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Abstract: Traditional in situ observation interpolation techniques that provide rainfall data from
rain gauges have limitations because they are discrete point-based data records, which may not be
sufficient to assess droughts from a spatiotemporal perspective. Considering this limitation, this study
has developed a run-off model—a fully satellite-based method for monitoring drought in Peninsular
Malaysia. The formulation of the run-off deficit uses a water balance equation based on satellite-based
rainfall and evapotranspiration data extracted respectively from calibrated TRMM multi-satellites
precipitation analysis data (TMPA) and moderate resolution imaging spectroradiometer data
(MODIS). The run-off deficit was calculated based on per pixel spatial scale and allowed to
produce the continuous and regular run-off maps. The run-off model was tested and evaluated in
a one drought year (2005) within a span of three years (2003–2005) over the Kelantan (3448 km2)
and Hulu Perak (3672 km2) catchments of Peninsular Malaysia. The validation results show
that (1) monthly TMPA rainfall and MODIS evapotranspiration data significantly improved after
calibration; (2) satellite-based run-off data is not only strongly correlated with actual steam flow, but
also with spatiotemporal variation of run-off in drought-affected forest catchments. The most severely
drought-affected forest catchments that experienced the run-off deficits were Hulu Perak, Ulu Gading,
Gunung Stong and Relai over Kelantan. The real time run-off change analysis shows that drought
started in January and reached its peak in July of 2005. It was therefore demonstrated that this fully
satellite-based run-off deficit model is as good as a conventional drought-monitoring indicator, and
can provide not only drought distribution information, but it also can reflect the drought-induced
impacts on stream flow, forest catchment and land-use.
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1. Introduction

Drought is a natural disaster. There are four types of droughts: (1) meteorological (deficit in
rainfall from normal); (2) agricultural (crop-response to deficit in soil moisture); (3) hydrological (deficit
in runoff, or shortage of streamflow in catchments; and (4) socioeconomic (social response to the above
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mentioned three types) drought. Droughts have always an impact on economies, societies and the
environment [1,2]. Changes in the severity, intensity, frequency, and geographic extent of droughts
will have enormous impacts on the hydrological cycle, water management and crop production [3–5].
Therefore, it is essential to develop a quantitative measurement technique that can reliably be used for
monitoring and predicting drought events [6,7]. Precise and accurate spatial information of drought
extent and temporal patterns is critically needed for assessing drought impacts, developing drought
mitigation strategies, and minimizing drought-risks [8,9].

Hydrological drought starts with a sustained rainfall deficit, and then it leads to soil moisture
content deficit, river streamflow deficit, groundwater shortage, and consequently, influences vegetation
health, growth, and land cover [5,9–12]. Traditional ground-based (in situ) drought observations and
monitoring approaches include rain gauge measurements, river streamflow and dam level monitoring.
These commonly provide only discrete point-based data records, which may not be sufficient to assess
droughts from a spatiotemporal perspective. Although spatial interpolation techniques applied to
discrete point measurements can provide the spatial pattern of drought [13], it often provides inaccurate
information because of several limitations [14,15]. These limitations can be broadly categorized
as: (i) sparse point measurements (inadequate in-situ observations for analyzing regional drought);
(ii) limitations of interpolation and extrapolation methods to measure droughts in the areas lacking
data; and (iii) the tendency to average out the heterogeneity pattern of drought events. Compared to
in situ observations, drought data derived from satellite-based remote sensing data are continuous
and regular datasets, which are more suitable for spatiotemporal drought monitoring [16,17].

Techniques for assessing the impact of drought at the regional to global level from satellite
data are indirect. They depend on image-based parameters to represent drought conditions and
require supporting data from ground measurements in developing models [18–20]. Furthermore,
a number of remote sensing-based drought indices have been developed that employ either a single
hydrological variable [21,22] or multiple hydrological variables [23–25]. Near-real-time drought
assessment methods have also been proposed [16,26,27], however, they do not provide real-time
observations at sufficient spatial and temporal resolution necessary for operational drought monitoring
systems [28,29]. In addition, a number of previous studies have suggested hybrid-based models [3,5,25]
which are still highly dependent on in situ measurements.

Recently, rainfall-based drought indices derived from the Tropical Rainfall Measuring Mission
(TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS) are used as an alternative to
meteorological data for monitoring drought [2,25,30–32]. The TRMM is a joint mission between the
National Aeronautics and Space Administration (NASA) of the United States and the Japan National
Space Development Agency (NASDA) of Japan to study rainfall for climate research. The MODIS
is a payload scientific instrument, launched by NASA on board the Terra and the Aqua satellites
to study global dynamics and processes occurring on the land, in the oceans, and in the lower
atmosphere. These data sets have been compared and validated against in situ observations [33].
However, hydrologic models that use in situ observations of drought-related variables (e.g., soil
moisture, and evapotranspiration) as input or for data assimilation are limited or unevenly distributed
across spatiotemporal scales. Readers can consult the review of AghaKouchak and others [16] for
further details.

There is a high variability of rainfall in the Southeast Asian region where maritime effects are
strong [34,35]. Understanding input data variability (e.g., spatiotemporal variability of rainfall) is
fundamental to gaining knowledge about hydro dynamics over various scales and to monitoring
drought events [36]. Run-off models that are independent of ground measurements with a good ability
to characterize the most influential hydrological variables, such as rainfall and evapotranspiration,
are rare [16]. There is therefore a need for integrating satellite-derived rainfall, evapotranspiration
and soil moisture into operational drought applications to improve the usability of satellite-based
drought information.
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Peninsular Malaysia has limited (5–6) meteorological stations that record both rainfall and
evapotranspiration rates and, therefore, relies on interpolation techniques for rainfall estimates.
The lack of detailed studies on drought and its impact on vegetation growth in this region is, therefore,
partly because of the problem of missing data [37]. Therefore, the objectives of the study are (1) to
calibrate and compare the spatiotemporal characteristics of both daily TRMM rainfall and MODIS
evapotranspiration products with that of rain gauge data in the Kelantan and Hulu Perak catchments of
Peninsular Malaysia (run-off deficit data as a component of water balance equation is used to calibrate
TRMM rainfall and MODIS evapotranspiration and different statistical measures are calculated to
validate drought indicators); and (2) to compare the performance of the satellite-predicted run-off
and actual streamflow data for a severely affected catchment. An additional analysis on land-use and
run-off deficit during a drought season is conducted to examine the utility of the run-off model for the
drought impact assessment. This study contributes to the enhancement of our knowledge regarding
the usefulness of TRMM rainfall and MODIS evapotranspiration in run-off deficit modeling studies at
varying spatial (catchment) and temporal scales.

2. Materials and Methods

2.1. Study Site

The study was carried out in the state of Kelantan and Perak, where a notably severe drought
occurred in 2005 (Figure 1). Kelantan state, located in the northeast Peninsular Malaysia, experiences
the highest record of mean monthly rainfall (2709 mm/year; computed from 1973 to 2011 rainfall
data) while Hulu Perak, located in the northwest, receives the third highest rainfall (2453 mm/year;
computed from 1973 to 2011 rainfall data). Both states experience humid tropical climate with a distinct
wet season (NEM; northeast monsoon) from November to March, a dry season from May to September
(SWM; southwest monsoon) and inter-monsoon seasons (hereafter IM) in April and October (Figure 2).
The main river Kelantan has a length of 248 km and Hulu Perak has a length of 85 km, with catchment
areas of about 3448 km2 and 3672 km2, respectively. The Kelantan flows northward while the Hulu
Perak flows westward, and both discharge into the South China Sea.

Of the total 15,026 km2 land area of Kelantan state, 64% is covered with forests and the rest with
rubber (14%), paddy, oil palm and other land-uses. Presently, the Hulu Perak catchment is covered by
extensive forests (94%) with some (5%) water bodies.

Due to the El Niño, there were drought effects in the form of rainfall deficit in the years 2005
and 2009 in this region (Table 1). According to the Malaysian meteorological report, the increasing
global sea-surface temperature, especially at the equatorial belt, is believed to be the major cause of
El Niño events [38]. The decreasing trend of rainfall leads to a decrease in river flow and reduction of
dam storage. The river flow readings were recorded as only 128 m3/s at Kelantan and 183 m3/s at
Hulu Perak River, which were significantly lower than the average (261 m3/s and 196 m3/s in normal
condition at Kelantan and Hulu Perak River, respectively).

Table 1. Reported periods on El Niño episodes by the Malaysian Meteorological Department.
Source: [39].

El Nino Episode

Beginning End

May 2002 February 2003
June 2004 June 2005

August 2006 February 2007
June 2009 May 2010
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Figure 1. Maps of the study area, illustrating watershed and land-use types for the Kelantan and Hulu 
Perak catchments, boundaries of local climate regions, and the location of meteorological data 
collecting stations over Peninsular Malaysia (also referred to Table A1). 

Figure 1. Maps of the study area, illustrating watershed and land-use types for the Kelantan and
Hulu Perak catchments, boundaries of local climate regions, and the location of meteorological data
collecting stations over Peninsular Malaysia (also referred to Table A1).
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Figure 2. Comparison of monthly rainfall data from calibrated TRMM multi-satellites precipitation 
analysis data (TMPA) with rain gauge data over different regions (referred to the local climate regions, 
shown in Figure 1) in Peninsular Malaysia for 2000–2010; p denotes the probability level of 
significance, and r denotes the correlation coefficient. 

2.2. Datasets and Methods 

The concept of drought assessment is to extract run-off information from multi-temporal satellite 
images, acquired during normal and drought conditions. The spatial-based drought assessment was 
carried out using the following analyses: (1) measurement of run-off deficit (Equation (1)); (2) analysis 
of run-off deficit versus land-use; and (3) comparison of satellite-based run-off values during the 
drought and the actual stream flow in a severely affected forest catchment for validation. The overall 
study methodology is illustrated in Figure 3. In addition, a qualitative assessment was performed 
using the visual analysis of multi-temporal run-off maps. This study considered that run-off 
variability of drought and non-drought years could potentially be used as an indicator of drought 
and hence as a proxy for hydrological drought characterization and assessment. 

The run-off deficit (RD in %) was defined by the following formula: 

ܴୈ = 
(Nr)-(Dr)

(Nr) x 100% (1)

where Nr is the normal run-off value based on the monthly run-off without severe drought and Dr 
is the run-off during a drought season. 

The conventional water balance equation was used in developing the satellite-based run-off 
models described in Thornthwaite and Mather [40]. Procedures introduced by Mahmud et al. [41] 
were adapted. This equation is expressed below: 

Figure 2. (a–e) Comparison of monthly rainfall data from calibrated TRMM multi-satellites
precipitation analysis data (TMPA) with rain gauge data over different regions (referred to the local
climate regions, shown in Figure 1) in Peninsular Malaysia for 2000–2010; p denotes the probability
level of significance, and r denotes the correlation coefficient.

2.2. Datasets and Methods

The concept of drought assessment is to extract run-off information from multi-temporal satellite
images, acquired during normal and drought conditions. The spatial-based drought assessment was
carried out using the following analyses: (1) measurement of run-off deficit (Equation (1)); (2) analysis
of run-off deficit versus land-use; and (3) comparison of satellite-based run-off values during the
drought and the actual stream flow in a severely affected forest catchment for validation. The overall
study methodology is illustrated in Figure 3. In addition, a qualitative assessment was performed
using the visual analysis of multi-temporal run-off maps. This study considered that run-off variability
of drought and non-drought years could potentially be used as an indicator of drought and hence as
a proxy for hydrological drought characterization and assessment.

The run-off deficit (RD in %) was defined by the following formula:

RD “
pNrq ´ pDrq

pNrq
ˆ 100% (1)

where Nr is the normal run-off value based on the monthly run-off without severe drought and Dr is
the run-off during a drought season.

The conventional water balance equation was used in developing the satellite-based run-off
models described in Thornthwaite and Mather [40]. Procedures introduced by Mahmud et al. [41]
were adapted. This equation is expressed below:
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Ro “ P´ E˘ Sm (2)

where RO is run-off, P and E are satellite rainfall and evapotranspiration, respectively, and Sm is
soil moisture. The available water capacity was fixed at 250 mm based on two main assumptions:
(i) the average rooting depth of the vegetation is about 1.5 m [42]; and (ii) the soils in Peninsular
Malaysia are predominantly silt loams (58%), clay loams (30%) and clays (12%) [43]. The soil moisture
retention information was taken from Thornthwaite and Mather [41]. The soil moisture (Sm) and the
accumulated potential water loss (APWL) have the following exponential expression:

Sm “ a. eb.APWL (3)

where both a and b are constants. Given a fixed water holding capacity of 250 mm, the values for a and
b are 249.5 and ´0.0040, respectively.
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Figure 3. Overall methodology of drought assessment.

2.2.1. Rainfall Retrieval from TRMM Multi Satellites Precipitation Analysis Data (TMPA)

Rainfall is one of the primary variables of the satellite-based run-off model. The TRMM
Multi-satellite Precipitation Analysis (TMPA) version 7 data, released by the NASA Goddard Earth
Sciences Data and Information Services Center (GES DISC) consists of rainfall observations at three
temporal resolutions: 3-hourly (3B42), daily (3B42 derived), and monthly (3B43). The TMPA 3B42
version 7 data product provides a standard 3 hourly rain rate at global scale with 0.25 degrees
resolution covering 50 degrees latitude in the northern and southern hemisphere. The data can be
directly downloaded from the Internet link: [44]. The daily rainfall amount is obtained by multiplying
the provided three-hour average rain rate of eight datasets per day by three. The daily rainfall amount
is then accumulated to estimate monthly rainfall. The equations used for the calculation of daily (Dr)
and monthly (Mr) rainfall are as follows:

Dr “
ÿ

8
i“1 pRriq ˆ 3 (4)

Mr “ Dr pmmq ˆ Nd (5)

where Rr is the three hour rain rate, Mr is the monthly rainfall, and Nd is the number of days per month.
To maximize the ability of 0.25 degrees (27 km) TMPA rainfall data to depict local rainfall patterns,
a spatial downscaling reduced the grid to 1 km. The study area, categorized as small-size region,
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experienced large measurement errors. These errors could possibly be caused by the conflict between
the insensitive coarse grid data and dynamic local hydrometeorology properties [45]. The spatial
downscaled algorithm suggested by Mahmud et al. [41] was employed for determination of the
monthly site specific co-efficients. The co-efficients were obtained from historical bias records based on
specific monsoon seasons. Thus, the site specific mean of each pixel was calculated. The equations
used for the downscaling process are as follows:

HRCpi,jq “
1
n

ÿ Rsatpi,jq

Rgpi,jq
(6)

DSatpi,jq “
Rsatpi,jq

HRCpi,jq
(7)

where HRC is the high resolution co-efficient, Rsat is the satellite-based rainfall data that was
re-gridded at 1 km resolution, Rg is the interpolated ground rainfall at 1 km resolution, n is total
number of pixels, and DSat is the downscaled satellite rainfall (at 1 km). A comparison of ground-based
measurements with the satellite-based TMPA data is given in Table 2.

Table 2. Comparison of mean monthly rainfall data from rain gauge with TMPA uncalibrated and
calibrated data respectively over the region. Note: S/G = satellite/gauge.

Region No. of Gauges Mean Monthly Rainfall (mm) Derived from S/G ratio

Gauge Uncalibrated TMPA Calibrated TMPA Uncalibrated Calibrated

Northwest 6 202.15 138.26 172.83 0.68 0.90
East 10 225.24 89.41 129.59 0.40 0.68

Southwest 3 167.59 98.42 131.23 0.59 0.79
West 9 210.21 149.87 187.34 0.71 0.92

Peninsular 28 201.3 118.99 155.25 0.60 0.82

The evapotranspiration (ET) values were obtained by calibrating the MODIS 16 data product.
MODIS provides the evapotranspiration estimates at varied spatial (from 500 m to 5 km) and temporal
resolutions (from daily to monthly scales). It uses vegetation cover reflectance and temperature
information coupled with ancillary atmospheric parameters in an energy balance model to estimate
the potential evapotranspiration [45].

A run-off map was produced based on estimated values derived from spatial inputs in the
water balance equation. Applying the same procedure to multitemporal run-off images enabled
us to visualize the effect and impacts of differences between pre- and post-drought conditions.
Satellite-based rainfall data used in this study are TRMPA and MODIS daily data from January
2000 to December 2010 (Figure 2). Because the variability of seasons affects the amount of rainfall in the
Peninsular Malaysia, the calibration of multitemporal TRMPA and MODIS data sets at micro-climatic
scale is required. For the calibration of TMPA rainfall, gain and offset errors were computed by
correlating the TMPA rainfall with rain gauge data at a monthly time scale. Regression analysis
between MODIS data and in situ observations collected from meteorological stations in the Peninsular
Malaysia was used for the calibration of the MODIS evapotranspiration data sets (MODIS 16A).
Ground data pertaining to this study was supplied by the Malaysia Meteorological Department
(MMD), collected from 26 stations (Table A1).

In this study, the monthly run-off maps were produced based on datasets of three consecutive
years: 2003, 2004 and 2005. Based on the monthly average run-off years, two consecutive years, 2003
and 2004, represent here normal run-off conditions, while the year 2005 represents a drought period.
Observations on the run-off pattern for continuous months enabled us to study the spatiotemporal
aspects of the drought. The run-off deficit was calculated based on per pixel spatial scale and enabled
us to produce the continuous and regular run-off maps. The standard procedures for estimating the
run-off deficit from the satellite-based data is shown in Figure 4.
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The rainfall data was calibrated based on the Geographical Difference Analysis approach,
introduced by Bastiaanssen et al. [46] which was tested for the Indus Catchment. Because of the
differences between the satellite- and ground-based rainfall data, calibration is essential to minimize
existing errors over the study area [47]. Details of the calibration scheme were provided in Nadzri and
Hashim [48] and therefore only a brief description is given here.

The geographical based calibration requires location-specific corrections. The equations used for
the calibration are as follows:

∆Rdi f pi,jq “ Rsatpi,jq ´ Rgpi,jq (8)

∆Rippi,jq “

řn
i“1 ∆Rdi f pi,jq˚ 1

dr
řn

i“1
1
dr

(9)

Rcsatpi,iq “ Dsat pi,jq ´ ∆Rippi,jq (10)

where Rsatpi,jq is the satellite-based rainfall and Rgpi,jq is the rain gauge data at a location (latitude (i),
longitude (j)), Dsat pi,jq is the downscaled satellite-based rainfall, ∆Rippi,jq is the correction values, d is
the distance between the centroid and neighbouring points, r is the order of the interpolation, and
Rcsatpi,iq is the calibrated rainfall, and Rrawpi,jq is the uncorrected satellite-based rainfall.

2.2.2. Calibration for Evapotranspiration (ET) retrieval from MODIS16A Data Set

Evapotranspiration (ET) is the second parameter used in developing the satellite-based run-off
model. The algorithm used to estimate the ET from the satellite data was developed by Mu et al. [45].
However, in this research, the ET was retrieved from the digital number (DN) of MODIS 16A data
product. The ET values were multiplied by a constant to convert DN into millimeter per month
(Equation (11)).

ET “ MODIS16AHDF ˆ a (11)

MODIS16AHDF “
Sˆ Aˆ Cρ pesat ´ eq {ra

s` y pl ` rs{raq
(12)

where ET is the total evapotranspiration estimates at monthly intervals (mm/month), MODIS16AHDF
is unitless ET in HDF format, a is a constant which is set to 0.1, s “ d pesatq {dts = denotes slope
of the curve relating saturated water vapor pressure pesatq to temperature, A is available energy
partitioned between sensible heat, latent heat and soil flux on land surface, ρ is air density, Cρ is the
specific heat capacity of air, ra is the aerodynamic resistance and rs is the surface resistance. Surface
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resistance was parameterized using satellite leaf area index and vegetation fraction cover. γ is the
psychrometric constant.

The detailed procedure for estimating MODIS ET is presented in Figure 5.Remote Sens. 2016, 8, 633 9 of 26 
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Figure 5. The scheme followed for the estimation of evapotranspiration using the MODIS 16 algorithm
(Source: Mu et al., 2007); LAI denotes leaf area index, and EVI denotes enhanced vegetation index.

The satellite-based ET provides data at global scales. Although several validations of those datasets
have been done for other climates, such as America and Asia [49], specific validation, particularly
for tropical regions was conducted by Nadzri and Hashim [48]. Those studies suggested that it is
necessary to calibrate data to obtain better results. Moreover, those studies have shown that errors
are associated with seasonal variations that need to be calibrated by using linear regression based on
monsoon characteristics following the expression given below:

ETcali “ aˆ ETMODIS ` c (13)

where ETcali is the calibrated satellite evapotranspiration, and a and c are the coefficients of calibration.
Table 3 shows the variations between satellite- and ground-based ETs values.

Table 3. Computed mean and satellite based gauge (S/G)-ratios of the potential evapotranspiration (ET)
measurements using ground temperature and MODIS data for the meteorological stations (referred to
Figure 1 and Table A1).

Station (ID) Mean Ground Computed
ET (mm/month)

Mean MODIS
ET (mm/month) Monthly S/G Ratio

Chuping (48604) 147.3 205.4 1.4
Alor Setar (48603) 149.5 126.3 0.8

Butterworth (48602) 169.9 106.3 0.6
K. Bharu (48615) 135.6 119.0 0.9

KualaTerengganu (48619) 237.7 166.8 0.7
Ipoh (48625) 155.6 35.0 0.2

Kuantan (48657) 123.9 87.2 0.7
Subang (48647) 133.6 139.5 1.0
Melaka (48665) 132.8 79.7 0.6
Senai (48679) 129.5 60.9 0.5
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2.2.3. Accuracy Assessment

To assess the accuracy of the calibrated TMPA and MODIS 16, validation tests were conducted.
Eighty percent of the rain gauge data randomly selected from 18 stations was used for the TMPA
calibration and the remaining 20% were used for validation. The MODIS data was calibrated using
rain gauge data collected in the periods between 2000 and 2005 and validated using data collected in
the period between 2006 and 2010. To statistically evaluate the performance of the calibrated TMPA
and MODIS 16, we used five statistical indices: (1) bias (b); (2) mean absolute error (MAE); (3) root
mean square error (ERMS); (4) Nash-Sutcliffe value (Nr); and (5) Pearson correlation coefficient (r).
The error matrices can be computed as follows:

b “
řn

i“1
`

Rsat ´ Rg
˘

n
(14)

MAE “

řn
i“1 ‖ Rsat ´ Rg ‖

n
(15)
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(18)

where Rg is the observed ground rainfall, Rsat is the satellite-based rainfall, and n is the number
of pixel.

3. Results

3.1. Validation of TMPA Rainfall Calibrated with Un-Calibrated Data

For the comparison of un-calibrated and calibrated TMPA data, we analyze the statistical indices
mentioned above and present the results in Figure 6. Statistical bias is an important and useful statistical
metric that reflects the precision of rainfall after calibration. Figure 6a shows the improvement in the
calibrated rainfall values, with reduction of 35 mm in the Alor Setar station after calibration compared
to the other four stations. Despite that the Bayan Lepas and Alor Setar are in the similar climatic
region, i.e., in the north of Peninsular Malaysia, bias for the former station was higher (around 40%)
than the latter, which may be due to a maritime effect around Bayan Lepas, which is located on the
Penang island. The differences in bias for Alor Setar, Kluang, and Kuala Terengganu stations were
less than 20%, indicating a similar pattern of improvement after calibration across those stations.
Although the sample used to validate the calibration showed a reduction in quality, Figure 7 indicates
an overall improvement due to calibration, which is evident from wide spread regression values (from
light to dark blue legend in Figure 7a,b). In this study, the hydrologic model that used TMPA data
for the calibration of rainfall to generate spatial maps was subject to sources of negligible errors for
Hulu Perak compared to that of Kelantan catchments, as evident from a visual assessment (Figure 7).
The Correlation co-efficient also supports the improvement after calibration (r = 0.7 ´ 0.9). The mean
absolute error (MAE) and Nash-Sutcliffe (NS), shown respectively in Figure 6b,d, show an almost
similar trend for all stations, while the later matrices are +0.2,´0.8 and´0.4, respectively, for Alor Setar,
Prai and Kuala Terengganu stations. However, the differences for Kuala Terengganu are small and at
an acceptable range. However, the trends of NS (+0.55, ´0.04) and MAE (+76 mm, +1 mm) for Petaling
Jaya and Kluang stations are opposite (Figure 6d). The ERMS (Figure 6c) rainfall values, estimated from
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TMPA calibrated data, are similar in trend with the MAE for all the stations. Most of the high-ranged
rainfall values were located around the eastern region, while the low-ranged were located around the
southeast region (Figure 7). However, smaller extent of the red area (~200 mm) shown in Figure 7c
compared to that of Figure 7d indicate the rainfall data sets improved, after calibrations in terms of
the ERMS values. This data calibration improvement pattern agrees well with the temporal variations
presented in Figure 2, where the differences between calibrated TMPA and ground measurements
are evident.
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Figure 7. Correlations (r) (a and b for calibrated and uncalibrated respectively) and residual mean
square error (ERMS) (c and d for calibrated and uncalibrated respectively) between rain gauge and
satellite-based TMPA, illustrating spatiotemporal variations and performance of the TMPA rainfall;
interpolated values derived from discrete rain gauges are presented in color gradient.

3.2. Assessment of MODIS 16 Calibrated Data

The performance of the calibrated MODIS 16, estimated from the statistical measures, is presented
in Figure 8. Figure 8a shows that all months were calibrated with maximum value differences during
the IM season (25 mm during March–April). As for the MAE (Figure 8b) and the ERMS (Figure 8c), the
trends are similar to each other and the error difference ranges from ´10 mm to ´20 mm. Calibration
of MODIS evapotranspiration led to improvements in drought monitoring (rainfall measurements)
which is indicated by the NSE values (Figure 8d) with a range between ´0.36 (IM) and 0.5 (SWM).
In the aspects of seasonal rainfall prediction, larger improvements were indicated by NSE ranges from
´0.36 to ´0.25 for IM and ´2.0 to 0.3 for SWM, while there was no improvement for NEM season
after calibration.
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Figure 8. The plots of bias (a); mean absolute error (b); root mean square error (c); and Nash-Sutcliffe
efficiency value (d) computed with the validation process for the MODIS evapotranspiration and data
from 26 meteorological stations, collected in the years between 2006 and 2010 in different seasons,
illustrating the differences before and after calibration.

3.3. Assessment of Spatial-Based Run-off Deficit

The satellite-based run-off map of Kelantan state during normal conditions (in July), the drought
season (in July) of 2005, and run-off relative deficiency are shown, respectively, in Figure 9a–c. In order
to assist with a comprehensive visual aided analysis of spatial variations in run-off and land-use,
the corresponding land-use map is also added to this illustration (Figure 9d).

From a visual inspection, it can clearly be identified that the run-off decreased in many areas
when the drought reached its peak during July 2005. The average run-off computed for normal seasons
(91.9 mm/month), i.e., in the years 2003 and 2004, was significantly greater than the drought season
(84.0 mm/month), i.e., in the year 2005. The relative run-off deficiency maps (Figure 9c), estimated for
Kelantan state and Hulu Perak show that approximately 34.7% and 42.9% of the total area experienced
a deficit greater than 40%. A large portion of Kelantan (41%) and Hulu Perak (43%) experienced
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moderate run-off deficits which ranges from 20% to 39%. In contrast, a small portion of land over the
Kelantan (24.1%) and Hulu Perak (13.8%) experienced a small run-off at low spatial extent (<20%).Remote Sens. 2016, 8, 633 14 of 26 
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illustrating the drought cases in July 2005 for Kelantan (upper row) and Hulu Perak (lower row) states.

3.3.1. Land-Use Versus Run-off Deficiency Analysis

The classification of the run-off deficit to their respective land-use is shown in Table 4 and their
distribution patterns are shown in Figure 9c,d. A combined analysis of land-use and run-off deficits
has revealed that forested areas experienced the highest run-off deficits. About 87.5% of Kelantan
experienced more than 60% run-off deficit. Other major land-uses, rubber (6.7%), oil palm (1.1%) and
paddy (2.1%), experienced less than 10% run-off deficit. This indicates that approximately 29.1% of the
total forest areas experienced more than 40% run-off deficit, which is comparable to the homogenous
areas of Hulu Perak (22.2%). Those affected areas are within Kelantan forest reserve (FR) catchment
areas, including Ulu Gading FR, Sg. (Sungai = river) Durian FR, Sg. Rek FR, Sg. Relai FR, Sg. Lebir,
and Gunung Stong Utara FR. Statistics also shows that about 20% of the forest areas, representing
approximately 4062 km2, experienced more than 40% run-off deficit. There was catchment-wide
(Kelantan and Hulu Perak) reduction in evapotranspiration, possibly caused by the rainfall deficits
during April–June in 2005 (Figure 10).
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Hulu Perak River. In addition, the average monthly run-off of those three catchments consistently 
declined from January and reached a minimum in July, 2005 (Figure 12). The run-off of those forest 
catchments declined by 57% during January–March, 80% during April–June, and 90% during July–
September 2005. The lowest average run-off was less than 3 mm/month in July, while normal run-off 
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Figure 10. Maps of monthly evapotranspiration during the drought period for Hulu Perak (a–l) and
Kelantan (m–x).

3.3.2. Comparison between Satellite-Based Run-Off and Actual River Flow

Comparison between the measured river flow in the Kelantan River and the corresponding
satellite-based run-off values on three forest catchments indicates that low run-off leads to river flow
reduction (Figure 11). The three major catchments, namely Ulu Gading, Gunung Stong, and Relai
contribute water flow to the Kelantan River, while only one catchment contributes water flow to the
Hulu Perak River. In addition, the average monthly run-off of those three catchments consistently
declined from January and reached a minimum in July, 2005 (Figure 12). The run-off of those
forest catchments declined by 57% during January–March, 80% during April–June, and 90% during
July–September 2005. The lowest average run-off was less than 3 mm/month in July, while normal
run-off was 18 mm/month.
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Figure 11. Comparison between the actual river flow and satellite run-off estimates from severely
affected sub-catchments in the Kelantan basin.

The three statistical error matrices including bias, Nash-Sutcliffe, and root mean square were
computed to capture spatiotemporal variability of drought-related variables such as water yield for
the Hulu Perak and Kelantan rivers (Figure 13). Overall, the results show that there is a nearly perfect
water yield between satellite-based predicted water yield and ground observations. The NSE values
ranged between 0.0 and 0.7 for Hulu Perak, and 0.4 and 0.8 for Kelantan catchments, indicating
algorithms are hydrologically consistent for drought monitoring, except unsatisfactory statistical
measures computed for Kelantan in April and for Hulu Perak in February. Those sources of error
might be associated with reduced sensor sensitivity due to reduced atmospheric water during the
dry season. The overall performance between the actual and satellite based river flow is presented in
Figure 14. The double mass curve (DBM) shows that there is an underestimation of water yield for
Kelantan, and an overestimation for Hulu Perak. However, NS used to measure the capability and
reliability of the hydrologic model shows that, overall, 91.6% of data is in high agreement with ground
measurement for both areas.

Table 4. Classified areas (km2) in the run-off deficit map by five major land-use types for the state
of Kelantan and Hulu Perak. Note: F = Forest, OP = Oil palm, P = Paddy, R = Rubber, O = Others,
N/A = not available.

Run-off
Deficit (%)

Land-Use (km2)

Kelantan Hulu Perak

F OP P R O F OP P R O

100–80 903 55 84 104 98 137 N/A N/A N/A N/A
79–60 1508 60 58 160 61 542 N/A N/A N/A N/A
59–40 1780 112 103 302 98 722 N/A N/A N/A N/A
39–20 3837 419 482 902 328 1409 N/A N/A N/A N/A
<20 2510 121 234 533 172 453 N/A N/A N/A N/A
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Figure 12. The plots of monthly average run-off in the normal and drought seasons for Relai, Gunung
Stong and Ulu Gading Forest (a); and Gading Catchment Forest catchment (b); Kelantan (c); and Hulu
Perak River (d).
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Figure 14. Plots of cumulative water yield in the period between January 2000 and December 2010,
analyzed with the double mass curve for the Kelantan (a) and the Hulu Perak (b) rivers, illustrating
satellite-based versus ground-simulated run-off.

4. Discussion

Recent studies have linked rainfall deficits, soil thermal stress and vegetation growth and
mortality to drought [2,3,5–7,9,11,12,15,20,25,27–32,36,50–52], highlighting the need for operational
drought monitoring systems that can show drought intensity, location and extent [16]. In response,
this study devised an operational procedure and algorithm, a run-off model, from TMPA rainfall
and MODIS evapotranspiration products for spatiotemporal drought assessment (Figures 3 and 4).
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The model is based on a measure of water stress, calculated by run-off deficit (Equations (1) and (2))
before (2002–2003) and during (2005; El Niño) drought events, where we employed the concept of
water balance equation (Figure 2). Besides run-off deficits, satellite-based estimates of vegetation,
temperature, rainfall conditions [2], and ground-based information about land-use, cover, and soils [53],
were also used for drought monitoring.

The concept of integrating rainfall and evapotranspiration variability into run-off deficit mapping
on a continuous and regular per pixel basis is a potentially important new approach to monitor spatial
drought. Unlike other ground- or satellite-based drought indices [25], the advantageous aspect of the
proposed approach is the detectability of changes for assessing hydrologic conditions, especially across
tropical humid regions where local wind and climate patterns dramatically change [31]. Furthermore,
the simplicity of the calculation process should make the technique practical for operational drought
monitoring systems (Figures 8 and 10). The TMPA rainfall and MODIS satellite data, which are the
primary data inputs to the proposed model, can be retrieved through an open source internet data
sharing policy.

The proposed technique was proved to be useful in identifying the impact of the drought on
land-use (Figures 9 and 10). In the forest mensuration aspect, the logged timber would be difficult
to be transported through shallow-river trawling. Furthermore, a forest catchment severely affected
by long-term drought may lead to a reduction in river flow and, consequently, may cause scarcity of
freshwater supplies [54,55]. Such drought conditions may affect the whole community due to water
scarcity for irrigated crops and, thereby, may reduce crop production [56]. Water rationing would
need to be implemented in those critical areas identified by an efficient drought monitoring system.
The operational procedure of this draught monitoring system can be used to identify the spatial extent
of drought-vulnerabilities for a given land-use, and to map drought risks if socioeconomic factors are
taken into account [56], although approaches need to be thoroughly investigated across a wide range
of socioeconomic dimensions and climate regions.

The multitemporal and spatial observation of the run-off changes can be a useful indicator for
the onset of drought warning and monitoring systems. The acquired information would enable
scientists and decision-makers to study the spatiotemporal patterns and behavior of the run-off.
Temporal rainfall deficiency detection within forested catchment areas which can be the major factor
in the drought occurrence in tropical areas can be made in a more comprehensive manner.

The operational hydrological drought monitoring based on satellite observations could effectively
identify the complex spatio-temporal drought distribution [57]. Understanding the global perspective
of drought distribution is fundamental to monitoring the cause and effects of specific regional
droughts [58]. The identification of drought-vulnerable areas and suitable locations for climate
monitoring stations can be designed based on satellite-based drought products. The establishment
of more systematic and effective drought management systems, such as the Famine Early Warning
System (FEWS-NET) and the Monitoring Agricultural Resources (MARS) in Africa can be done, but
they should be more suited to the local climatic systems. In the future, many African countries are
likely to see negative impacts on subsistence agriculture due to the effects of global warming. Increased
climate variability is forecasted, with more frequent extreme events. Initiatives for managing climate
change and increased climate variability therefore requires baseline information on satellite-based
drought indicators for future monitoring and anomaly detection [59].

Findings have indicated that the fully satellite-based run-off models can assess and quantify
drought impacts from a local catchment perspective of Peninsular Malaysia. Studies [60,61] show
that in the east and northeast regions of the Peninsular Malaysia where critical drought occur,
the models provide a powerful tool for monitoring drought conditions. Given the ground-based
observations are very limited and unevenly distributed across Peninsular Malaysia, satellite-based
run-off models could lead to improvement in drought monitoring, and seasonal forecasts in this region.
The developed drought monitoring methods provide complementary information, and it could lead to
a better understanding of (i) the operational application of drought monitoring at spatiotemporal scale
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(Figure 10); (ii) the ecosystem response to hydro-climatic variability (Figures 11 and 12); and (iii) the
ability to assessing a precise and comprehensive grid-based drought conditions and distributions
(Figures 13 and 14).

5. Conclusions

The use of satellite measurements to assess drought is a significant and relevant step to
understanding global climatic changes. This study provides a basic guideline on how droughts
can be monitored and assessed operationally using satellite observations. Many demonstrations on
the operational use of satellites have been developed for detailed monitoring and mapping of floods
and droughts with the combination of in situ data. Gathering sufficient information on the spatial
and temporal nature of droughts will require the installation of additional ground-stations at high
spatial coverage, which would be logistically expensive. Fully satellite-based drought monitoring
can supplement in situ data by providing consistent observations with global coverage and would
be cost-effective. The spatiotemporal maps have the ability to identify drought vulnerable areas,
indicating that the satellite-based run-off model of rainfall and evapotranspiration can be used for
climate change impact assessment from local to global scales. Knowledge gained from this study could
be useful for developing spatiotemporal drought identification methods and assessing and quantifying
the impact of drought on water-related ecosystems (e.g., freshwater productivity) across tropical
regions-similar to hydro-climatic characteristics of Peninsular Malaysia. Rainfall is a vital component
of the hydrologic cycle and plays a key role in monitoring drought, especially in water-limited
ecosystems, and in conserving watershed areas to support economic activities. The rapid changes
of rainfall and evapotranspiration in the Southeast Asian humid tropical areas, particularly under
climatic or hydrologic extremes such as drought, can be effectively monitored at a regional scale using
satellite multi-sensor products. The impact of drought on the carbon cycle, water storage, and broadly
drought-induced climate changes can therefore be studied in a comprehensive manner.
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Appendix

Table A1. Location of the Malaysian meteorological stations. Notes: the listed stations were operational
since 1980s; A denotes rainfall and other climatic variable, B denotes rainfall, and C denotes streamflow
observation stations.

No. ID Name Types Region Latitude
(˝ 1 11)

Longitude
(˝ 1 11)

Height
(m.s.l) (m)

1 48604 Chuping A Northwest 6 29 00 100 16 00 22
2 48600 Langkawi A Northwest 6 20 00 099 44 00 6.4
3 48603 Alor Setar A Northwest 6 12 00 100 44 00 4
4 48602 Butterworth A Northwest 5 28 00 100 23 00 2
5 41529 Perai A Northwest 5 21 00 100 24 00 1
6 48601 Bayan Lepas A Northwest 5 18 00 100 15 00 3
7 48674 Mersing A East 2 27 00 103 50 00 43.6
8 48642 Batu Embun A East 3 58 00 102 21 00 59
9 48657 Kuantan A East 3 47 00 103 13 00 15
10 48653 Temerloh A East 3 28 00 102 23 00 39
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Table A1. Cont.

No. ID Name Types Region Latitude
(˝ 1 11)

Longitude
(˝ 1 11)

Height
(m.s.l) (m)

11 48649 Muadzam Shah A East 3 03 00 103 05 00 33
12 48618 Kuala Terengganu A East 5 23 00 103 06 00 5
13 48619 Kuala Terengganu M.C. A East 5 20 00 103 08 00 35
14 48615 Kota Bharu A East 6 10 00 102 17 00 4.6
15 48616 Kuala Krai A East 5 32 00 102 12 00 68.3
16 48661 Ulu Chanis B East 2 48 45 102 56 15 N/A
17 48625 Ipoh A West 4 35 00 101 06 00 39
18 48620 Sitiawan A West 4 13 00 101 42 00 7
19 48623 Lubuk Merbau A West 4 48 00 100 54 00 77.2
20 48631 Cameron Highlands A West (Highland) 4 28 00 101 23 00 1472
21 48647 Subang A West 3 07 00 101 33 00 17
22 48648 Petaling Jaya A West 3 06 00 101 39 00 45.7
23 48650 Sepang KLIA A West 2 43 00 101 42 00 16.3
24 48658 Ldg. Sungkai B West 3 58 15 101 18 00 N/A
25 48665 Melaka A Southwest 2 16 00 102 15 00 9
26 48672 Kluang A Southwest 2 01 00 103 19 00 88.1
27 48670 Batu Pahat A Southwest 1 52 00 102 59 00 6.3
28 48679 Senai A Southwest 1 38 00 103 40 00 37.8
29 5721442 Sg. Kelantan C East 5 45 45 102 09 00 N/A
30 4809443 Sg. Perak C West 4 49 10 100 57 55 N/A
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