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Abstract: Satellite-derived precipitation can be a potential source of forcing data for assessing
water availability and managing water supply in mountainous regions of East Asia. This study
investigates the hydrological utility of satellite-derived precipitation and uncertainties attributed
to error propagation of satellite products in hydrological modeling. To this end, four satellite
precipitation products (tropical rainfall measuring mission (TRMM) multi-satellite precipitation
analysis (TMPA) version 6 (TMPAv6) and version 7 (TMPAv7), the global satellite mapping of
precipitation (GSMaP), and the climate prediction center (CPC) morphing technique (CMORPH))
were integrated into a physically-based hydrologic model for the mountainous region of South
Korea. The satellite precipitation products displayed different levels of accuracy when compared to
the intra- and inter-annual variations of ground-gauged precipitation. As compared to the GSMaP
and CMORPH products, superior performances were seen when the TMPA products were used
within streamflow simulations. Significant dry (negative) biases in the GSMaP and CMORPH
products led to large underestimates of streamflow during wet-summer seasons. Although the
TMPA products displayed a good level of performance for hydrologic modeling, there were some
over/underestimates of precipitation by satellites during the winter season that were induced by
snow accumulation and snowmelt processes. These differences resulted in streamflow simulation
uncertainties during the winter and spring seasons. This study highlights the crucial need to
understand hydrological uncertainties from satellite-derived precipitation for improved water
resource management and planning in mountainous basins. Furthermore, it is suggested that a
reliable snowfall detection algorithm is necessary for the new global precipitation measurement
(GPM) mission.
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1. Introduction

Spatially homogeneous precipitation at high spatial resolution is a prerequisite for practical water
resources management in mountainous basins where ground-based climate records are limited. Over
the last few decades, many satellite-derived precipitation algorithms have been developed to produce
precipitation data at a high spatial and temporal resolution on a quasi-global scale. Currently, several
satellite precipitation products are available and in operational use. This includes the precipitation
estimation from remotely sensed information using artificial neural networks (PERSIANN) [1,2],
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the tropical rainfall measuring mission (TRMM) multi-satellite precipitation analysis (TMPA) [3],
the climate prediction center (CPC) morphing technique (CMORPH) [4], and the global satellite
mapping of precipitation (GSMaP) [5]. These precipitation algorithms have been used for diverse
hydrologic applications, such as runoff simulation in ungauged basins [6–9], flood detection and
control [10–12], and drought monitoring [13].

Satellite-derived precipitation can provide spatially consistent measurements at high resolution
over quasi-global scales. However, the performance of these products in hydrologic applications
varies regionally due to differing retrieval algorithms and instrument characteristics. In addition,
regional satellite precipitation estimates can be affected by sources of error such as revisit time, orbit
geometry, atmospheric conditions, and poor relationships between remotely sensed signals and local
rainfall amounts [14,15]. Therefore, numerous studies have evaluated the hydrologic performance of
satellite-derived precipitation products over many regions of the world (e.g., [16–19]).

Su et al. [16] assessed the hydrologic utility of TMPA products using the semi-distributed variable
infiltration capacity (VIC) model in the La Plata basin in South America. They showed that TMPA has
potential for hydrologic prediction in ungauged regions. Yong et al. [17] evaluated the data quality of
the TMPA precipitation product and investigated the hydrological utility of the TMPA-RT (a real-time
version) and TMPA version 6 (TMPAv6) using the three-layer variable infiltration capacity (VIC-3L)
hydrologic model in the Laohahe basin, China. They reported that the TMPA-RT had no hydrological
utility even at a monthly time scale, whereas the TMPAv6 showed improved hydrological prediction
capacity at daily and monthly time scales. They further highlighted that the error distributions of
TMPA-RT and TMPAv6 significantly depended on the topography associated with latitudes and
elevation. Behrangi et al. [18] evaluated the hydrologic applicability of five satellite-based rainfall
products (TMPA-RT, TMPA-V6, CMORPH, PERSIANN, and PERSIANN-adj) using the Sacramento
soil moisture accounting (SAC-SMA) model in the mid-sized Illinois River basin, USA. They showed
that the satellite-derived precipitation greatly influenced streamflow simulations and led to significant
overestimations in spring and summer and underestimations in winter. Ward et al. [19] reported that
the TRMM 3B42 (or TMPA) and PERSIANN products maintained a good representation of seasonal
rainfall but low correlations on daily and monthly timesteps in the tropical Andes of Ecuador and
Patagonia. Xue et al. [9] investigated the hydrological utility of the TMPAv6 and TMPA version 7
(TMPAv7) products using the coupled routing and excess storage (CREST) hydrologic model over
the mountainous mid-size Wangchu basin (3550 km2) in Bhutan. They concluded that the TMPAv7
algorithm was a significant upgrade from the TMPAv6 in terms of precipitation accuracy, which
improved its potential utility in hydrologic models. Kim et al. [20] tried to assess the performance of
multi-satellite precipitation and its hydrological utility in South Korea. Most previous studies focused
on America, Europe, and Africa, but few investigations (e.g., [20,21]) were performed in East Asia
(especially so in a mountainous basin with complex terrain).

Another key issue when analyzing the hydrologic utility of satellite precipitation products is
the potential for precipitation error propagation in hydrological model simulations (e.g., [21–26]).
Nikolopoulos et al. [22] focused on flash flood estimations in Northern Italy using the PERSIANN,
CMORPH, and TRMM 3B42 products and showed that error propagation could be magnified when
the systematic error of satellite products is transformed into hydrological modeling under dry
initial soil conditions. Thiemig et al. [23] investigated how to increase the performance of satellite
precipitation products for hydrologic simulations by using four satellite products in the LISFLOOD
hydrological model. Based on an analysis in two distinct Nile River basins, they emphasized the
importance of bias-corrections of satellite products prior to model calibration from use of a specific
satellite precipitation source. Mei et al. [26] investigated the error characteristics of six satellite
precipitation products and their error propagation in streamflow simulation in the Upper Adige basin
of Northeastern Italy. They concluded that error ratios of simulated flow to precipitation depended
on basin scale and seasonality. To improve our understanding of precipitation-to-streamflow error
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propagation, studies that investigate how precipitation error transfers into hydrological processes
(including evapotranspiration, snowmelt, soil moisture, etc.) are needed.

This study assesses the hydrological utility of four widely used multi-satellite precipitation
products including TMPAv6, TMPAv7, GSMaP, and CMORPH, in the mountainous basin of South
Korea. In addition, we investigate how satellite precipitation errors can propagate through hydrological
models in a mountainous basin. We employ a physically-based, semi-distributed hydrological model.
In this study, the satellite-derived precipitation errors are defined as the differences of precipitation
occurrence and amount as compared with precipitation gauged on the ground. To evaluate the
performance of the satellite precipitation products, we compare them with the ground-based rain
gauge observations at daily, monthly, and annual timesteps. We then examine the performance in
hydrological applications and potential uncertainty attributed to precipitation error propagations.

2. Materials and Methods

2.1. Study Area and Observation

The Soyang Dam basin has a drainage area of approximately 2703 km2 and was selected for this
study because it contains a dense rain gauge network and has reliable long-term dam inflow records
(Figure 1). The Soyang dam inflow is commonly regarded as unregulated natural flow because the
anthropogenic effects from the upper dam regions can be ignored [27]. The daily dam inflow during the
study period of 2002 to 2009 was collected from the water management information system (WAMIS)
website [28]. The climate of the Soyang Dam basin is characterized by extreme seasonal variations such
as cold, dry winters and hot, wet summers. Between 1966 and 2009, the mean annual precipitation
was ~1250 mm [28]. Approximately 60% of the annual precipitation is concentrated during summer
(July, August, and September) from heavy rainfall events [29]. Approximately 68% of the annual
precipitation contributes to dam inflow. Most of the dam inflow is seasonally driven by summer
precipitation [30]. To directly compare the satellite precipitation products with the ground-based gauge
data, the precipitation estimates were areal-averaged over the watershed using the Thiessen polygon
approach [31]. There is gauged precipitation and temperature data at 19 weather stations provided by
the Korean Meteorological Administration (KMA) [32]. These are located in or near the Soyang dam
basin and cover the period between 2000 and 2009 (Figure 1).

2.2. Satellite-Derived Precipitation Products

This study used three high-resolution satellite precipitation estimates for the period between 2002
and 2009. The datasets are available from the Goddard Space Flight Center (GSFC) [33] for TMPAv6
and TMPAv7, the Climate Prediction Center (CPC) [34] for CMORPH, the Earth Observation Research
Center (EORC) for GSMaP [35]. These datasets are a combination of retrievals from high-temporal
infrared sensors on geostationary satellites and the microwave brightness temperature measurements
that are directly associated with precipitation [36].

Each combination algorithm retrieves precipitation rates in different ways. TMPAv6 is a merged
satellite precipitation product with a 3-hourly temporal scale and a 0.25˝ ˆ 0.25˝ spatial resolution with
coverages available between 50˝N and 50˝S [3]. TMPAv6 is a post-processed product (approximately 10
to 15 days after the end of each month), based on a calibration by the TRMM combined instrument and
the TRMM microwave imager precipitation product [3,16]. In addition to the data sources in TMPAv6,
the TMPAv7 uses supplementary datasets, including the special sensor microwave imager/sounder
(SSMIS) F16~18, microwave humidity sounder (MHS) N18~19, meteorological operational satellite
programme (MetOp), and the 0.07˝ Grisat-B1 infrared data [3,9].
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Figure 1. Location, elevation, and hydrologic response unit (HRU) boundaries of the Soyang dam 
basin with locations of the 19 weather stations displayed on the left. The spatial resolution of the 
tropical rainfall measuring mission (TRMM) multi-satellite precipitation analysis (TMPA), global 

Figure 1. Location, elevation, and hydrologic response unit (HRU) boundaries of the Soyang dam
basin with locations of the 19 weather stations displayed on the left. The spatial resolution of the
tropical rainfall measuring mission (TRMM) multi-satellite precipitation analysis (TMPA), global
satellite mapping of precipitation (GSMaP), and climate prediction center (CPC) morphing technique
(CMORPH) precipitation products over the Soyang dam basin are displayed on the right.

GSMaP [5,36] and CMORPH [4] are also available as a post-processed product. GSMaP has an
hourly temporal scale and 0.10˝ ˆ 0.10˝ spatial resolution (Figure 1). To produce a high-precision,
high-resolution global precipitation map, GSMaP combines precipitation retrievals from TRMM
and other polar-orbiting satellites. These are then interpolated using cloud motion vectors from
infrared images at geostationary satellites. The CMORPH product are based on rainfall estimates from
microwave data and a morphing algorithm to derive cloud motion vectors from infrared images on a
3-hourly temporal scale and a 0.25˝ ˆ 0.25˝ resolution (Figure 1).

To achieve a daily precipitation dataset, we accumulated the hourly (GSMaP and CMORPH) and
3-hourly (TMPAv6 and TMPAv7) satellite precipitation data over 1 day, from 15 to 12 (The nominal
3-hourly observation times actually represents averages over the time range ˘90 min) coordinated
universal time (UTC), to consider the local measurement time of daily precipitation in the Soyang Dam
basin. The TMPA precipitation products were multiplied by a factor of 3 to account for the 3-h interval;
the unit of 3-h TMPA data is mm/h.

2.3. Performance Statistics for Precipitation

This study used several statistical indicators to measure the quantitative and categorical
performances of satellite-derived estimates when compared to the gauged precipitation. This includes
the correlation coefficient (γ) (Equation (1)), percent bias (P-bias) (Equation (2)), and the
root-mean-square error (RMSE) (Equation (3)).
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where xo is the observed precipitation value, xs is the satellite-derived (or simulated) value, i is the
time step (e.g., day), n is the total number of time steps, xo is the mean of observed values, and xs is
the mean of satellite-derived (or simulated) values.

To categorically verify the daily satellite-derived precipitation against the ground-based
precipitation for each month, four additional statistical measures are calculated in a 2 ˆ 2 contingency
table (a: satellite yes, observation yes; b: satellite yes, observation no; c: satellite no, observation yes;
and d: satellite no, observation no):

The frequency bias index (FBI) = (a + b)/(a + c); the probability of detection (POD) = a/(a + c); the
false alarm ratio (FAR) = b/(a + b); and the equitable threat score (ETS) = (a ´He)/(a + b + c ´He),
where He = (a + c)(a + b)/N, and N is the total number of satellite-observation pairs [37]. The FBI is
the ratio of satellite yes events to observed yes events and is an indicator of satellite underestimates
(FBI < 1) and overestimates (FBI > 1) from the observed precipitation events. The FBI ranges from
0 to positive infinity (perfect score = 1) [16]. The POD, also known as the hit rate, represents how
often occurrences of observed precipitation events are correctly detected by the satellite. The POD
ranges from 0 to 1 (perfect score = 1). The FAR is the fraction of satellite precipitations yes events with
observed precipitation no events and ranges from 0 (best score) to 1 (worst score). The ETS represents
how well satellite-derived precipitation yes events correspond to observation yes events and accounts
for hits that happen purely by chance [38]. The ETS ranges between ´1/3 and 1 (perfect score = 1).

This study compares satellite-derived precipitation and basin-averaged precipitation using
ground-gauged data. Direct comparison of the satellite precipitation (areal averaged values) and
gauged observation (point values) could induce significant spatial scale discrepancy [14].

2.4. Hydrological Modeling Framework

The Precipitation-Runoff Modeling System (PRMS), developed by the US Geological Survey
(USGS) is a physically based, semi-distributed hydrologic model [39]. The model has been employed in
a wide range of geographic areas to investigate diverse water-related issues (e.g., [27,40–42]). The PRMS
model simulates the daily water and energy balances of each hydrologic response unit (HRU), which
can account for the temporal and spatial variability of land surface hydrologic processes. Runoff
is simulated at each HRU from a variety of interconnected virtual reservoirs such as interception,
snow water equivalent (SWE), soil moisture accounting, impervious, subsurface, and groundwater
reservoirs and runoff from the HRUs, which are combined at basin outlets. Detailed descriptions of
model structures and the governing equations are available in the PRMS user manual [39,43] and
the executable file of the PRMS model and its source codes are available online [44]. This study used
PRMS version 4.0.

This study partitioned the Soyang dam basin into 11 HRUs based on the real stream network
(see Figure 1). A recent study has indicated that the size and subdivision of HRU does not significantly
impact PRMS model performance [45]. The geographic PRMS parameters at each HRU were estimated
from Geographic Information System (GIS) datasets including digital elevation models (DEM), soil
maps, and land cover maps obtained online [28]. We employed the Food and Agriculture Organization
(FAO) Penman-Monteith method [46] to calculate potential evapotranspiration. This study calibrated
21 sensitive parameters (Table 1). These parameters have been considered as the most sensitive
parameters in many studies (e.g., [40,42,47]). Table 1 lists the calibrated parameters, including
descriptions, ranges, and initial values. The calibration and validation periods were defined as
2002 to 2005 and 2006 to 2009, respectively. This study uses the same calibrated parameters values
as seen in PRMS. If we used the different parameter values calibrated by each satellite precipitation
analysis, the effect of the satellite product in the hydrologic simulation would be hampered by further
parameter uncertainties. To avoid this, we used the same parameters for all applications.
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Table 1. Calibrated PRMS parameters used in the present study, including physical ranges.

Parameter Name Description Range Units

adjmix_rain Monthly factor to adjust rain proportion
in a mixed rain/snow event 0.0001–3.0 decimal fraction

cecn_coef Monthly convection condensation
energy coefficient 0.0001–20.0 calories per degree

emis_noppt Average emissivity of air on days
without tprecipitation 0.757–1.0 decimal fraction

freeh2o_cap Free-water holding capacity of snowpack 0.01–0.2 decimal fraction

potet_sublim
Fraction of potential evapotranspiration

that is sublimated from snow in the
canopy and snowpack

0.1–0.75 decimal fraction

tmax_allrain Monthly maximum air temperature when
precipitation is assumed to be rain 20.0–50.0 degrees Fahrenheit

tmax_allsnow Monthly maximum air temperature when
precipitation is assumed to be snow 20.0–40.0 degrees Fahrenheit

snowinfil_max Maximum snow infiltration per day 1.0~20.0 inches/day

soil_moist_max Maximum available water
holding capacity 3.0–10.0 inches

soil2gw_max Maximum amount of the capillary
reservoir excess 0.0001–5.0 inches

sat_threshold Water holding capacity of the gravity and
preferential flow reservoirs 1.0–20.0 inches

smidx_coef Fraction percolating from upper to lower
zone free water storage 0.0001–1.0 decimal fraction

smidx_exp Exponent in non-linear contributing area 0.2~0.8 1/inch

fastcoef_lin Degree-day factor 0.0001–1.0 fraction/day

fastcoef_sq Temperature criteria at which snow
begins to melt 0.0001–1.0 -

slowcoef_lin Linear coefficient in equation to route
preferential flow storage 0.0001–1.0 fraction/day

slowcoef_sq Non-linear coefficient in equation to route
gravity reservoir storage 0.0001–1.0 -

ssr2gw_exp
Non-linear coefficient in equation used to
route water from the gravity reservoir to

the groundwater reservoir
0.8–1.2 -

ssr2gw_rate
Linear coefficient in equation used to

route water from the gravity reservoir to
the groundwater reservoir

0.0001–1.0 fraction/day

pref_flow_den Fraction of the soil zone in which
preferential flow occurs 0.1–1.0 0.1~1.0

gwflow_coef Linear coefficient in the equation to
compute groundwater discharge 0.0001–1.0 0.0001~1.0

The shuffle complex evolution algorithm of the University of Arizona (SCE-UA) [48] was used to
find optimized parameters automatically. SCE-UA is a robust and efficient global search method based
on a population-evolution and complex shuffling strategy. We employed Nash-Sutcliffe efficiency
(NSE) (Equation (4)) as an objective function. NSE is one of the most widely used performance
measures in hydrology [49]. NSE is calculated as 1.0 min the normalization of the mean squared
error (MSE) by the variance of the observation (Equation (4)) and ranges from minus infinity to
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1.0 (perfect fit), with higher values indicating a better agreement between simulated and observed
values. The negative values of NSE value indicate that using the mean of the observation is statistically
better than using the model simulations.

NSE “ 1 ´

«

řn
i“1

`

Qo,i ´ Qs,i
˘2

řn
i“1

`

Qo,i ´ Qo
˘2

ff

(4)

where Qo is the observed value, Qs is the simulated value, i is the time step (e.g., day), n is the total
number of time steps, Qo is the mean of observed value, and Qs is the mean of the simulated values.

This study evaluated the performance of satellite precipitation products in streamflow simulations
by comparing simulated and observed streamflow hydrographs through the following goodness-of-fit
measures: γ, Kling-Gupta Efficiency (KGE) [50] (Equation (5)), index of agreement (d) [51]
(Equation (6)), and P-bias (Equation (2)).

KGE is composed of the decomposition of the MSE and the NSE, which facilitates analysis of the
relative importance of correlation (γ), variability (α), and bias (β) between the observed and simulated
flow [50]. This study used θ1 = 1, θ2 = 1, θ3 = 1, which indicates three statistics have the same level
of importance.

KGE “ 1 ´
b

θ1 pγ´ 1q2 ` θ2 pα´ 1q2 ` θ3 pβ´ 1q2
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where θ is a weighting factor. γ is the Pearson correlation coefficient (Equation (1)), α is a measure of
relative variability between observed and simulated values and β is a measure of bias.

The index of agreement (d), another statistical measure of hydrologic model performance, ranges
from 0 to 1 (1 = perfect agreement between simulated and observed values). It was introduced because
the correlation coefficient is sensitive to outliers [51].

d “ 1 ´
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`
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ˇQs,i ´ Qo
ˇ

ˇ`
ˇ

ˇQo,i ´ Qo
ˇ

ˇ
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3. Results

3.1. Temporal Evaluation of Satellite-Derived Precipitation

This study estimated the skill of the satellite-derived precipitation from TMPAv6, TMPAv7,
GSMaP, and CMORPH for 8 years (2002–2009) at a basin scale. Figure 2 shows correlation coefficients
and RMSEs for each year calculated by a time series comparison of satellite-derived precipitation
and gauged daily precipitation. All satellite-derived precipitation estimates show significant linear
correlations with the gauged data (γ > 0.67, significance level of 0.01). This indicates good performance
in detecting the occurrence of basin-averaged precipitation events. Annual correlation patterns are
similar between the satellite products. However, RMSE patterns are annually inconsistent, especially
in 2002, 2008, and 2009. Although the performance of the satellite data fluctuates annually, there is
no notable relationship between annual precipitation quantities and correlation or RMSE patterns
(Figure 2). Overall, the performance of satellite-derived precipitation slightly increases after 2006 with a
higher correlation and lower RMSE. This is especially notable with the TMPAv6 and TMPAv7 products
and might be due to the addition of high-quality microwave instruments including SSMIS/DMSP-F16
on 20 November 2005 and MHS/NOAA-18 on 25 May 2005.
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between each satellite product. However, there are major differences in the P-bias. Compared to the 
observations, GSMaP and CMORPH highly underestimate precipitation in most months, even 
though they demonstrate a high correlation with observed precipitation. GSMaP underestimates 
monthly precipitation by −16% (May) to −62% (November), but overestimates monthly precipitation 
during January (+20%) and December (+47%). CMORPH underestimates precipitation for all months 
by −41% (August) to −86% (January). This indicates the need for a systematic bias correction in 
GSMaP and CMORPH products for hydrologic applications. With respect to P-bias, TMPAv6 and 
TMPAv7 show better performance than GSMaP and CMORPH (Figure 3). In addition, TMPAv7 
shows significant improvements in bias reduction when compared to TMPAv6, especially between 
March and May and October through December. TMPAv6 and TMPAv7 employ a bias adjustment 
that is based on the Global Precipitation Climatology Centre (GPCC) monthly rain gauge analysis [3]. 
Three weather stations used in this study are involved in GPCC network. Therefore, TMPA products 
are not completely independent, which would partially explain its better performance than 
CMORPH and GSMaP. 

Figure 2. Yearly correlation and root-mean-square error (RMSE) values between basin-averaged
precipitation from TMPA version 6 (TMPAv6), TMPA version 7 (TMPAv7), GSMaP, CMORPH and
gauged estimates over the Soyang dam basin (x axis). Each bar represents annual basin-averaged
precipitation from 19 weather stations (y axis).

Figure 3 shows monthly performances of the satellite precipitation products for the analysis
period between 2002 and 2009. They have high correlation with the observations, except during
the winter season (December, January, and February). RMSEs for each month show little variation
between each satellite product. However, there are major differences in the P-bias. Compared to
the observations, GSMaP and CMORPH highly underestimate precipitation in most months, even
though they demonstrate a high correlation with observed precipitation. GSMaP underestimates
monthly precipitation by ´16% (May) to ´62% (November), but overestimates monthly precipitation
during January (+20%) and December (+47%). CMORPH underestimates precipitation for all months
by ´41% (August) to ´86% (January). This indicates the need for a systematic bias correction in
GSMaP and CMORPH products for hydrologic applications. With respect to P-bias, TMPAv6 and
TMPAv7 show better performance than GSMaP and CMORPH (Figure 3). In addition, TMPAv7 shows
significant improvements in bias reduction when compared to TMPAv6, especially between March
and May and October through December. TMPAv6 and TMPAv7 employ a bias adjustment that
is based on the Global Precipitation Climatology Centre (GPCC) monthly rain gauge analysis [3].
Three weather stations used in this study are involved in GPCC network. Therefore, TMPA products
are not completely independent, which would partially explain its better performance than CMORPH
and GSMaP.
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3.2. Spatial Evaluation of Satellite-Derived Precipitation

Overall, performance of the satellite derived precipitation products displayed high temporal
correlations (>0.71) in all HRUs (Figure 4). TMPAv6, TMPAv7, and CMORPH show generalized
elevation-dependencies. At low elevations, the correlations are high; and at high elevations, the
correlations are low. However, GSMaP reveals an opposing trend relative to elevation. This indicates
that GSMaP gives a slightly different spatial structure relative to the TMPA and CMORPH products.
All satellite precipitation products give considerable underestimates at the high-elevation sites, with
the exception of the northernmost HRU. However, the northernmost subbasin (Figure 1) has no
weather station. Due to this, the gauged areal precipitation may be less reliable than other subbasins.
GSMaP and CMORPH considerably underestimate precipitation for most subbasins, by up to 54% and
56%, respectively.
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3.3. Quantitative Verification of Satellite-Derived Precipitation

According to the FBI (Figure 5), both of the TMPA products detect a similar frequency of gauged
precipitation events for most months (FBI close to 1). The TMPAv6 overestimates precipitation events
in February, while TMPAv7 detects almost the same frequency of gauged events. This indicates that
TMPAv7 is slightly better at precipitation event detection. GSMaP tends to overestimate precipitation
events for most months, especially during October and the winter season (December, January,
and February). However, the FBI of the TMPA and CMORPH products show little monthly variance.
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Figure 5. Frequency bias index (FBI), false alarm ratio (FAR), probability of detection (POD),
and equitable threat score (ETS) averaged over 2002–2009 for each satellite-derived precipitation
product on a monthly scale.

There is little variation in FAR amongst the products, i.e., they all yields similar values, with the
exception of September and October. Winter precipitation events display high FAR values (above 0.55).
The POD (Hit Rate) displays a seasonal dependency. There are relatively high scores in April through
August with the opposite holding true during the winter season. GSMaP displays higher POD
values during winter than the other satellite products. However, this is because of the over-detection
of GSMaP for winter precipitation events. ETS, an evaluation index excluding chance, shows the
lowest performance of all satellite products in the winter. Quantitative verification indicates that all
satellite-derived precipitation products demonstrate a seasonal dependence and display improved
performance during the wet season and low performance during the dry season.

3.4. Evaluation of Streamflow Simulations

The PRMS model was calibrated using the gauged precipitation data as model input.
The simulated streamflow was then compared to the observed values in the Soyang dam basin.
The calibration was performed using the SCE-UA optimization method, from 2002 to 2005, from a
maximization of the objective function (NSE). Table 2 presents the performance of the PRMS model
using the calibrated parameters (Table 1) for the calibration and validation periods. All evaluation
statistics for the calibration period display a good PRMS simulation performance. This indicates
the calibrated parameters can reliably reproduce the observed streamflow. The statistics in Table 2
demonstrate that satellite simulations can exhibit varying skill in streamflow simulation, depending
upon the product used. The TMPAv6 and TMPAv7 simulations showed relatively high skill as
compared to those of GSMaP and CMORPH.
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Table 2. Performance statistics of the PRMS model for the calibration and validation periods.

Period Calibration (2002–2005) Validation (2006–2009)

Goodness of Fit Corr KGE d P-bias Corr KGE d P-bias

Gauged 0.93 0.93 0.97 2.22 0.86 0.82 0.92 ´3.13
TMPAv6 0.89 0.76 0.94 ´17.22 0.71 0.69 0.83 ´5.40
TMPAv7 0.90 0.75 0.94 ´12.78 0.74 0.73 0.85 ´3.68
GSMaP 0.86 ´0.31 0.84 ´50.91 0.74 ´1.24 0.67 ´62.73

CMORPH 0.84 ´0.96 0.80 ´62.99 0.77 ´1.75 0.65 ´67.95

Figure 6 depicts the monthly simulated streamflow using the satellite-derived precipitation
and ground-gauged precipitation for the period 2002 to 2009. Although this study did not calibrate
the PRMS model using the TMPA products, the TMPA simulations show reasonable performance
compared to the streamflow simulations that used gauged precipitation. In addition, the TMPA
products showed lower residuals than the GSMaP and CMORPH products. P-bias increased from
´38.7% in precipitation to ´56.6% in streamflow for GSMaP. CMORPH displayed a similar trend.
The P-bias in streamflow increased about 15% as compared to precipitation (´50.7% to ´65.5%).
This indicates that the initial systematic biases seen in the satellite precipitation products can be
propagated to hydrologic model output.
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3.5. Cause of Uncertainties in Streamflow Simulations Using Satellite-Derived Precipitation

In Section 3.4, we showed that the systematic biases in satellite precipitation could propagate
hydrologic uncertainties into the hydrologic application. Most of the uncertainties are attributed to
the underestimation of rainfall during the wet season. This study also investigated other potential
uncertainties during the dry season, most notably during the winter and spring season when snow
accumulation and snowmelt are the dominant hydrological processes.

Figures 7 and 8 compare simulations of several hydrological components using the gauged
and satellite precipitation as input for dry (2004) and wet (2009) years. Actual evapotranspiration
(AET) shows larger differences among precipitation products in the dry season than the wet season.
AET in PRMS is dependent on potential evapotranspiration and water availability in the soil layers.
As seen in the figures, more AET typically occurs under wet soil moisture conditions, because when
soils are dry, AET is restricted by soil moisture content. This indicates that differing precipitation
estimates induce distinct soil water conditions that result in variable evapotranspiration and streamflow
simulations (log_runoff). In addition, SWE and snowmelt show large differences between precipitation
products. These are especially present at high values from GSMaP and low values from CMORPH.
The dissimilarity of SWE leads to differences in the amount and timing of snowmelt contributions to
streamflow. This causes the variance in dry seasonal flow.
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Figure 9 shows the relationship between daily precipitation and maximum temperature during
the winter season. PRMS takes into account three forms of precipitation: rain, snow, and a rain/snow
mix. When the daily maximum air temperature on an HRU is less than or equal to tmax_allsnow
(Table 1), precipitation is all snow, whereas precipitation is all rain when the daily maximum air
temperature is greater than or equal to tmax_allrain. This study determined the values of tmax_allsnow
and tmax_allrain by the SCE-UA optimization routine using ground gauged precipitation as input.
As seen in Figure 9, the TMPA products and GSMaP estimate larger amounts of snowfall than the
gauged precipitation. In particular, GSMaP significantly overestimates snowfall, and results in larger
snow accumulation and snowmelt than the other simulations. Conversely, CMORPH underestimates
snowfall, which gives less snowmelt to the model.

In Korea, dry season flow is essential for paddy field irrigation during spring. Therefore, reliable
low flow estimation during the dry season is a significant issue. Uncertainties associated with divergent
snowfall quantities and snowmelt timing by the satellite precipitation products can lead to significant
reliability issues during simulations of low flow. Furthermore, these uncertainties can be even larger
in regions where the effects of snow play a larger role in the water budget.
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4. Discussion

The performance and hydrologic utility of satellite precipitation products vary from region to
region. This study showed that the TMPA products were better suited for hydrologic application in
South Korea than GSMaP and CMORPH. However, the performance of GSMaP was comparable with
TMPA 3B42, CMORPH, and PERSIANN and well-captured the spatial precipitation patterns. In other
studies, it performed well in detecting summer precipitation over the contiguous United States [36].
CMORPH also showed good performance as compared to PERSIANN and TMPA 3B42 in the Gilgel
Abay watershed of Ethiopia [14]. However, CMORPH overestimated the rainfall by almost 50% in the
Zambezi River basin of Africa [52], while it displayed large underestimations in the Mishui Basin of
South China [53] and areas in Northeast Italy [26]. These findings highlight the need for time-space
performance evaluations of satellite-based precipitation products for regional hydrologic applications,
which would serve as a useful guideline to regional water managers who need to make decisions
about which satellite products to use.

Understanding error propagation from satellite precipitation to streamflow simulation is necessary
for improving the utility of satellite products. This study showed that biases in the satellite products can
increase the uncertainty in streamflow simulations. During the wet season, under- and overestimations
of rainfall directly impacted on the size of the streamflow simulation errors. During the dry season,
false snowfall estimations in the hydrological model induced differences in the amount and timing
of snowmelt in the mountainous basin of South Korea. To overcome this issue, a systematic bias
correction or error correction of satellite products should be a prerequisite prior to use. However,
few studies to date have examined the potential value of implementing a bias correction scheme of
satellite products in hydrological analyses [23,54]. In addition, improvements in snowfall detection
algorithms are needed for the global precipitation measurement (GPM) mission. Enhanced time-space
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accuracy of rainfall and snowfall detection would represent a significant contribution to many diverse
hydrological applications and water resource management [55–57].

This study used observed precipitation to initially calibrate all parameters. These values were used
for all modeling scenarios to avoid further uncertainty [58]. A few previous studies tried to recalibrate
the parameters of hydrological models using satellite products, instead of observed precipitation,
to improve the accuracy of streamflow simulations [53,59–61]. However, such a recalibration is not
always a good approach because disinformation, such as errors in the satellite data, can lead to
biased inferences in the subsequent hydrological model calibration [49,58]. In hydrologic science,
the measurement error of precipitation is assumed to be stochastic or aleatory in nature. Every residual
(simulated flow minus observed flow) is informative in conditioning the model parameters and
uncertainty. However, the errors in satellite precipitation data are a type of epistemic error. Therefore,
calibration using satellite precipitation data can fail. Recent studies showed that recalibrated model
parameter values could reside outside the physical ranges of the parameters [21,22].

5. Conclusions

We evaluated the hydrological utility and uncertainty stemming from the propagation of
satellite-derived precipitation errors in a hydrologic model. The model was run at a mountainous
basin in South Korea. The principal conclusions from this study are summarized below.

Four satellite precipitation products were statistically compared with a nearly decade-long
(2002–2009) basin-averaged rain gauge dataset at daily and monthly time steps. Overall, TMPA
products were closer to ground gauged precipitation than GSMaP and CMORPH in space and time.
Regarding TMPAv6 and TMPAv7, the latter demonstrated a slightly better performance than the
former in terms of precipitation detection and correlation with ground-observed precipitation. GSMaP
and CMORPH consistently underestimated precipitation during most months; this underestimation
increased during the wet season. The TMPA products and CMORPH showed an elevation-dependent
performance; high correlation and low bias were seen at low elevation whereas low correlations and
large biases were seen at high elevations.

TMPAv6 and TMPAv7 were able to well-reproduce streamflow as compared to the gauge-based
simulations. This contrasts with GSMaP and CMORPH, which resulted in large underestimations.
Moreover, GSMaP and CMORPH displayed an increased magnitude of bias, by approximately 15%,
through the hydrological model simulations. Our results indicate the need for an initial bias correction
or adjustment of GSMaP and CMORPH prior to use in hydrological applications.

Using a physically based, semi-distributed model, we examined how precipitation error in satellite
products effected simulations of individual components such as actual evapotranspiration (AET),
snowmelt, soil moisture and streamflow. In winter, the over- or underestimation of satellite-derived
precipitation led to differences in snowfall and snowmelt. The differences in the quantity and timing of
snowmelt led to differences in soil moisture condition and AET estimations. Finally, the propagation
amplified the differences in modeled and actual streamflow. Based on these results, we further argue
that studies that advance the current snowfall detection algorithms are necessary for the new GPM
mission. Enhancing the hydrologic utility of satellite products in mountainous regions where snowmelt
is a factor is crucial for water resource management.

Overall, this study highlighted that further studies in hydrological utility and uncertainty
analysis is important in diverse basins that have distinct physiographic and hydroclimatic conditions.
Furthermore, improved understanding of why certain satellite precipitation products show consistent
under- or overestimation in particular regions is needed. This could allow for improvements in overall
accuracy, as well as the development of new retrieval algorithms.
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