Supplementary Materials: Airborne Lidar Estimation of Aboveground Forest Biomass in the Absence of Field Inventory

António Ferraz, Sassan Saatchi, Clément Mallet, Stéphane Jacquemoud, Gil Gonçalves, Carlos Alberto Silva, Paula Soares, Margarida Tomé and Luisa Pereira

Table S1. Metrics derived from the lidar point cloud for the establishment of the aboveground biomass (AGB) regression models [1].

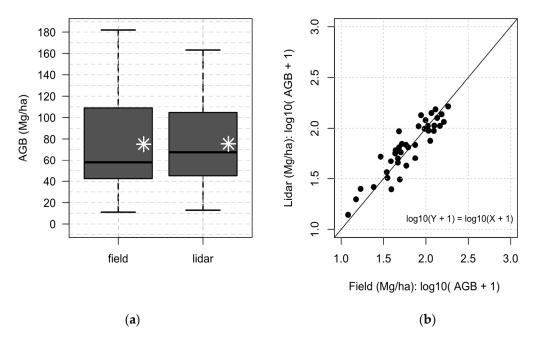

Variable	Description				
hmin	Height minimum				
hmax	Height maximum				
hmean	Height mean				
hmad	Height median absolute deviation				
hsd	Height standard deviation				
hskew	Height skewness				
hkurt	Height kurtosis				
hcv	Height coefficient of variation				
hmode	Height mode				
h01	Height 1st percentile				
h05	Height 5th percentile				
h10	Height 10th percentile				
h15	Height 15th percentile				
h20	Height 20th percentile				
h25	Height 25th percentile				
h30	Height 30th percentile				
h35	Height 35th percentile				
h40	Height 40th percentile				
h45	Height 45th percentile				
h50	Height 50th percentile				
h55	Height 55th percentile				
h60	Height 60th percentile				
h65	Height 65th percentile				
h70	Height 70th percentile				
h75	Height 75th percentile				
h80	Height 80th percentile				
h90	Height 90th percentile				
h95	Height 95th percentile				
h99	Height 99th percentile				
cr	Canopy relief ratio = (hmean – hmin)/(hmax – hmin)				
cov	Canopy cover (percentage of returns above 1.30 m)				

Table S2. Matrix of Pearson's correlation coefficients (r) or the lidar metrics selected to establish the
AGB model. The meanings of the acronyms are provided in Table S1.

	hmode	hcv	hkurt	h05	h99	cr	cov
hmode	1.00						
hcv	-0.31	1.00					
hkurt	0.16	-0.28	1.00				
h05	0.59	-0.5	-0.5	1.00			
h99	0.58	0.3	0.3	0.37	1.00		
cr	0.62	-0.47	-0.47	0.63	0.55	1.00	
cov	0.38	0.1	0.1	0.28	0.55	0.15	1.00

Table S3. Matrix of Pearson's correlation coefficients (r) or the lidar metrics selected to establish the AGB model without taking into account Forest Plot #12 (see the text for more details).

	hmode	hcv	hkurt	h05	h99	cr	cov
hmode	1.00						
hcv	-0.39	1.00					
hkurt	0.22	-0.27	1.00				
h05	0.62	-0.5	-0.15	1.00			
h99	0.51	0.29	-0.12	0.38	1.00		
cr	0.65	-0.48	-0.11	0.63	0.6	1.00	
cov	0.22	0.05	0.24	0.31	0.47	0.13	1.00

Figure S1. Result for AGB estimation at the forest plot level using the AGB regression model approach without taking into account Forest Plot #12. (a) Box-and-whisker diagram (see Figure 3 for details) and (b) a scatter plot of field- versus lidar-derived AGB used to calculate the parameters show in the row denoted by forest plot** of Table 2. A log-log scale is used to compare to Figures 3–5.

References

1. McGaughey, R. *FUSION/LDV: Software for LIDAR Data Analysis and Visualization*; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Seattle, WA, USA, 2015; p. 182.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).