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Abstract: Spatially explicit knowledge of aboveground biomass (AGB) in large areas is important
for accurate carbon accounting and quantifying the effect of forest disturbance on the terrestrial
carbon cycle. We estimated AGB from 1990 to 2011 in northern Guangdong, China, based on a
spatially explicit dataset derived from six years of national forest inventory (NFI) plots, Landsat time
series imagery (1986–2011) and Advanced Land Observing Satellite (ALOS) Phased Array L-band
Synthetic Aperture Radars (PALSAR) 25 m mosaic data (2007–2010). Four types of variables were
derived for modeling and assessment. The random forest approach was used to seek the optimal
variables for mapping and validation. The root mean square error (RMSE) of plot-level validation
was between 6.44 and 39.49 (t/ha), the normalized root-mean-square error (NRMSE) was between
7.49% and 19.01% and mean absolute error (MAE) was between 5.06 and 23.84 t/ha. The highest
coefficient of determination R2 of 0.8 and the lowest NRMSE of 7.49% were reported in 2006. A clear
increasing trend of mean AGB from the lowest value of 13.58 t/ha to the highest value of 66.25 t/ha
was witnessed between 1988 and 2000, while after 2000 there was a fluctuating ascending change,
with a peak mean AGB of 67.13 t/ha in 2004. By integrating AGB change with forest disturbance, the
trend in disturbance area closely corresponded with the trend in AGB decrease. To determine the
driving forces of these changes, the correlation analysis was adopted and exploratory factor analysis
(EFA) method was used to find a factor rotation that maximizes this variance and represents the
dominant factors of nine climate elements and nine human activities elements affecting the AGB
dynamics. Overall, human activities contributed more to short-term AGB dynamics than climate data.
Harvesting and human-induced fire in combination with rock desertification and global warming
made a strong contribution to AGB changes. This study provides valuable information for the
relationships between forest AGB and climate as well as forest disturbance in subtropical zones.
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1. Introduction

Forest biomass is a key biophysical parameter used for evaluating and modeling terrestrial carbon
stocks and dynamics and in supporting forest disturbance responses to climate change modeling [1]
under rising global temperatures [2]. Traditional and frequently used approaches for estimating
the spatial distribution of aboveground biomass (AGB) are through field plot measurements [3] or
calculation using allometric regression equations or biomass expansion factors [4]. Plot measurements
that have inadequate spatial coverage and lengthy measurement intervals can limit the effectiveness
of field plots in quantifying AGB. Allometric equations use forest structures like diameter at breast
height (DBH) to obtain accurate AGB, but such details are only available in rich forest inventory
data [5]. Thus, both of these techniques are not well-suited for large area AGB spatial distribution
measurements when used individually.

The lack of sufficient and high-quality field plots has been identified as a major barrier to develop
robust AGB estimates and validation [6,7]. The National Forest Inventory (NFI) provides highly
detailed information about forest vegetation composition and structure, from which plot-based
estimates of forest conditions can be calculated [8]. China’s NFI is constructed based on 5-year
inventory periods including forest type, area, volume, growth, cutting and changes [9,10].

In recent years, remotely sensed data has provided spatially complete prediction information
regarding forest cover and change across large areas [11–15]. Various estimation approaches could
be used to derive AGB based on field plots’ observations, including empirical models ranging from
simple linear regression to machine-based modeling [5,14,16]. Several studies have shown that the
random forest (RF) approach provides the best accuracy among empirical models [17,18]. Other
physical models, need much more prior knowledge and high complexity and thus are rarely used [5].

Generally, lidar data and high-resolution images can obtain more accurate AGB prediction
results [16,19–24]; however, they are limited in spatial and temporal coverage. To date, Landsat
images have been the most commonly used in AGB studies as multi-temporal medium-resolution
data (30 m), leveraging the complete spatial coverage of imagery [14,17,25], while coarse resolution
MODIS, AVHRR, SPOT-VGT are difficult to use because of the mismatch between field measurements
and satellite observations [26,27]. However, previous studies have commonly used a single image per
location [28–30] or multiple images but with one in each year in peak growing season to estimate AGB
based on empirical models [14,17,31], which would lead to a saturation issue involving underestimation
of high AGB values in complex and mature forests. Use of a single year of multi-season NDVI results
in more accurate and lower saturation than using a single NDVI [5]. Synthetic Aperture Radars (SAR)
data, especially ALOS PALSAR, has succeeded in retrieving AGB [32–37] (although the saturation
effects are still present) [38]. The 25 m resolution multi-seasonal mosaic image pixel of this instrument
is similar to Landsat pixels and plot size, and the addition of L-band backscatter makes SAR data
useful for accurate estimates in relatively homogeneous, young or sparse forests [39]. The plantations
in northern Guangdong are mostly young forest for timber resources. Therefore, further investigation
is required of the combination between multi-date Landsat time-series image compositing [40,41]
and PALSAR mosaic data for AGB estimation. Some vegetation indices (such as NDVI and EVI)
coupled with field measurements have achieved moderate success for AGB estimation based on
satellite imagery and promising results have recently been achieved using texture measurements (such
as mean and homogeneity of texture) [17,19].

At present, there is a lack of information regarding AGB under different amounts of disturbance
and varied climatic conditions. It is not feasible to periodically detect forest disturbances over large
areas through field investigations. Therefore, most studies have used remote sensing data as the main
data source for monitoring AGB. Such data includes multisource inventory data, lidar data, land
cover classifications, climate and environmental variables are an efficient way to estimate the carbon
stocks in forest AGB [6,18,42]. Wall-to-wall lidar coverage for large areas is still costly and logistically
prohibitive for many regional and NFI programs; however, 500 m resolution MODIS-based biomass
linkage to climate and forest disturbance has demonstrated that forest development and climate
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controls were important contributors to the yearly AGB increase from 2001 to 2010 [43]. The Landsat
time series (LTS) change detection methods provide pixel-level characterization of forest disturbance
and recovery [44–47] and thus LTS change metrics can improve and overcome some limitations in
forest structure [38] and facilitate predictions of forest AGB dynamics over time [14,48,49]. Forest
disturbance data based on Vegetation Change Tracker (VCT) data can be used to integrate with AGB.
Similarly, multiple factors such as social-economic data, rock desertification area and climate data can
be used to build a relationship with AGB dynamics. Few studies have explored AGB distribution
over large areas forest considering different forest disturbance levels and climate data based on image
prediction and NFI data. The main obstacles to such an attempt include the limited annual forest
disturbance data [18] and accurate field measurements [6].

In this study, we developed a forest AGB estimation method using a combination of NFI data,
time-series passive and active remote sensing techniques (1986–2011), forest disturbance, climate
data, topographic data and socio-economic data in Northern Guangdong, China. The methodology
comprised several main steps: (a) calculating and examining AGB from national field inventory in 1988,
1992, 1997, 2002, 2007, 2012; (b) four types of explanatory variables (spectral indexes; texture measures
and topography data, PALSAR components) combined with Landsat time series data (1988–2011)
and PALSAR (2007–2010) were assessed for their effectiveness to capture AGB characteristics;
(c) identification of important predictor variables for RF modeling based on multi-temporal imagery,
validation through an independent test set and identification of RF mapping quality; (d) integration
of AGB changes with forest disturbance maps and (e) multiple exploratory factor analysis to identify
potential factors of forest AGB dynamics.

2. Materials and Methods

2.1. Study Area

The study area (black region covering 24,275.5 km2) is located in northern Guangdong Province,
with a geographical coverage extending from 113.10˝E, 23.64˝N to 114.75˝E, 25.44˝N, including the
cities of Shaoguan, Qingyuan and Heyuan (Figure 1). The local topography is undulating and its
elevation is between 22 and 1353 m above sea level. The rocky desertification process is very typical
in northern Guangdong, representing one of the serious rocky desertification areas in China. The
climate is a mid-subtropical monsoon climate, with 1300 to 2400 mm of mean annual precipitation and
of 18 to 21 ˝C mean annual temperature. The rainy season takes place from March to August, with
approximately 53% of the annual rain falling between April and June. The vegetation includes natural
forests and the large scale plantations. The tree cover is dominated by Pinus massoniana, Cunninghamia
lanceolata, Pinuselliottii engelm, Eucalyptus, Pinus kwangtungensis, Castanopsis fissa, Acacia mangium and
Phyllostachys edulis. Most of these species are considered evergreen and fast-growing. Other minor
vegetation consists of deciduous trees and shrubs. The most common meteorological disasters in the
region are chilling injury of plants, storms and flooding, and drought.

2.2. Data Used and Data Pre-Processing

2.2.1. Field Data

The NFI in China is the first level of China’s three-tiered inventory system, which, built upon
permanent sample plots (PSPs) created from systematic sampling and statistical induction processes, is
administered by the State Forestry Administration [10]. The NFI has been carried out eight times from
the 1970s to 2012 in China. The Guangdong Provincial Center for Forest Resources Monitoring has
provided eight NFI datasets collected between 1979 and 2012. In this study, we used six years (1988,
1992, 1997, 2002, 2007, 2012) of data from inventory plots located within the study area (Table 1). A
total of 1355 plots with a size of 25.82 m ˆ 25.82 m were distributed and established within the study
area. Plot level AGB was derived from dominant trees biomass using tree species-specific allometric
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equations developed by the Guangdong Provincial Center for Forest Resources Monitoring. In cases
where specific tree equations were not available, the allometric equations for a similar tree species
were used (Appendix Table A1).Remote Sens. 2016, 8, 595 4 of 23 
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1992 194 0.04 52.18 14.04 13.33 
1997 228 0.89 213.38 39.32 37.35 
2002 253 1.99 256.31 54.08 45.24 
2007 269 2.11 323.14 59.92 51.04 
2012 246 0.11 391.91 64.56 53.33 
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on the image resolution) was conducted in ENVI classic (topo correction express tool) to correct 
terrain effects. Iteratively reweighted multivariate alteration detection (IR-MAD) [51] was used to 
radiometrically normalize each image based on the high-quality reference image in 2004.  

Figure 1. Landsat p122r043 footprint intersects with red polygon and color composite map of PALSAR
images at the spatial resolution of 25 m for 2010 in a false-color combination of Red (HH), Green (HV),
and Blue (HH/HV) in Northern Guangdong, showing the exact study site(black region).

Table 1. Detail of the field data showing plot level information for aboveground biomass (AGB).

Year Plots (No.) Min AGB (t/ha) Max AGB (t/ha) Mean AGB (t/ha) Std. Dev. AGB (t/ha)

1988 165 0.06 70.06 12.25 11.89
1992 194 0.04 52.18 14.04 13.33
1997 228 0.89 213.38 39.32 37.35
2002 253 1.99 256.31 54.08 45.24
2007 269 2.11 323.14 59.92 51.04
2012 246 0.11 391.91 64.56 53.33

2.2.2. Landsat Data

We applied 26 radiometrically and geometrically corrected Landsat 5 Thematic Mapper (TM) and
Landsat 7 Enhanced Thematic Mapper plus (ETM+) images (30 m spatial resolution) collected from the
USGS/EROS Landsat archive and the Beijing Remote Sensing Ground Station (BJGS), China, spanning
from 1986 to 2011 (Table 2). The study area of Northern Guangdong is covered by the Landsat world
reference system-2 path/row 122/043 (Figure 1). The best quality, cloud-free images as close to peak
growing season were acquired to minimize the effects of vegetation phenology, sun angle differences
and other exogenous factors. However, cloud contamination images (ď50% cloud cover) remained.
Multiple images were composited to remove cloud and phenology effects. The image data were
radiometrically and atmospherically calibrated to surface reflectance based on the Landsat Ecosystem
Disturbance Adaptive Processing System (LEDAPS) algorithm [50]. C correction in combination with
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DEM (elevation), solar elevation, solar azimuth and topographic kernel (based on the image resolution)
was conducted in ENVI classic (topo correction express tool) to correct terrain effects. Iteratively
reweighted multivariate alteration detection (IR-MAD) [51] was used to radiometrically normalize
each image based on the high-quality reference image in 2004.

Table 2. Description of Landsat TM/ETM+, PALSAR data downloaded and processed (1986–2011).

Data Source Sensor Year/DOY

USGS
L5 TM

1990206, 1993278, 1995284, 1996159, 1996191, 2001252,
2003290, 2004277, 2005199, 2006266, 2007205, 2008208,

2009290, 2010213, 2011232

L7 ETM+ 1999255, 1999287, 2000258, 2001260, 2002311

BJGS-China L5 TM 1986307, 1988313, 1992212, 1994313, 1997305, 1998228

Japan ALOS PALSAR 2007, 2008, 2009, 2010 (mosaic)

2.2.3. ALOS PALSAR Data Acquisition and Pre-Processing

ALOS PALSAR as an active microwave sensor using L-band frequency to achieve cloud-free
and day- and -night land observation, with a 46-day revisit cycle [52]. The PALSAR image dataset
(off-Nadir 34.3˝) used in this study consisted of 10˝ ˆ 10˝ mosaic tiles from a global 25 m resolution
PALSAR mosaic from 2007, 2008, 2009, 2010 (Table 2). A tile product consists of two bands in
HV and HH polarizations at 25 m spatial spacing, geometrically and radiometrically corrected and
normalized for topography. The PALSAR data were processed to convert digital number (DN) to
backscatter coefficient (σ˝) in decibel (dB) for the HH and HV polarization components based on the
following equation:

σ0 rdBs “ 10 ˆ log10

´

DN2
¯

` CF

where, CF is the calibration factor and its value for FBD 343 HH is ´83.2 and HV is ´80.2 before
9 January 2009, and ´83.0 is valid for data processed by JAXA after 9 January 2009 [53]. The PALSAR
data were co-registered with Landsat data. To reduce speckle effects, we later applied the enhanced
Lee filter using a window size of 5 ˆ 5 pixels [54]. The variables derived incorporated both HH and
HV polarizations and HH/HV (Figure 1).

2.3. Plot-Level Explanatory Variables

A large suite of available predictor variables (spectral, topography, texture, PALSAR backscatter
coefficient) were used to predict AGB (Table 3). The spectral variables (spectral indices, tasseled cap
transformations) were derived from six years of Landsat surface reflectance imagery coinciding with
NFI acquisition years. The NFI plots in 2007 and 2012 were used for Landsat imagery from 2006
to 2011, respectively, as there was mass cloud contamination in 2007 and no available data for 2012.
Eight texture variables (Table 3), chosen to represent spatial features in the imagery, were derived
from the six Landsat bands. Texture variables were calculated with three window sizes of 3 ˆ 3, 5 ˆ 5,
and 7 ˆ 7 pixels at an offset ([1,1]), and a 64 gray level quantization. Topography variables from the
NASA Shuttle Radar Topographic Mission (STRM) were re-projected from 90 m resolution to 30 m
spatial resolution, including elevation, slope and topographic solar radiation index. To examine the
role of polarization in estimating AGB, PALSAR backscatter coefficient for HH, HV and HH/HV
were derived.
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Table 3. Summary of the four types of predictor variables of spectral, topography, texture and
PALSAR components.

Type Variable Formula Ref. Description

Spectral indices

R, G, B, NIR, SWIR1, SWIR2 Landsat 5, 7 bands

NDVI (NIR´ R)/(NIR + R) [55] Normalized Difference
Vegetation Index

NDMI (NIR´ SWIR)/
(NIR + SWIR) [56] Normalized Difference

Moisture Index

NDWI (G´ NIR)/(G + NIR) [57] Normalized Difference
Water Index

MNDWI (G´ SWIR)/(G + SWIR) [58] Modified Normalized
Difference Water Index

EVI2 2.5ˆ(NIR´ R)/
(NIR + 2.4ˆ R + 1) [59] Enhanced vegetation

index 2

CVI NIRˆ R/G2 [60] chlorophyll vegetation
index

EVI 2.5ˆ(NIR´ R)/
(NIR + 6ˆ R´ 7.5ˆ B + 1) [61] Enhanced vegetation

index

GDVI (NIR2 ´ R2)/(NIR2 + R2) [62] Generalized Difference
Vegetation Index

SLAVI NIR/(R + SWIR) [63] Specific Leaf Area
Vegetation Index

SR NIR/R [64] Simple Ratio (SR)

Tasseled cap
transformations

TCB, TCG, TCW [65] Brightness, Greenness,
Wetness

TCA arctan(TCG/TCB) [14] Tasseled cap angle

TCD [66] Tasseled cap distance

Topography
Elevation, SLOPE

TSRI 1´ cos((pi/180)
(aspect´ 30))/2 [67] Topographic solar

radiation index

Texture(window sizes
3ˆ 3, 5ˆ 5, 7ˆ 7

pixels)

mean, variance, homogeneity,
contrast, dissimilarity,

entropy, second
moment, correlation

[68] GLCM texture measures

PALSAR HH, HV, HH/HV PALSAR components

2.4. RF Modeling and Implementation

The RF model is a non-parametric algorithm with the following advantages: capacity to determine
variable importance, robust to data reduction, not over fit, producing unbiased accuracy estimate and
higher accuracy than decision trees and low sensitivity to tuning of the parameters. The weaknesses of
the RF method are that the decision rules are unknown (black box), it is computationally intense and it
requires input parameters [69,70]. We used RF regression tree implemented through the R package
ModelMap [71] by calling the R package random forest [72] to identify important predictor variables,
to model the relationship between the predicted variables and AGB, and to apply the model over the
study area for mapping AGB based on single or composited Landsat surface reflectance images and
mosaic PALSAR data. There were 500 trees (ntree) used for modeling, and each tree was built from a
four-fifths random sampling of the training data. For the parameter mtry, we used the default value
of the square root of the total number of predictor variables. The parameter nodesize was set to the
default value of 1. The result is an ensemble of low bias and high variance regression trees, where the
final predictions are derived by averaging the predictions of the individual trees [69].We preformed RF
modeling using predictor variables derived from multi-temporal imagery. The AGB time series trends
were derived by extrapolating to the scene-level.

2.4.1. Variable Selection

All training data were used for internal model performance evaluation and for deriving two
different variable importance measures (VIM) based on the response type. Importance type 1 was
calculated by randomly permuting each predictor variable and computing the associated reduction in
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predictive performance using the ‘out of bag’ (OOB) error for RF models [69] and importance type
2 was calculated using the decrease in node impurities attributable to each predictor variable. The
resulting VIM provides means to assess the contribution of each predictor variable to the modeling
performance. The higher the percent increase in mean square error (MSE) (PercentIncMSE) and
increase in NodePurity (IncNodePurity) indicated a stronger importance of these predictor variables.
Mean squared prediction error (MSE) VIM was used to rank all predictor variables [17]. The initial
variable ranking (all predictor variables) is used throughout all the iterations. The less important
predictor variables were then removed from the model and the small subset of predictor variables
was selected to construct the final model and map AGB based on one RF model containing all plot
measurements from six years.

2.4.2. Accuracy Assessment and Validation

The RF modeling was conducted using the reduced predictor variable datasets for multi-temporal
Landsat imagery and PALSAR. The predictive ability of the model was assessed using an independent
dataset (1/5), with OOB predictions on the training data. The independent validation datasets
approach is based on reference data in Table 4. Four measures of model performance were calculated
from the independent test set, including the coefficient of determination (R2), the root mean square
error (RMSE), the normalized root-mean-square error (NRMSE) and mean absolute error (MAE). In
this study, the RMSE and MAE were both used to evaluate models by summarizing the differences
between the observed and predicted values. The MAE gives equal weight to all errors, while RMSE
gives extra weight to large errors. The NRMSE is often expressed as a percentage, where lower values
indicate less residual variance. In this study, we validated the linear fit relationships between the
predicted data based on RF AGB mapping results in 1988, 1992, 1997, 2002, 2006 and 2011, and the
observed data from NFI in 1988, 1992, 1997, 2002, 2007 and 2012.

Table 4. Descriptive statistics of the validation dataset.

Year 1988 1992 1997 2002 2006 2011

No. of pixels 117 128 153 172 177 162
Observed AGB (t/ha) 0.06–70.06 0.04–50.7 0.90–213 2.40–256 2.60–323.1 0.89–391.91
Observed-Mean (t/ha) 12.39 12.92 40.27 59.82 63.84 67.19
Predicted AGB (t/ha) 3.20–42.82 4.60–48 10–136.80 19–161 18–175 20–229.50
Predicted-Mean (t/ha) 13.47 22.00 43.77 56.04 63.64 65.38

R2 0.71 0.53 0.52 0.52 0.80 0.51
RMSE (t/ha) 6.44 7.72 26.17 31.82 24.02 39.49
MAE (t/ha) 5.06 9.32 19.50 23.84 22.39 24.4
NRMSE (%) 9.20 15.22 12.32 12.83 7.49 10.10

Maps of the stochastic uncertainty remaining in the final RF model were created to determine
the mapping quality. As the mean AGB increases, so does the standard deviation [71]. High values of
this standard deviation indicate a lack of agreement between the modeled trees. By calculating the
standard deviation and the coefficient of variation (CV) for each pixel from the predictions of each of
the independent randomly generated trees that compose the RF model, we estimated the RF mapping
quality. The uncertainty is considered highest when the modeled trees were not in agreement, with
some trees predicting low AGB and others predicting high AGB.

2.5. Integration of AGB Changes with Forest Disturbance Maps

Landsat time series stack (LTSS) ranging from 1986 to 2011 was used to input to the VCT algorithm
to produce the disturbance components (e.g., disturbance year, annual disturbance maps, disturbance
magnitude). Further information about the algorithm is available in Huang et al. [45]. Thomas et al.
2011 indicated the accuracy of over 92% for change versus no-change independent based on validation
of VCT maps across several of the sample scenes [73]. We estimated the time since forest disturbance
and quantified AGB decrease depending on the VCT disturbance pixels. The AGB time series stack was
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intersected with the annual map of forest disturbance derived from the VCT algorithm applied to the
LTSS. The non-forest part of the predicted AGB map was masked based on the VCT annual non-forest
type distribution map. The final annual AGB decrease map connected with forest disturbance map
was clipped by the study area boundary.

2.6. Multiple Exploratory Factor Analysis about Potential Factors of Forest AGB Dynamics

The AGB decrease was strongly connected to the change in forest disturbance in northern
Guangdong as a result of various factors including human activities, natural forest disturbance
and climate change. Figure 2 records the time and cause of disturbances occurring in northern
Guangdong. To determine the missing detailed statistical data of different forest disturbance types,
VCT-based disturbance (which proven to be sensitive to harvests and fire [74] could be used as a
proxy for these data) in northern Guangdong, because harvesting and slight human-induced fire
were mainly disturbance types based on the national forestry yearbook, specifically clear cutting and
prescribed fire of intentional clear cut (Figure 2b). The carbonatite rock topography was dominated
by rocky desertification, northern Guangdong has the most area of the whole rocky desertification in
Guangdong. The area of rocky desertification from 1974 to 2004 (based on Li et al. [75]) represented a
clear linear decreasing trend. We calculated the approximate rock desertification area from 2005 to 2011
based on this linear relationship, constructing a dataset of yearly continuous rock desertification area
change (Figure 2a). Furthermore, other human activity factors including population growth, industrial
production, agricultural production, mining production, forestry production, per capita GDP and
highway length were collected from the Statistics Bureau of Guangdong Province.
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Next, the correlation among these factors (dimensionless, based on Spearman correlation) was 

Figure 2. Example of Landsat time series (LTS) imagery (displayed in 5,4,3 false color composite; RGB
uses band 5 images from 1984, 2008, and 2011) used to show rock desertification (a); harvesting (b) and
spectral trajectories ((c), showing patterns of disturbance with arrows indicating year of onset) used to
detect disturbance on random selected plots. A series of high resolution Google Earth photos (white
color numbers) were also used to aid the interpretation of the Landsat data.

Climate data were obtained from the China Meteorological Administration International Exchange
Station Ground dataset. We used the annual mean temperature, annual mean minimum temperature,
annual mean maximum temperature, extreme lowest temperature, extreme highest temperature,
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precipitation, daily maximum precipitation, mean relative humidity and minimum relative humidity
for Shaoguan and Heyuan station in northern Guangdong Province from 1980 to 2013.

In order to evaluate the impacts of natural and human disturbance on AGB, we first applied
the z-score normalization method (still including all information of the original) based on original
data’s mean and standard deviation to eliminate the effect of these factors dimensions and data
quantity. Next, the correlation among these factors (dimensionless, based on Spearman correlation)
was analyzed. We then adopted exploratory factor analysis based on the varimax orthogonal rotation
method to calculate the principal component factor loading matrix of nine climate and nine human
activities elements changing values. Varimax rotation is the most commonly used of the rotations that
are available. This first involves scaling the loadings and maximizing the factor loadings, assuming no
correlations between components [76]. We scaled the loadings by dividing them by the corresponding
communality as shown below:

rι˚ij “ ι̂˚ij{ĥi

where, the loading of the ith variable on the jth factor after rotation, where ĥi is the communality
for variable. What we want to do is to find the rotation which maximizes this quantity. The Varimax
procedure, as defined below, selects the rotation to find this maximum quantity:

v “
1
p

m
ÿ

j “ 1

p
ÿ

i “ 1

´

rι˚ij

¯4
´

m
ÿ

j “ 1

˜

1
p

p
ÿ

i “ 1

´

rι˚ij

¯2
¸2

which represents the sample variances of the standardized loadings for each factor, summed over
the m factors. The final objective is then to find a factor rotation that maximizes this variance and
represents the dominant factors affecting the AGB dynamics.

3. Results

3.1. Variable Importance and Selection

The PercentIncMSE and IncNodePurity estimated from RF OOB data were used to rank all of the
predictor variables by their capacity to predict AGB. Figure 3 shows the entire variable importance
ranking for multi-temporal imagery. The progressive removal of the least important predictor variables
generally resulted in reduced RMSE for the OOB data and the model with the lowest RMSE (2 t/pixel)
and 13 predictor variables were selected for mapping AGB. The reduced variables(Figure 4) that are
important for the prediction of AGB according to the ranking include Landsat band 1 (B1), EVI, TCA,
DEM, Landsat band 2 mean texture feature (mean23: window size 3 ˆ 3 mean, mean25: 5 ˆ 5 mean,
mean27: 7 ˆ 7 mean), band 5 mean texture feature (mean57: 7 ˆ 7 mean), band 6 mean texture
feature (mean65: 5 ˆ 5 mean, mean 67: 7 ˆ 7 mean) (Table 3), and PALSAR HH, HV, HH/HV. The
most important predictor was mean 67, this variable was highly correlated with several of the other
variables (between-texture mean correlation up to 0.8) and moderately correlated with TCA of 0.55.
Ultimately, ten variables were used for mapping AGB before 2006 because they did not include HH,
HV and HH/HV.

3.2. Predictive Performance of the RF Regression Models

The results from independent test set with OOB predictions showed that the use of thirteen
predictor variables and multi-temporal imagery based on 500 trees produces an accurate prediction
of AGB. One pixel per plot for different years was included in the validation dataset, resulting
in 100–200 reference pixels for AGB (Table 4). The range and detailed statistics of the observed and
predicted AGB are shown in Table 4. The R2 values for the linear fit of predicted variables and observed
variables for 1988, 1992, 1997, 2002, 2006 and 2011 were all higher than 0.50. Plot-level RMSE values
were between 6.44 and 39.49 t/ha, the NRMSE was between 7.49% and 19.01% and the MAE values
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for modeling AGB were between 5.06 and 23.84 t/ha. The highest R2 of 0.8 and the lowest NRMSE
of 7.49% were reported in 2006. The lowest RMSE of 6.44 t/ha, MAE of 5.06 t/ha and the second
highest R2 value of 0.71 occurred in 1988. Overall, although there were some prediction errors, the
most accurate model for predicting and mapping AGB may be determined based on these reduction
variables (Figure 5).
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Figure 6 illustrates the Google Earth aerial photo with RF uncertainty regarding the mean,
standard deviation and CV in 2011 for regions of northern Guangdong. When the CV value was high,
the mean of AGB was low. The map of RF uncertainty highlighted small anomalous areas of high
uncertainty. These are localized areas where the predictions from individual trees varied widely, with
some of the trees in the RF predicting low AGB and other trees predicting high AGB.
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3.3. Forest AGB Dynamics across Northern Guangdong

Based on the RF regression modeling results, the scene-level mean AGB time series change trends
were derived (Figure 7). The modeled trajectories supported the ascending trend found by the NFI
data between 1988 and 2011. In particular, the modeled mean AGB in NFI available years closely
approximated the NFI mean AGB data. A strong rising trend of mean AGB from the lowest value of
13.58 t/ha to the highest value of 66.25 t/ha occurred between 1988 and 2000, while after 2000 there
was a fluctuating ascending change. The peak value of mean AGB was 67.13 t/ha in 2004.
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Figure 6. The RF uncertainty map of the middle portion of northern Guangdong, showing the mean of
AGB, the coefficients of variation of AGB and the standard deviations of AGB combined with Google
Earth photo (Google Earth Pro 7.1.5.1557 (beta). (15 October 2011). Northern Guangdong Region,
China. 24˝23151.92”N, 113˝41118.27”E.
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By integrating the AGB change with forest disturbance, the trend in AGB decrease associated
with forest disturbance is shown in Figure 8. The trend in disturbance area closely corresponds with
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the trend in AGB decrease, except for a couple of notable anomalies. Both the disturbance area and
AGB decrease spiked in 1994, and a significant spike in AGB decrease occurred in 2008 with a much
smaller associated spike in the disturbance area. This divergence presented a clear disagreement with
the entire change trend.
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Figure 8. Annual aboveground biomass (AGB) decrease and VCT-based forest disturbance area.
Although overall ascending trend of mean biomass was reported, forest disturbance deduced AGB
decrease annually.

3.4. Spatio-Temporal Multi-Scale Driving Factors of Forest AGB Dynamics

3.4.1. Regional Climate Change

To investigate climate change over northern Guangdong Province, we analyzed trends in the
average values of temperature and precipitation of two stations from 1980 to 2013 in this region. During
this period, an increasing linear trend in mean annual temperature was found, while a decreasing
linear trend in annual precipitation was observed (Figure 9). The change trend predicted the increasing
temperature and decreasing precipitation that occurred in this region.
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Correlation coefficient analysis of the following nine climate datasets from 1990 to 2011 was
conducted in relation to the AGB decrease (Y) in the same trend: mean temperature (X1), mean
maximum temperature (X2), mean minimum temperature (X3), annual precipitation (X4), extreme
low temperature (X5), extreme high temperature (X6), mean humidity (X7), min humidity (X8) and
maximum daily precipitation (X9). The correlation coefficients were showed in Table 5. Furthermore,
the correlation coefficients between forest disturbance and mean temperature, mean minimum
temperature, extreme low temperature, minimum humidity in relation to forest disturbance were ´0.3,
´0.33, ´0.311 and ´0.271, respectively. This showed that the above factors were slightly associated
with AGB decrease, and minimum humidity and low temperature had a more notable influence on the
AGB dynamics than other factors.

Table 5. Correlation coefficient analysis of nine climate datasets(X1–X9) and AGB decrease(Y).

X1 X2 X3 X4 X5 X6 X7 X8 X9

Y ´0.16 0.08 ´0.17 ´0.05 ´0.18 0.14 ´0.24 ´0.26 0.06

3.4.2. Human Activities

We conducted correlation coefficient analysis of the following nine human activities from 1990
to 2011 in relation to the biomass decrease (Y) in the same period: forest disturbance (logging and
fire) (X10), population (X11), industrial production (X12), agricultural production (X13), mining (X14),
forestry production (X15), per capita GDP (X16), highway mileage (X17) and rock desertification area
(X18) (Figure 10). The correlation coefficients were found in Table 6 (significant correlation at the
0.01 level). This showed that the above factors were significantly directly and indirectly associated
with AGB decrease, and the annual forest disturbance and mining changes had a great influence on
the AGB dynamics.
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3.4.3. Quantification Analysis of AGB Driving Factors

The rotated component matrix (Table 7) showed the factor loadings for each variable. In Factor 1
(F1), the human activities variables X18, X17, X11, X13, X16, X12, X14 and X15 and climate variables
X5 and X8 were loaded strongly. The rock desertification area (X18) was the strongest variable. Most
strong loading variables were associated with human activities and the human-induced activities
dominated Factor 1. In Factor 2 (F2), climate variables X1, X3, X2 and human activities variables X10
and X14 were strongly loaded. The climate variables performed better than human activities in Factor 2,
especially temperature. In Factor 3 (F3), climate variable X4 was strongly loaded and variables X9, X7
and X6 were fairly strongly loaded, especially precipitation and humidity. The variance explanation of
rotation sums of squared loadings showed Factor 1, 2 and, 3 account for 45.246%, 23.010% and 12.488%
of the variability across all 18 variables, respectively. This indicates that Factor 1 explained much more
variability in the AGB data than other factors, suggesting that human activities are more associated
with AGB decrease than climate data.

Table 7. The rotated component matrix of climate force, human activities and biomass decrease in
northern Guangdong.

Loading Matrix F1 F2 F3 Loading Matrix F1 F2 F3

X1(mean temperature) ´0.206 0.943 ´0.193 X10 (forest
disturbance) 0.156 ´0.716 ´0.286

X2 (mean maximum
temperature) 0.065 0.830 ´0.493 X11 (population) 0.936 0.039 ´0.151

X3(mean minimum
temperature) ´0.318 0.861 0.161 X12 (industrial

production) 0.859 ´0.492 0.027

X4(annual
precipitation) ´0.077 0.083 0.931 X13 (agricultural

production) 0.934 ´0.274 0.068

X5(extreme low
temperature) ´0.864 0.039 ´0.183 X14 (mining) 0.806 ´0.574 0.027

X6(extreme high
temperature) ´0.341 0.177 ´0.504 X15 (forestry

production) 0.769 ´0.478 0.094

X7 (mean humidity) ´0.293 0.266 0.537 X16 (per capita GDP) 0.909 ´0.409 0.018

X8 (min humidity) ´0.693 0.362 ´0.115 X17 (highway
mileage) 0.967 ´0.061 0.012

X9 (maximum daily
precipitation) 0.262 ´0.144 0.605 X18 (rock

desertification area) ´0.989 0.006 ´0.011

4. Discussion

4.1. The RF Regression and Predicted Variables Selection

4.1.1. Selection of Field Plot Data and Developing AGB Observations

Six sets of NFI field data (1988 to 2012) covering northern Guangdong were derived to predict
AGB based on remote sensing. We selected NFI data and filtered by removing non-forest plots (i.e.,
water and urban plots) and economic species (fruit trees, tea tree, mulberry), cloud contamination plots.
We retained most plantations tree species and natural tree species such as masson pine, eucalyptus,
Chinese fir and Pinus elliottii to construct a ‘homogeneous’ region. Six years of continuous recording
field data, encompassing the sufficient and high quality plot-level AGB information, and the permanent
location of field plots ensure an accurate geo-location, which was extremely important to link with
spectral pixels. Su et al. collected over 8000 ground inventory records from published literature and
stated that the huge plot location uncertainty can result in significantly different correspondence
between field-measured AGB and predictors [6]. To develop AGB, equations of different dominant
trees per plot were used, which were developed by the local forestry agency. We need to determine
their accuracy and use them to derive AGB; however, a bias originated from tree species’ allometric
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equations, which were replaced by the similar tree species. These equations would also provide a
reference for the same tree species to predict AGB in sub-tropical regions.

4.1.2. Image-Based Predicted Variables and Other Ancillary Data

Four types of variables were prepared as input parameters: spectral indices, topography variables,
texture measures and PALSAR HH, HV, HH/HV. The best predictors were chosen based on the
variable importance estimation. The relatively strong relationship between image texture, in particular
the gray level co-occurrence matrix mean, and AGB agreed with previous research suggesting image
texture variables have a stronger correlation with observed AGB than models using only physical
and spectral variables [77]. Although the single structure and regular distribution plantations are
popular in northern Guangdong, the complex forests are co-existence among natural forests and the
plantations. The relationship between image texture metrics and measurements of forest attributes can
be used to help characterize complex forests, and enhance fine vegetation biophysical properties, a
difficult challenge when using spectral vegetation indices especially in closed canopies [78]. It is clear
that image textural measures have the potential to provide an attractive opportunity for monitoring
AGB [29]. Texture metrics obtained from single Landsat 8 has also proved the plausible performance
and strength of texture metrics in improving AGB estimates [29]. Kelsey and Neff [77] stated that
texture analysis was efficient in addressing saturation problems associated with vegetation indices
when mapping biomass especially in dense canopies as it correlated more with AGB than spectral
parameters. The L-band backscatter was strongly correlated with forest AGB apart from dense forests
(up to 300–400 t/ha) AGB saturation [79], which can improve the predicted capability (Figure 5e,f).
Some research have proved that the backscatter on HV polarisation gave better field-based AGB
estimation than HH backscatter [80] and their derivates [52]. Günlü et al. 2014 [81] reported that using
Enhanced Vegetation Index (EVI)to estimate AGB presented better estimation than individual band
reflectance values, and less susceptible to the saturation problem in temperate and tropical forests [82].
Topographic information (DEM) was also included to analyze its influence on the biomass estimation
in mountainous region. The STRM DEM data with 90 m spatial resolution was used, consequently,
this issue requests future studies using a high resolution DEM (ASTER GDEM, ALOS-PRISM).

4.1.3. RF Regression and Validation

The RF regression approach has several advantages for modeling remote sensing data [69], but
also is associated with some limitations. The R2 between multi-temporal Landsat, PALSAR and
the reference data reached 0.80 (RMSE = 24.02 t/ha, NRMSE = 7.49%) in 2006 and at least R2 of
0.5 in other years for AGB. Karlson et al. [17] reported that R2 based on seven Landsat 8 images
from 2013 to 2014 reached 0.57 (RMSE = 17.6 t/ha, NRMSE = 66%) for AGB. Powell et al. used RF
based on multi-temporal Landsat images and reported an RMSE of 39.23Mg/ha of observed and
predicted AGB in Minnesota and 32.19 Mg/ha in Arizona [14]. The validation results of our study
are better than other reported studies of modeling AGB using optical images with a combination of
radar image. Topography correction and LEDPAS atmospheric correction mitigated the impacts of
cloud shadow, mountain shadow and slight haze. C correction has been reported to be capable of
reducing the topographic effects caused by the topographic relief [83]. We found that RF modeling
overestimated the low values and underestimated the high values (Table 4, Figure 5), which partly
explained the absence of bias in the AGB prediction, indicating a saturation problem. This effect
was most pronounced for AGB predictions and was due to both properties of the algorithm and
characteristics of the reference data. In particular, the reference data need to cover the full range and
represent the variability of the variable of interest in the specific study area. In general, the results of
the RF method indicate that time-series derived from multi-temporal Landsat images and PALSAR
data can improve the accuracy of AGB estimation and reduce the saturation problem.

In the RF uncertainty AGB maps (Figure 6), it is interesting to look at the predictions and
uncertainty. Either particular predictors or particular training locations contributed to the high
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variation in the estimates of the response variable. The RF standard deviation map showed that
although the mean prediction from the 500 trees in the model was for moderate AGB, there was a very
high level of uncertainty for upper left (Figure 6) water areas. Because of the structure of the RF model,
some of the trees would be constructed from subsets of the predictors containing neither NDWI nor
MNDWI, leading to higher levels of between-tree RF uncertainty, while the right areas (Figure 6) were
correctly identified as low AGB with low values of RF uncertainty.

4.2. Forest AGB and Forest Disturbance Dynamics Change

Extrapolating to the scene-level, we examined time-series AGB trends. The ‘Green Guangdong’
afforestation plan was established in the 1980s and resulted in mountain forests regrowth in the early
1990s. In 1994, mean AGB experienced a low value as a result of the implementation of the eucalyptus
construction plan: a large number of forest was clear cut for planting fast-growing eucalyptus. After
2000, the permission for a low slope development plan and mountainous urbanization increase
could explain the decreasing AGB trend. To protect water source forests and conservation forests,
the eucalyptus plan was banned by local government, but some plantations remain. Furthermore,
afforestation on the barren mountains, cutting-blank, fire-slash, inefficient forest lands was conducted,
which together led to a slight AGB increase. The Chinese government carried out the first phase
of a rocky desertification control project from 2006, which was beneficial for reducing cutting and
protecting vegetation, water and soil [84]. The overall rocky desertification area in Southwest China
(containing northern Guangdong) has been reduced 7.4% from 2005 to 2011 [85]. Figure 8 depicts a
significant increase of AGB in 2008, which was likely to be the result of a VCT error in that time period
associated with clouds providing a false-positive change detection [73]. Stone (2008) estimated that
freezing rain and snow disasters in 2008 caused the loss of one-tenth of China’s forests and plantations,
which was roughly equivalent to the number of hectares that were reforested between 2003 and 2006,
according to China’s State Forestry Administration [86]. This highlights the importance of deriving
spatially explicit maps of AGB dynamics within disturbed regions, because of the regional conditions
of forest and disturbance.

4.3. Analysis of AGB Drivers

4.3.1. Correlation Analysis

Although we found increasing temperature and decreasing precipitation, the correlation between
climate and AGB decrease was not high compared with human-induced activities. Actually, climate
effects were not a temporary and separate process, as many factors co-exist with human activities.
Zhang et al. (2014) found that climate explained relatively little of the observed, stand-level variation
in Alberta forest AGB [18], which is consistent with the finding of Stegen et al. [87] of AGB-climate
relationships in temperate and tropical forests.

Harvesting (Figure 2b) and human-induced fire were significantly correlated with AGB, as
the fast-growing and high-yield plantations have short rotation cycle and need to be cut for a new
regeneration. The photos shown in Figure 2b indicate the harvest change from 2009 to 2014 and showed
the fast cutting and regrowth during only 2 to 4 years. This was because the large-scale afforestation
and reforestation efforts made eucalyptus plantations expand rapidly [88]; however, these afforested
areas are primarily managed as successive short-rotation (around 6–8 years) plantations [89]. This
supports the considerable human disturbance leading to the AGB change. Asia Pulp and Paper (APP)
planted a total plantation resource of 330,000 ha in Qingyuan and 400,000 ha in Shaoguan during 1995
to 1998, while prescribed burning is widely used for seeding or planting after harvesting, which is a
common practice for forest plantations in southern China, especially for Chinese fir plantations [90].
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4.3.2. Quantification and Qualitative Analysis

Rocky desertification in our study (Figure 2) occurs with karst topography as a result of human
activities (illogical or excessive land use) and climatic changes, leading to vegetation degradation, soil
erosion, surface water loss, bed-rock exposure. Increasing temperature and decreasing precipitation
(Figure 9) has been witnessed, which has been proved to inevitably have profound effect on the
reversal of rocky desertification [75]. Local changes in temperature and precipitation can influence
disturbance [91]. The increasing temperature enhanced forest growth and the decreasing precipitation
reduced the water erosion of rock desertification, slowing down the desertification speed [75], leading
to an annual AGB increase. Also, extreme low temperature especially in 2008 affected vegetation
growth [86]. In the past 30 years, the area of rocky desertified land has begun to decrease (Figure 10),
over-cultivation, over-cutting and over-grazing have gradually decreased or were banned completely
under the guidance of national environmental and ecological policies.

Rock desertification was loaded strongly (0.989) among human activities factors. This has proven
to be a complex process that has caused forest degradation and loss, soil erosion and water loss [75]. In
reality, it was mostly triggered by intensive human activities [84], such as slash-and-burn cultivation
and destroying forest for land reclamation, which can be treated as a severe disturbance of the mountain
region (Figure 2a). Thus, human activities played a major role while climate change played an indirect
role in short term AGB dynamics, which is in agreement with the results presented in Table 7.

4.4. Uncertainty in Detection of AGB and Forest Disturbance

Overall, the findings of this study provide the necessary insight and motivation to policy makers
and remote sensing community in forest protection, management and carbon storage, particularly for
plantations regions. However, field-based AGB estimates themselves have many sources of sampling
and measurement error, as well as model misspecifications [8]. Future studies should pay more
attention to more seasonal time-series data [5] and the integration of high resolution imagery or lidar
data [92] to improve in accuracy of biomass estimation. Techniques need to be improved to include
forest disturbance information in modeling to explain much more about AGB dynamics. Despite of
the natural forests here, it is completely interesting to monitor the deforestation and afforestation
activities of specific plantations species, which is provided with the characterization of fast-growing
and high yield.

5. Conclusions

In this study, we developed a method to estimate the forest AGB distribution in northern
Guangdong through the combination of multi-source datasets. Six years of NFI plot data in
combination with spectral variables, topography data, texture measures and PALSAR HH, HV, HH/HV
were collected for forest AGB mapping. The AGB map in 2006 shows highest R2 of 0.8 and the lowest
NRMSE of 7.49% with an independent test set. A strong increasing trend of mean AGB from the lowest
value of 13.58 t/ha to the highest value of 66.25 t/ha occurred between 1988 and 2000, while after 2000
there was a fluctuating ascending change. The trend in disturbance area closely corresponds with the
trend in AGB decrease. Human activities contributed more to short-term AGB dynamics than climate
factors. Findings from this study will form the foundation for exploring the performance of forest
AGB under human and climatic disturbance in subtropical regions, which can help policy makers and
remote sensing community understand forest protection, management and carbon storage.
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Appendix

Table A1. Biomass conversion equations1.

Tree Species Equations

Cunninghamia Lanceolata

Wt = Ws + Wb + Wl + Wr;

Ws = 0.34015ˆ D´0.39239 ˆ H0.40890 ˆ V; Wb = 0.27140ˆ D1.07261 ˆ H´1.69157 ˆ V;

Wl = 0.510239ˆ D0.69072 ˆ H´1.71327 ˆ V; Wr = 0.46493ˆ D´0.32802 ˆ H´0.28171 ˆ V.

Pinus Elliottii Engelm

Wt = Ws + Wb + Wl + Wr;

Ws = 0.20011ˆ D0.173698 ˆ H0.086849 ˆ V; Wb = 0.019166ˆ D0.62501 ˆ V;

Wl = 0.57342ˆ D´0.59891 ˆ V; Wr = 0.46493ˆ D´0.61082 ˆ V.

Broad-leave trees

Wt = Ws + Wb + Wl + Wr;

Ws = 0.29700ˆ D0.21272 ˆ H0.046734 ˆ V; Wb = 0.54541ˆ D´0.27401 ˆ H´0.16565 ˆ V;

Wl = 0.22526ˆ D´0.38874 ˆ H´0.21925 ˆ V; Wr = 0.820322ˆ D´0.39686 ˆ H´0.22275 ˆ V.

Sundry bamboo

Wt = Ws + Wb + Wl + Wr;

Ws = 0.001ˆ N ˆ e3.27482´9.6724/D; Wb = 0.001ˆ N/(0.685 + 12.8983ˆ e´D);

Wl = 0.001ˆ N/(1.056 + 48.5609ˆ e´D); Wr = 0.001ˆ N/(0.462 + 12.8510ˆ e´D).

Pinus massoniana

Wt = Ws + Wb + Wl + Wr;

Ws = 0.29289ˆ D0.14621 ˆ H0.0089524 ˆ V; Wb = 0.12532ˆ V;

Wl = 0.079612ˆ D´0.35263 ˆ H0.015724 ˆ V; Wr = 0.48437ˆ D´0.62207 ˆ H0.029132 ˆ V.

Eucalyptus

Wt = Ws + Wb + Wl + Wr;

Ws = 0.23719ˆ D0.31557 ˆ H´0.022517 ˆ V; Wb = 0.090123ˆ D´0.30267 ˆ H0.019109 ˆ V;

Wl = 0.052637ˆ D´0.21666 ˆ H0.014372 ˆ V; Wr = 0.15553ˆ D´0.09897 ˆ H0.0073208 ˆ V.

Phyllostachys edulis

Wt = Ws + Wb + Wl + Wr;

Ws = 0.0000967ˆ D2.175 ˆ N; Wb = 0.00083198ˆ D1.1774 ˆ N0.648;

Wl = 0.0005099ˆ D1.1774 ˆ N0.648;
Wr = 0.000024175ˆ D2.175 ˆ N +0.000335475ˆ D1.1774 ˆ N0.648.

Rhodomyrtustomentosa Wt = 0.844764ˆ G0.57041 ˆ H0.91788.

Miscellaneous shrubs Wt = 0.056928ˆ G1.25437 ˆ H0.662068.

Baeckeafrutescens Wt = 0.20784ˆ G0.78701 ˆ H0.55053.

Bamboo shrubs Wt = 0.0538344ˆ G1.18518 ˆ H0.33621.
1 Wt: total per capita biomass(t/ha); Ws: stem biomass; Wb: branch biomass; Wl: leaf biomass; Wr: root
biomass; H:average height (m); D:average breast height diameter (cm); V: per capita volume (m3); N:stand
density; e: base of natural logarithms (approximately 2.7183); G:average coverage (%). Broad-leave trees include
Castanopsisfissa, Acacia mangium and other soft/hard broad-leaves.
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