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Abstract: Ukraine has experienced immense environmental and institutional changes during the
last three decades. We have conducted this study to analyze important land surface dynamics and
to assess processes underlying the changes. This research was conducted in two consecutive steps.
To analyze monotonic changes we first applied a Mann–Kendall trend analysis of the Normalized
Difference Vegetation Index (NDVI3g) time series. Gradual and abrupt changes were studied by
fitting a seasonal trend model and detecting the breakpoints. Secondly, essential environmental
factors were used to quantify their possible relationships with land surface changes. These factors
included soil moisture as well as gridded air temperature and precipitation data. This was done using
partial rank correlation analysis based on annually aggregated time-series. Our results demonstrate
that positive NDVI trends characterize approximately one-third of Ukraine’s land surface, located in
the northern and western areas of the country. Negative trends occurred less frequently, covering
less than 2% of the area and are distributed irregularly across the country. Monotonic trends were
rarely found; shifting trends were identified with a greater frequency. Trend shifts were seen to occur
with an increased frequency following the period of the 2000s. We determined that land surface
dynamics and climate variability are functionally interdependent; however, the relative influence of
the drivers varies in different locations. Among the factors analyzed, the air temperature variable
explains the largest portion of NDVI variability. High air temperature/NDVI correlation coefficients
(r = 0.36 ´ 0.77) are observed over the entire country. The soil moisture content is of significant
influence in the eastern portion of Ukraine (r = 0.68); precipitation (r = 0.65) was most influential in
the central regions of the country. These results increase our understanding of ecosystem responses
to climatic changes and anthropogenic activities.

Keywords: trend analysis; land cover change; AVHRR; Eastern Europe

1. Introduction

Ukraine has experienced immense environmental and institutional changes during the last
three decades due to both human-induced and environmental processes such as socio-economic
transformation, ongoing urbanization, increased climate variability and frequency of hazardous
events [1,2]. The drastic social, institutional and economic alterations at the end of 1991 as a result of
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the Soviet Union collapse induced significant changes in distribution and extent of land cover, land use
intensity, economic productivity in the agricultural sector and shifts in the land surface phenology [2,3].
These socio-economic changes had radical results and one of the consequences was the widespread
farmland abandonment especially in the northern and western regions [1,4–7]. Besides the ongoing
socio-economic transformations, several studies discussed the changes in climate conditions. In the
past 30–50 years, droughts have become more frequent and intense, covering up to half of the area of
Ukraine every 10–12 years, and up to 20% every 2–3 years [8]. All these described alterations had an
impact on the ecosystem that can be reflected on the land surface. To understand the effect of these
phenomena, long-term monitoring of land surface changes is required.

There is a limited number of studies on long-term land surface change analysis for all of
Ukraine, as previous studies focused on specific applications of land cover change (e.g., forest loss,
farmland abandonment) in particular areas of the country (Carpathian ecoregion, the river basin of the
Dnieper river) [1,2,9]. Moreover, little attention has been paid to the understanding of the main drivers
of these changes as most of the studies focused on the factors influencing land abandonment [1,10].

Satellite image time series observations of land surface reflectance and vegetation indices,
such as Normalized Difference Vegetation Index (NDVI) calculated from them, are often used for
land surface change analysis as NDVI uses the spectral differences between red and near infrared
reflectance and as a result exposes the properties of ecosystem [11]. NDVI-based trend analysis can
assist the investigation of changes of land surface over a period of time and help to understand the
mechanisms behind the observed changes. This is because NDVI is not only related to a variety of
vegetation properties (structural properties of plants, vegetation productivity) [12,13], but it can also
indirectly represent the ecosystem conditions [14]. For instance, several studies used NDVI as a proxy
of land cover change [15] and land dynamics [16], land degradation [17], farmland abandonment [18],
and phenological changes [19]. Based on these complex characteristics of NDVI, we assume that
it can be used to assess land surface dynamics over time. In the context of this study, we define
land surface dynamics as the sudden or gradual transformation or modification of earth surface
including vegetation, soil, water and its ecosystem functioning in the unit of time (e.g., day, month,
year) including fast (e.g., land use change) and slow processes (e.g., land degradation), which can
indicate the response to both anthropogenic and environmental factors [12,13,20].

The detection of significantly increasing or decreasing trends is often not enough to assess the
environmental impact or to be able to attribute the change to factors behind it. Abrupt changes or
non-linearities may occur within the long-term time series, as the trends in complex systems usually
are not monotonously increasing or decreasing [20–22]. Furthermore, the interpretation of these abrupt
changes without using additional datasets or expert knowledge is often challenging [23].

In this regard, the overall aim of this research was not only to analyze the land surface dynamics
over all of Ukraine for the time period from 1982 to 2013 but also to assess underlying processes and
drivers of the changes. The specific objectives were: (1) to assess long-term land surface variability;
(2) to integrate data from different sensors and investigate the suitability of different methodologies;
and (3) to estimate the effects of the essential environmental variables namely soil moisture,
air temperature and precipitation on land surfaces. Our study is, therefore, the first study that
analyzed spatiotemporal changes of land surface over all of Ukraine for the long time period
of 30 years to provide integrated and spatially continuous knowledge of the changes and its triggers
using remote sensing approaches.

2. Materials and Methods

2.1. Study Area

Ukraine is located in Eastern Europe in the southeastern part of the East European plain,
between 44˝201N and 52˝201N latitudes and 22˝51E and 41˝151E longitude (Figure 1). It covers
603,550 km2 and consists of 24 administrative units (oblast) [24]. Most of Ukraine is composed
of vast plains stretching north from the Black and Azov Seas. There are also two mountainous
areas in the west and south of the country, the Carpathians and Crimean mountains, respectively.
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The climate in the East European Plain, the medium Ukrainian Carpathians, and the Crimean
Mountains is mostly temperate continental, with hot summers (t > 18 ˝C) and cold winters
(t < ´5 ˝C); the southern coast of the Crimea has a subtropical Mediterranean climate [25]. The area of
Ukraine is divided into three main agro-ecological zones: steppe (southern and eastern regions, 40% of
the area), semi-steppe (central regions) and mixed forest (north and north-west) [7,26] (Figure 1d).

Remote Sens. 2016, 8, 617 3 of 16 

 

European Plain, the medium Ukrainian Carpathians, and the Crimean Mountains is mostly 
temperate continental, with hot summers (t > 18 °C) and cold winters (t < −5 °C); the southern coast 
of the Crimea has a subtropical Mediterranean climate [25]. The area of Ukraine is divided into three 
main agro-ecological zones: steppe (southern and eastern regions, 40% of the area), semi-steppe 
(central regions) and mixed forest (north and north-west) [7,26] (Figure 1d). 

 

Figure 1. Study area, the Walter-Lieth climate graphs for different locations in the country (a–c) and 
the agro-ecological zones (d) [26]. 

Despite the prevailing moderate continental climate, the study area is characterized by fairly 
significant differences in the humidity, temperature and length of the growing season [27]. Hot and 
relatively dry summers, together with relatively severe winters, create good conditions for the 
formation of chernozems (black soils) that are highly fertile for most agricultural crops [28]. The 
average winter temperature ranges from −8 °C to −12 °C. In the southern regions, the mean winter 
temperature is 0 °C. The mean summer temperature ranges from 18 °C to 25 °C, although it can reach 
above 35 °C. 

Figure 1. Study area, the Walter-Lieth climate graphs for different locations in the country (a–c) and
the agro-ecological zones (d) [26].

Despite the prevailing moderate continental climate, the study area is characterized by
fairly significant differences in the humidity, temperature and length of the growing season [27].
Hot and relatively dry summers, together with relatively severe winters, create good conditions
for the formation of chernozems (black soils) that are highly fertile for most agricultural crops [28].
The average winter temperature ranges from ´8 ˝C to ´12 ˝C. In the southern regions, the mean
winter temperature is 0 ˝C. The mean summer temperature ranges from 18 ˝C to 25 ˝C, although it
can reach above 35 ˝C.
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The area of Ukraine is characterized by significant regional differences in rainfall and its
distribution throughout the year with a summer maximum. The largest amplitude of the volume
is characteristic to the south. Most of the precipitation falls in the Ukrainian Carpathians
(more than 1500 mm per year). The precipitation ranges from 650 mm (in the west) to 400 mm
(in the southeast). In dry years, precipitation is significantly reduced: in the coastal areas of the Azov
and Black Seas up to 100 mm, in the steppe up to 150–200 mm, and in forest-steppe up to 250–350 mm.
In winter, permanent snow cover occurs almost everywhere in the country. One of the key features
of the climate of Ukraine are the droughts which in recent years have increased frequency and affect
large areas [8,27,29].

2.2. Data

2.2.1. Normalized Difference Vegetation Index

As a primary data source for the regional study the Global Inventory Monitoring and Modeling
System (GIMMS) NDVI3g dataset was chosen as it is the only currently available dataset that
spans since 1982 and includes a dense time series needed for the analysis of land surface dynamics.
The GIMMS NDVI3g dataset is an improved 8 km NDVI dataset produced by the National Oceanic
and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR)
instruments that extend from July 1981 to December 2013 [12,30].

The third generation GIMMS NDVI is a 15-day Maximum Value Composite that was acquired
from seven different NOAA satellites (7, 9, 11, 14, 16, 17, 18), which have been processed using an
adaptive Empirical Mode Decomposition. NDVI3g is appropriate for long-term studies of land surface
trends in vegetation, seasonality and coupling between climate variability and vegetation over the last
three decades [31,32].

The NDVI3g has different quality flags [17]. Based on these flags, prior to analysis, all values with
reduced quality were excluded. We used pixels with minimum 75% valid data excluding interpolated
observations, possible snow covered pixels. In addition, the images for the year of 1981 were also
excluded to have full-year observations. The maximum value compositing approach was applied in
the NDVI3g dataset.

2.2.2. Environmental Variables

Several studies discussed the effects of climate variability on land surface change [33–35].
The monthly mean temperature (TMP) and precipitation total (PRE) datasets were obtained from the
Climate Research Unit (CRU). The datasets cover the period 1901 to 2014 with a spatial resolution
of 0.5˝ [36].

Recent studies also show the impacts of soil moisture on vegetation at various temporal
scales [34,37,38]. They discuss the co-variation of NDVI and soil moisture, stating coherent trend
changes [39]. Furthermore, other authors showed that a soil moisture NDVI pixel-wise residual trend
indicates land degradation [17]. Soil moisture influences hydrological and agricultural processes,
runoff generation, drought development and other processes. A soil moisture dataset [38,40] was
chosen for the study, which was a merged product of active and passive microwave soil moisture
products [40]. The dataset covering the period 1978–2013 provides daily surface soil moisture with a
spatial resolution of 0.25˝ and depicts the soil moisture in around 2 cm layer depth [40]. Therefore,
we chose the following environmental variables precipitation, temperature and soil moisture for
the analysis.

In addition, we used a land cover map [41] of 1990 as a reference (the main institutional changes
happened after 1990) to characterize the possible associations of the environmental variables and
NDVI in main vegetation formations: cropland, grassland, and forest, which have different seasonal
characteristics and response to the disturbances [41].
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2.3. Methods

Prior to processing, the raster time series datasets were reprojected to World Geodetic System
(WGS) 84 coordinate reference system and resampled to a common 8 km grid, using a bilinear
interpolation algorithm. The datasets were further smoothed with Savitzky-Golay filter as the datasets
were not extremely noisy, and we intended preserving the local variations [42]. We extracted the
temporal window (1982–2013) of the environmental time series to match the same period with NDVI
dataset. The water bodies and build up areas were masked out. All the analyses were conducted using
R statistical software [43].

2.3.1. Trend Analysis

After the pre-processing of the image time series (1982–2013), we explored the trends of annually
aggregated NDVI series. There are several methods described in the literature for time series analysis
of satellite imagery [12,13,20]. The simplest and most common method is the ordinary least-squares
(OLS) regression, where the main assumption is that the land surface is changing linearly and
gradually over time [44]. The drawbacks of this method have been depicted by several authors [23,43].
In particular linear regression assumes normality and independence of data (neglecting the temporal
autocorrelation). To overcome this, we used the Mann–Kendall nonparametric trend test, which
does not depend on the distribution of data and can be used with data with serial dependence.
Tüshaus et al. [45] demonstrated the performance of trend analysis with the aforementioned method
for the land surface dynamics monitoring. This non-parametric test evaluates the occurrence
of a monotonic single direction trend in the time series [45]. Furthermore, non-stationarity
(time dependency) was excluded due to a significant Augmented Dickey-Fuller test and inspection of
the autocorrelation graphs and the related tests of annually aggregated time series.

However, the land surface dynamics are not always a gradual process and often the changes
are abrupt due to factors such as extreme weather conditions or changes in land management.
In general, the changes that can be monitored using remotely sensed data can be classified as follows:
(1) a seasonal or cyclic change; (2) a gradual change over time consistent in direction (monotonic);
and (3) an abrupt shift at a specific point in time [20,44].

To study sudden and gradual changes in land surface, the Break For Additive Season and Trend
(BFAST) algorithm was used, [43] which decomposes the series into trend, seasonal and reminder
components to evaluate gradual and seasonal dynamics occurring within indices derived from satellite
image time series such as NDVI [46–48]. The season-trend model [47] (i.e., linear trend and harmonic
component) was fitted to pre-processed monthly NDVI time series, and the stability of the model was
assessed using a test that determines the significance of structural trend breaks. As we were focusing
on trajectories of the changes, rather than the number of the breakpoints, we chose the model with
either 0 or 1 breakpoints. These breakpoints were assumed to catch the most influential trend shifts in
the time series, which represent drastic changes in ecosystem functioning [47,48]. We classified the
trends based on the modified methodology described by de Jong et al. [47]. The authors used the term
greening/browning for categorizing the changes based on the signal before and after the breakpoint.
Instead of the above-mentioned terms, we used the concept of increase or decrease of the NDVI trends.

2.3.2. Correlation Analysis

We used correlation analysis to investigate the effects of essential environmental variables,
namely soil moisture, air temperature and precipitation on variability of NDVI. Correlation analysis
is one of the commonly used methods for assessing the associations between vegetation indices and
independent variables. In the case of simple correlation, the linear relationship between two variables
is determined. The disadvantage of such an approach is that the effect of other variables is ignored.
For example, when the correlation between soil moisture and NDVI is studied, the impact of other
factors, such as precipitation and temperature, on NDVI is disregarded. To reflect the internal relation
between two variables, a partial correlation coefficient should be calculated. Partial correlation
coefficients reveal the relation between two variables when controlling the impact of other variables.
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As a result, when two variables are both linked to the third, only the relation between the former two
variables is estimated while the impact of the third variable is removed [49,50]. Partial Spearman
correlation is nonparametric in the form of relationship, and it is robust against outliers and invariant
against monotone transformation.

3. Results and Discussion

3.1. Trends of NDVI Series

Figure 2 shows the results of the non-parametric Mann–Kendall trend analysis of annually
aggregated NDVI time series from 1982 to 2013 for Ukraine. Areal statistics (Figure 2b) depict
the occurrence of positive and negative trends in each administrative unit proportional to its area.
As changes of environmental conditions are most likely to affect the land-cover classes in a different
way [33], we interpreted the relative influence of each factor based on the spatial context of the
observed associations i.e., land cover class and the agro-ecological zone.
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Overall, around one-third of the area of Ukraine is characterized by significant positive trends,
clustered mainly in northern and western parts, which are mostly in the relatively humid and
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temperature limited area with forests and forest-steppe zones. These areas are also characterized
by less frequent crop cultivation and observed land abandonment processes [18]. The secondary
succession on the former croplands is captured by a positive trend signal in our analysis. Around 30%
of cropland is characterized by positive trends, which also indicates changes in agricultural practices.
A large cluster of the positive trend was identified in the northwest from Kiev, where the Chernobyl
zone is located. This area has been closed since 1986 after the occurrence of the Chernobyl disaster,
which is one of the major anthropogenic disasters of the last century. Within the Chernobyl zone,
active vegetation growth and environmental recovery are observed and documented [4], which is also
reflected in the results of the trend analysis. The observed positive trends in forest cover 32% of its
area. This is evident in the areas such as mountainous regions in the Carpathian Mountains in the west
of Ukraine and in the Crimean Mountains [9].

Statistically significant negative trends were less frequent (<2% of the total area) and are mostly
scattered across the country. This could probably be explained by the fact that the area was more
dynamic, and, instead of a monotonic trend, land surface was varying over the entire study period.
Most of the steppe zone does not reveal significant trends. The steppe zone of Ukraine, sometimes also
referred to as the ‘bread basket’ of Ukraine, is the area where most intensively cultivated lands are
located. The absence of the big clusters of significant trends within this part of Ukraine may indicate
that, despite the overall socio-economic and environmental processes that have occurred in the country
since 1982, these areas were continuously managed in a similar way, which has not led to noticeable
land surface trends.

It should be emphasized that the analysis of long-term earth observation time series is affected
by several factors, such as the spatial resolution of the imagery, the level of temporal aggregation,
number of observations, pre-processing steps, and the analysis method itself. The temporal resolution
of the time series has an effect on the trend significance estimation. In comparison to the full-resolution
time series, the use of annually aggregated data reduces the number of observations, which results in
the underestimation of the trend significance. Nevertheless, annual aggregation decreases the risk of
detecting false positive trends [12]. Furthermore, the aggregation is an effective method to account for
autocorrelation: dependence between successive observations in a time series [50].

Although monotonic trend analysis can reveal the general tendency of land surface changes,
the trends are not always continuously increasing or decreasing but can fluctuate over time [21].
To account for these changes, a breakpoint analysis was conducted. Figure 3 illustrates the spatial
distribution of change categories. Pixels with insignificant trends (p ě 0.05) were masked out.
For each category of land surface change, representative points were selected, and the temporal
profiles of NDVI response and the observed trend were studied in detail (Figure 3a–d).

In general, NDVI varied and pixels with trend shifts prevailed (Figure 3). Increasing trends
with the shifts is the dominant type covering 28% of Ukraine (Table 1). Although the hotspots of
the monotonic increase can be noticed (3.67% of the area), the results of the analysis of the change
type reveal a higher number of interrupted trends (i.e., increase with setback) and reversal trends
(increase to decrease). The interrupted increasing trends could probably be conditioned by human
interventions and by the effect of extremely dry periods (observed in 10.24% of the area). The reversal
trend indicating trend change from increase to decrease stated the decline of ecosystem functioning.
We suggest that these types of changes can be associated with the large socioeconomic disturbances
followed by the collapse of the Soviet Union and associated processes of land abandonment after 1991
and land re-cultivation after the 2000s [6,7].

We also evaluated the percentage of change types in each land cover class (Table 1). The estimates
reflect the percentage of the trend type within the dominant class, using the land cover information
from the 1990 reference year. Generally, the interpretation of these trends is challenging as the trend
shifts can be explained by several factors [47]. The reversal trend can be attributed to long-term
increasing human pressures [48], particularly the cultivation of abandoned croplands, which was also
observed by Smaliychuk et al. [7]. Another abundant category of change is the increasing trend with
an abrupt negative change, which can be related to the extreme events such as drought. In Ukraine,
frequent drought events have been observed during the last 16 years [29]. The drought in 2003 in
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most of the pixels was not detected as a major break and this can be explained by the fact, that in
long-term series from 1982–2013, the drought did not have the biggest break in the NDVI trajectory.
Furthermore, during the consecutive drought in 2007–2010, the break was not detected in the first
year of the drought. The effects of droughts should be further investigated. Another challenge for
the interpretation is the spatial resolution of the dataset, as one pixel of NDVI3g dataset can contain
diverse land cover types, due to the fragmented landscapes in some regions and the size of the land
management units [51,52]. Despite of this sub-pixel heterogeneity, the dataset is still representing
the large-scale land use/land cover patterns and their spatiotemporal variance over this vast area.
The validation of these trends is not straightforward because the field observations are not temporally
dense and mostly were restricted to a few-time steps. In addition, the scale compatibility was another
issue, as the datasets might be not representative for an 8 km grid [53]. To overcome this, we compared
our results with the results of the previous studies [1,4–9] and investigated the validity of the results
by local experts.Remote Sens. 2016, 8, 617 8 of 16 
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Table 1. Percentage of change types in each land cover class.

Trend Type Cropland Grassland Forest

Monotonic increase 4.66 7.34 2.53
Decrease with burst 6.96 13.27 0.73

Increase with setback 11.21 24.41 7.43
Increase to decrease 18.97 44.49 10.31

3.2. Characteristics of the Main Time Periods of the Trend Shifts in Ukraine

To understand the land surface dynamics and the main drivers of its changes, it is essential
not only to look at the spatial distribution of the trend shifts but also the timing of these changes.
We classified the time of the NDVI changes in three time periods of 1982–1992, 1993–2002 and 2003–2013
as the socio-economic pressures and environmental conditions were different during these periods
(Figure 4). According to our results, the decrease with the abrupt positive break predominated during
the first period of 1982–1992 within the steppe zone of Ukraine, which is the main agricultural zone
of the country. This period was the last period before the collapse of the Soviet Union and was still
characterized by extensive cultivation and agricultural land expansion in the country.
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During the second period (1993–2002), most of the changes occurred in the northwest of Ukraine
(Figure 4). The first post-socialistic years were described with high abandonment rates as well as with
prevailing forest disturbances. The agricultural activities were mostly affected after the collapse of the
Soviet Union due to the ongoing transformation processes and structural changes in the agricultural
sector at that time. Almost 70% of cropland abandonment occurred within the first 10 years of the
transition from a state-command to a market-driven economy [5]. Since the late 1990s and early 2000s,
due to the economic recovery, the re-cultivation of formerly abandoned land emerged [5]. The last
period (2003–2013) was also associated with strong environmental impacts (i.e., droughts and extreme
weather conditions) [8,27].
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Although the effect of sensor change that affected the quality of the AVHRR data is significantly
reduced in NDVI3g [17,54], some research found that GIMMS3g NDVI data are still showing an
inconsistency between sensors in humid, dry-sub humid, semi-arid and hyper-arid regions [54].
As the AVHRR platform changes (1985, 1988, 1994, 1995, 2000 and 2004) could potentially cause the
breakpoints in the trends [47], we have conducted the corresponding tests. We compared these changes
with the frequency of the detected changes and the detected breakpoint did not show the same result,
suggesting that our results are unlikely to be affected by the platform changes.

3.3. Factors of Land Surface Dynamics in Ukraine

We explored the correlations between NDVI time series and environmental variables
(mean annual temperature, total precipitation and mean soil moisture) using the partial rank
correlation method. Prior to correlation analysis, we evaluated multicollinearity by obtaining VIF
(variance inflation factor) for each variable. Non-stationarity (time dependency) could be excluded due
to a significant the Augmented Dickey–Fuller test and inspection of the autocorrelation graphs and the
related tests of annually aggregated time series. As the VIF was smaller than two, we continued the
partial ranked correlation analysis of the driving factors and NDVI.

Figure 5 illustrates the spatial distribution of the extent of the effect of each factor. We used a
subtractive model for visualization, where the primary factors are illustrated with a pure color and the
overlapping areas of influence are depicted by the intersection of colors.
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Although the studies have discussed the impact of climatic variation on land surface
changes [33,55,56], very few of them have focused on the impact of environmental factors on land
surface trends in Ukraine as opposed to management and land tenure factors [1–8]. Our results
show that the changes in land surface can be partially explained by the combination of thermal and
water conditions.

It is important to mention, that we do not raise any causal argument for the statistical results
of presented correlations. The only aim we had was to assess the effect of an estimator and describe
possible associations between environmental variables and land surface changes.
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Among all of the analyzed factors, air temperature explained most of the NDVI variability
(Table 2). The impacts of air temperature were observed in 31.5% of the area, with a positive correlation
coefficient (0.36–0.77). This can be explained by the fact, that in western and northern regions,
the temperature is the main limiting factor for the vegetation growth, and with the increase of
temperature over the study period, the correlation becomes higher. The percentage of the area in
each land cover class with NDVI/Air temperature correlation depicts that grasslands were the most
sensitive to temperature.

Table 2. Percentage of the area in each land cover class with Normalized Difference Vegetation Index
(NDVI)/Air temperature correlation.

Correlation Coefficient Range Cropland Forest Grassland

0.36–0.44 20.34 10.45 41.04
0.45–0.53 16.94 9.86 34.67
0.54–0.77 8.70 4.47 15.10

Soil moisture content is influential in eastern (r = 0.68), semi-steppe, and steppe zones, covering
around 12% of the area. High correlation coefficients between NDVI and soil moisture is observed in
grasslands (Table 3). Furthermore, we observed small clusters of negative correlations between NDVI
and soil moisture that might be referred to anthropogenic influences in this area and unfavorable
socio-economic conditions. Finally, precipitation is a dominant factor (r = 0.65) in central regions
of the country (Table 4). Relatively low correlation coefficients were estimated between NDVI and
precipitation in forests, which were conditioned by lower water limitation compared to other classes.
Again, there is a small cluster of a negative correlation between NDVI and precipitation in the northwest
of Ukraine. Since it is not driven by climate variability, this could be an indicator of human-induced
changes such as land transformations [57] (not represented on a map). Moreover, the results of
NDVI/soil moisture partial correlation analysis show a higher number of pixels with a significant
association within the study area than NDVI/rainfall. Although theoretically the precipitation is
considered as an essential forcing factor for soil moisture variability, the latter is also affected by
conditions such as soil hydraulic properties, land cover, evapotranspiration, and topography. This is
in line with several studies [17,58] where soil moisture had better performance for the explanation of
land surface dynamics. In addition, when evaluating the partial rank correlations between variables,
the effect of the other confounders is eliminated by adjusting the target correlation for any other
monotonic association with the variables of this study.

Table 3. Percentage of the area in each land cover class with Normalized Difference Vegetation Index
(NDVI)/Soil Moisture correlation.

Correlation Coefficient Range Cropland Forest Grassland

´0.55–(´0.21) 0.53 0.31 2.27
0.1–0.44 8.91 1.84 19.72

0.45–0.68 7.79 1.25 14.80

Table 4. Percentage of land cover class with significant correlation coefficients Normalized Difference
Vegetation Index (NDVI)/ precipitation.

Correlation Coefficient Range Cropland Forest Grassland

´0.47–(´0.18) 0.32 0.59 1.02
0.1–0.44 6.24 2.01 9.53

0.45–0.65 3.64 0.59 6.01

Although the additional datasets give insight about the processes that can affect the land
surface changes, further analysis should consider the use of complementary factors and include
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datasets representing anthropogenic activity. Several studies discussed the factors that affect the
land abandonment in Ukraine, and they depicted that factors such as soil type, yield decrease,
unfavourable socio-economic conditions and population density demonstrate a significant association
with land abandonment and cultivation rate [1,10]. The observed increasing and decreasing trends
and their interruptions are only partially explained by temperature, precipitation and soil moisture.
Other factors—such as CO2 fertilization, agricultural management practices and the intensity of land
use and fertilizer use may affect the land surface changes. To improve our analysis, this should be
considered in the context of overall land surface dynamics.

4. Conclusions

The current study addressed the assessment of long-term land surface dynamics over a 32 -year
period between 1982 and 2013 in Ukraine. The interpretation of the influences of environmental
variables on the observed land surface dynamics were supplemented and improved by employing
additional datasets. Fundamentally, we concluded that long-term increasing NDVI trends are
widespread across the country. Decreasing trends with abrupt positive breaks predominated during
the initial 1982–1992 study period within the steppe zone of Ukraine. This period is characterized
by extensive cultivation and agricultural land expansion in the country. During 1993 and 2002,
most of the changes occurred in northwest Ukraine. The first post-socialistic years in the country were
characterized by high rates of land abandonment as well as widespread forest disturbances. Following
the collapse of the Soviet Union, agricultural activities and practices were principally affected by
transformational processes and structural changes in this sector. A general economic recovery has
been occurring in Ukraine since the late 1990s and early 2000s. These conditions have stimulated
re-cultivation of formerly abandoned land. This process has emerged mainly in the central portion
of the country and is reflected by the monotonic increase and increase with a setback that is seen
to predominate during the recent years of 2003–2013. Critical, high impact environmental events
(including droughts and other extreme weather conditions) also occurred with an increased frequency
during these years. Based on our results, we conclude that the combined trend and breakpoints
analysis captures and reflects the spatial patterns of these trends as well as describes the timing of
those changes. This capability will allow increased understanding of dynamic land surface processes
over extensive areas. We found that the GIMMS NDVI3g dataset was extremely useful for regional
scale trend analysis. In particular, a data record spanning more than three decades enabled a markedly
improved trend characterization.

With respect to the effects of environmental factors on NDVI change, we conclude that partial
correlation analysis is useful for determining the individual contribution of each specific environmental
factor on NDVI dynamics. Correlation analysis shows that temperature accounts for approximately
30% of overall NDVI variance. Grassland and cropland environments show similar responses to the
drivers, demonstrating high sensitivity to soil moisture and precipitation as well as temperature.

Additional analyses should include complementary causal factors along with datasets that
accurately characterize anthropogenic activity. There is also a requirement for analyses at higher
spatial resolutions. This will enhance interpretation of land surface trends and provide for assessments
at scales complimentary to land management practices.

We are confident that this study demonstrates that the effective combination of different trend
analysis techniques, integrated multiple datasets, and effective statistical modelling allows derivation
of valuable, previously unavailable spatially explicit information on land surface dynamics and
their causal factors. Finally, such information will enable an improved understanding of land surface
processes and environmental changes ongoing over space and through time that are specific to Ukraine.
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