value
127	0.84	0.15	0.33	18	0.183
176	0.92	0.11	0.85	18	$0.000^{(*)}$
183	0.95	0.04	0.95	18	$0.000^{(*)}$
253	0.94	0.05	0.72	16	$0.002^{(*)}$

Table S2. Parameters characterizing the relation between $F_{760 \text {-yield }}$ [a.u.] and LUEec $\left[\mu \mathrm{mol} \cdot \mathrm{s}^{-1} \cdot \mathrm{~W}^{-1}\right]$. Given are the axis interception (b_{1}) and the slope (a_{1}) of the linear fit LUEec $=\mathrm{a}_{1} \times F_{760 \mathrm{G} \text {-yield }}+\mathrm{b}_{1}$, the correlation coefficient (r), the number of data points (N) and the significance of correlation (p-value < $0.05=$ significant $\left.{ }^{(*)}\right)$, as well as the root mean square error (RMSE $\left[\mu \mathrm{mol} \cdot \mathrm{s}^{-1} \cdot \mathrm{~W}^{-1} \cdot 10^{-3}\right]$) and the coefficient of determination (r^{2}) of the 3-fold cross validation of the linear model.

DOY	$\mathbf{b 1}$	a1	\mathbf{r}	\boldsymbol{N}	\boldsymbol{p}-Value	RMSE	\mathbf{r}^{2}
127	0.09	-0.55	-0.08	18	0.740	0.91	0.06
176	0.10	-2.75	-0.39	18	0.111	1.20	0.52
183	0.32	-49.06	-0.95	18	$0.000^{(*)}$	0.12	0.90
253	0.14	-11.55	-0.78	16	$0.000^{(*)}$	0.25	0.44

Table S3. Parameters characterizing the relation between PRI and LUEec $\left[\mu \mathrm{mol} \cdot \mathrm{s}^{-1} \cdot \mathrm{~W}^{-1}\right]$. Given are the axis interception (b_{2}) and the slope (a_{2}) of the linear fit LUEвс $=\mathrm{a}_{2} \times P R I+\mathrm{b}_{2}$, the correlation coefficient (r), the number of data points (N) and the significance of correlation (p-value $<0.05=$ significant ${ }^{(*)}$), as well as the root mean square error (RMSE $\left[\mu \mathrm{mol} \cdot \mathrm{s}^{-1} \cdot \mathrm{~W}^{-1} \cdot 10^{-3}\right]$) and the coefficient of determination $\left(\mathrm{r}^{2}\right)$ of the 3 -fold cross validation of the linear model.

DOY	$\mathbf{b}_{\mathbf{2}}$	\mathbf{a}_{2}	\mathbf{r}	\boldsymbol{N}	\boldsymbol{p}-Value	RMSE	$\mathbf{r}^{\mathbf{2}}$
127	-0.90	1.99	0.42	18	0.084	1.20	0.32
176	2.18	-4.38	-0.65	18	$0.004^{(*)}$	0.83	0.54
183	-3.48	7.32	0.92	18	$0.000^{(*)}$	0.89	0.76
253	-0.62	1.43	0.46	16	0.079	1.20	0.22

Table S4. Parameters characterizing the relation between $F_{760-\text {-yield }} \times$ PRI and LUEec $\left[\mu \mathrm{mol} \cdot \mathrm{s}^{-1} \cdot \mathrm{~W}^{-1}\right]$. Given are the axis interception $\left(\mathrm{b}_{3}\right)$ and the slope $\left(\mathrm{a}_{3}\right)$ of the linear fit LUEEC $=\mathrm{a}_{3} \times\left(F_{760 \text {-yield }} \times P R I\right)+\mathrm{b}_{3}$, the correlation coefficient (r), the number of data points (N) and the significance of correlation (p value $<0.05=$ significant ${ }^{(*)}$), as well as the root mean square error (RMSE $\left[\mu \mathrm{mol} \cdot \mathrm{s}^{-1} \cdot \mathrm{~W}^{-1} \cdot 10^{-3}\right]$) and the coefficient of determination (r^{2}) of the 3-fold cross validation of the linear model.

DOY	$\mathbf{b}_{\mathbf{3}}$	$\mathbf{a}_{\mathbf{3}}$	\mathbf{r}	\boldsymbol{N}	\boldsymbol{p}-Value	RMSE	$\mathbf{r}^{\mathbf{2}}$
127	0.09	-0.95	-0.07	18	0.773	0.46	0.02
176	0.10	-5.81	-0.40	18	0.105	0.45	0.19
183	0.33	-105.54	-0.95	18	$0.000^{(*)}$	0.05	0.84
253	0.14	-24.56	-0.78	16	$0.000^{(*)}$	0.11	0.81

Figure S1. Example of the single exponential fit $f(x)=y_{0}+a \cdot\left(1-\mathrm{e}^{-b \cdot x}\right)$ to derive the maximum net photosynthetic CO_{2} uptake rate $\left(\mathrm{A}_{\max }\right)$ from a light responds curve, with x being the Photosynthetic Photon Flux Density (PPFD), y_{0} representing the dark respiration ($R d,\left[\mu \mathrm{~mol} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{1}\right]$) and a representing $A_{\max }\left[\mu \mathrm{mol} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{1}\right]$. The uncertainty of the fitting parameter a is treated as an error estimate of the parameter $A_{\text {max. }}$

Figure S2. Maximum net photosynthetic CO_{2} uptake rate ($\mathrm{A}_{\max }$) of wheat and sugar beet. Light responds curves were recorded on singles leaves of different plants on three consecutive days at different times of the day in 2009. On DOY 109 to 111 in total 16 light responds curves of wheat were recorded. On DOY 230-232 in total 16 light responds curves of sugar beet were recorded.

