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Abstract: This paper presents a semi-automatic procedure to discriminate seasonally flooded areas in
the shallow temporary marshes of Doñana National Park (SW Spain) by using a radiommetrically
normalized long time series of Landsat MSS, TM, and ETM+ images (1974–2014). Extensive field
campaigns for ground truth data retrieval were carried out simultaneous to Landsat overpasses.
Ground truth was used as training and testing areas to check the performance of the method.
Simple thresholds on TM and ETM band 5 (1.55–1.75 µm) worked significantly better than other
empirical modeling techniques and supervised classification methods to delineate flooded areas at
Doñana marshes. A classification tree was applied to band 5 reflectance values to classify flooded
versus non-flooded pixels for every scene. Inter-scene cross-validation identified the most accurate
threshold on band 5 reflectance ($ < 0.186) to classify flooded areas (Kappa = 0.65). A joint TM-MSS
acquisition was used to find the MSS band 4 (0.8 a 1.1 µm) threshold. The TM flooded area was
identical to the results from MSS 4 band threshold $ < 0.10 despite spectral and spatial resolution
differences. Band slicing was retrospectively applied to the complete time series of MSS and TM
images. About 391 flood masks were used to reconstruct historical spatial and temporal patterns
of Doñana marshes flooding, including hydroperiod. Hydroperiod historical trends were used as a
baseline to understand Doñana’s flooding regime, test hydrodynamic models, and give an assessment
of relevant management and restoration decisions. The historical trends in the hydroperiod of Doñana
marshes show two opposite spatial patterns. While the north-western part of the marsh is increasing
its hydroperiod, the southwestern part shows a steady decline. Anomalies in each flooding cycle
allowed us to assess recent management decisions and monitor their hydrological effects.

Keywords: Landsat time series; normalization; inundation mapping; classification tree; hydroperiod;
marsh; flood mask

1. Introduction

Doñana temporary marshes are one of the largest protected wetlands in Europe with an extent of
340 km2, of which 300 km2 are included in the Doñana National Park. With a typical Mediterranean
climate, the flooding cycle starts in September and usually reaches maximum flooding levels at the
end of boreal winter, mainly driven by rainfall [1]. The dominant clay and silt substrates of Doñana
marshes are soaked with the first showers and a shallow water layer (0.51 m average water column)
spreads over the floodable area (Figure 1, solid blue area). In late spring, evaporation becomes the
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most important factor in the hydrological balance and the marshes dry up almost completely by the
end of July. During summer, groundwater plays an important role in maintaining certain humidity
levels at seepages [2].
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result of human intervention (channelling of river arms, river course dredges, wetlands drainage for 
farming and aquaculture, widespread groundwater extraction, pollution spills, waterway shipping, 
etc.). Doñana marshes have undergone not only drastic reduction of the original extent (around 1500 
km2 [3,4]) but also a permanent threat to the protected area, due to the progressive reduction of both 
water supply and quality. Overall, changes in the original marsh area at the beginning of the 20th 
century have led to the current 270 km2 occupied by shallow waters (with an estimated loss of 80% 
from its original extent). In addition to wetland area reduction, tidal influence, one of the main 
flooding drivers, was also controlled in 1984 by the construction of a dike along the right bank of the 
Guadalquivir River inside Doñana (Figure 1). Among such dramatic changes, a massive toxic spill in 
April 1998 to the Guadiamar River (the major tributary), led the scientific community and 
policy-makers to set up and implement an ambitious restoration program, named ‘Doñana 2005’, 
aiming at recovering the quantity and quality of the tributary waters entering these vast wetlands [1]. 
The project is still ongoing, assessing the success of restoration action. 

Now more than ever we need to know the historical flooding patterns, both spatial and 
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Figure 1. Location of (a) Andalusia in Europe and (b) Doñana in Andalusia at the mouth of the
Guadalquivir River; (c) the area covered by Doñana natural marshes (solid blue) within the protected
area of Doñana National and Natural parks (red line). Numbers indicate main tributary rivers and
ravines (1. Arroyo de la Rocina; 2. Arroyo del Partido; 3. Encauzamiento del Río Guadiamar). Background:
False color composite of a 2007 Landsat TM image.

Under natural conditions, interannual variability of continental wetlands is driven by
meteorological conditions (rainfall or water table oscillations). However, Doñana marshes have
experienced throughout the last century a continuous and severe transformation and degradation
as result of human intervention (channelling of river arms, river course dredges, wetlands drainage
for farming and aquaculture, widespread groundwater extraction, pollution spills, waterway
shipping, etc.). Doñana marshes have undergone not only drastic reduction of the original extent
(around 1500 km2 [3,4]) but also a permanent threat to the protected area, due to the progressive
reduction of both water supply and quality. Overall, changes in the original marsh area at the
beginning of the 20th century have led to the current 270 km2 occupied by shallow waters (with an
estimated loss of 80% from its original extent). In addition to wetland area reduction, tidal influence,
one of the main flooding drivers, was also controlled in 1984 by the construction of a dike along
the right bank of the Guadalquivir River inside Doñana (Figure 1). Among such dramatic changes,
a massive toxic spill in April 1998 to the Guadiamar River (the major tributary), led the scientific
community and policy-makers to set up and implement an ambitious restoration program, named
‘Doñana 2005’, aiming at recovering the quantity and quality of the tributary waters entering these
vast wetlands [1]. The project is still ongoing, assessing the success of restoration action.

Now more than ever we need to know the historical flooding patterns, both spatial and temporal,
and their relationships with natural climatic variability or anthropic modifications (land use changes
and water demand). Details on flooding process, such as interannual and seasonal variations, as well
as the influence of human transformations have long been demanded by decision-makers in order to
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apply scientifically based management to the Doñana marshes. So far, hydrological management has
been conducted on an “event–reaction” basis, leading to temporal solutions that afterwards became
part of new problems [5]. Hydroperiod, the length of time each point remains flooded along an annual
cycle [6], is a critical ecological parameter that shapes aquatic plants’ and animals’ distribution and
determines available habitat for many of the living organisms in the marshes [7,8]. Annual hydroperiod
is also the ultimate result of flooding dynamics due to human activities and global trends.

Thus, the sustainable management of the Doñana wetlands requires a better understanding of the
structure and dynamics of the flooding process. This knowledge can be achieved through systematic
long-term monitoring, although access limitations may make the cost of direct monitoring prohibitive.
Remote sensing is cost-effective in terms of the extent surveyed and has the potential to scale up
ground-based surveys and studies [9] by repeatedly imaging large areas. Many methods are available
to represent accurately on-the-ground information and phenomena through collected imagery. One of
the main advantages of remote sensing information sources comes from the possibility to access,
for any place in the world, historical scenes revealing past land uses and cover.

Optical images have been widely proved to be an excellent tool to discriminate continental water
bodies [10,11] from other targets, or to monitor inland water characteristics [12–16], but their use is
less frequent for shallow wetlands covered by aquatic plants [17,18]. Many previous studies have
used optical images to reveal and assess the damage caused by catastrophic floods as well [19,20].
Low reflectance in the Short Wave Infrared (SWIR) region (1.4–3 µm) is characteristically related to the
presence of water [21]. However, several water characteristics such as depth and turbidity, as physical
constraints, reduce the ability to discriminate accurately, in a simple way, shallow water’s extent [19].
In addition, shallow and clean waters make the bottom visible, which increases radiometric signal
from the soil. Turbid waters usually show reflectance peaks between 700 and 900 nm, related to the
presence of phytoplankton and/or suspended sediments [22,23]. Moreover, the presence of aquatic
plants contributes to the noise when delineating wetlands due to their heterogeneous distribution.
These constraints enhance the challenge of systematically producing flood maps for shallow wetlands
such as the Doñana marshes.

Alternatively, many studies have relied on microwave imagery to map flood levels [24–27]. Radar
sensors have several advantages over optical and thermal ones that make them particularly applicable
to monitoring hydrologic conditions of wetlands. Radar imaging operates independent of cloud cover
and solar illumination, and microwaves are very sensitive to the moisture content of the elements
being imaged. However, wetlands usually present complex vegetation cover and structure patterns
and differences in surface roughness that affect the way the microwave radiation interacts with the
target and ultimately how much energy is returned to the satellite [28]. In addition, roughness caused
by aquatic plants or wind on the water surface in shallow marshes may contribute to backscattering
signal [29] according to the SAR band used. Despite such limitations, radar is being widely used for
continental wetlands delineation in many studies [30,31].

Long time series of images have been stored and made available for several remote sensing
sensors, allowing researchers to revisit any place in a former time. Moreover, for Landsat platforms,
different sensors have been acquiring comparable images since 1972 [32]. This valuable spatial and
temporal information is enhanced by spectral resolution, which makes Landsat remote sensing images
a very useful tool for land cover change mapping [33]. In the case of large study areas, the cost-benefit
rate rises when dealing with long-term monitoring programs and land use change analysis [34,35].

In this work we assess the performance of different digital image analysis techniques with Landsat
images seeking to accurately determine flooded areas in the Doñana marshes. Different empirical
modeling techniques and supervised classification methods were evaluated. Method selection was
based on ground-truth assessment of different flood classes. Once the optimal method was selected,
our main goal was to implement a semiautomatic procedure to produce systematically reliable and
comparable flood maps of the Doñana marshes for the last 40 years [36]. The selected method should
be consistent enough to be applied over a radiometrically normalized long time series of Landsat
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images. The resulting flooding masks allowed us to reconstruct historical flooding patterns and
temporal trends for every single 30-m pixel in the Doñana marshes. Systematic flood mapping has
enabled the reconstruction of an annual hydroperiod for every flooding cycle. This critical and
ecologically meaningful variable is being used to assess the effects of global change processes and
human management on the Doñana marshes.

2. Material and Methods

2.1. Study Area

The study area is located at the estuary of the Guadalquivir River (37◦0′N 6◦37′W), a large
and shallow floodplain in Southwestern Spain (Figure 1). The Doñana marshes are a vast seasonal
freshwater wetland of international importance, considered as Western Europe’s largest sanctuary
for migratory birds. In 1969 they were declared a national park, then a Biosphere Reserve in 1980,
an Important Wetland Site under the Ramsar Convention in 1982, and a Natural World Heritage
Site in 1984 [1]. Doñana is also recognized as a Long-Term Socio-Ecological Research (LTSER)
platform integrated in the LTER-Europe network [37] by applying harmonized protocols for long-term
socio-ecological research.

The climate of the area is subhumid Mediterranean with Atlantic influence. The mean annual
temperature is 17 ◦C, the coldest month is January with 10 ◦C, and the warmest month is July with
24 ◦C. The average annual rainfall is 550 mm, with dramatic interannual variation, going from 170 mm
(2004–2005) to 1000 mm (1995–1996). Rainfall concentrates between October and April, whereas the
dry season occurs from May to September [38]. The variable winter rainfall floods Doñana marshes,
forming a wide floodplain that dries up during summer. Flooded areas are variable in depth, turbidity,
and vegetation cover, being driven mainly by the amount and seasonal pattern of rainfall. In dry
years, flooding occurs only on the sparsely distributed depressions (lucios) and historical tidal courses
(caños). Maximum water volume may reach 265 hm3 during exceptionally wet flooding cycles such as
the 1995–1996 one, achieving 2.47 m of water column at the deepest points, although average annual
maximum depth is about 0.51 m for the whole marshes. Later in the season, the evaporation rate,
going from 2 mm/day in January to 10 mm/day in July, controls the water bodies’ permanence [39].

2.2. Satellite Imagery

We acquired all available cloud-free Landsat MSS, TM and ETM+ scenes for Doñana National
Park (Path: 202, Row: 34). Altogether, 462 images covering the 1974–2014 period form the time series
for this study (70 MSS, 262 TM and 130 ETM+). From them, up to 71 scenes were discarded due
to different and unexpected acquisition problems such as missing lines and columns, radiometric
incoherences, line shifts, and cloud cover over the study area. The minimum number of scenes per
year was three for 1980, while a maximum of 27 scenes was available for 2009; the average number
was 10 valid scenes per year. The final number of valid scenes was 391, evenly distributed along the
flooding cycle (December to May, 45% of total available scenes).

2.3. Image Processing

In order to make the time series comparable, a semi-automatic robust and coherent pre-processing
protocol was applied. The complete procedure included metadata retrieval from raw 1G data
images, geometric and atmospheric corrections, followed by time series radiometric normalization
using ordinary least squares regression towards a reference cloud-free and clear atmosphere scene
(18 July 2002 for Landsat ETM+ and TM images and 28 August 1985 for Landsat MSS images) using
pseudo-invariant areas [40,41].

The panchromatic band (0.52–0.90 µm) of a Landsat 7 ETM+ image from 18 July 2002 was
georeferenced with 100 ground control points (GCP) using the the 1998–1999 1:60,000 aerial orthophoto
as reference [42]. The rest of the TM and ETM+ images were automatically co-registered to this reference
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image with RMSE < 1 pixel. The resampling method was cubic convolution in order to improve spatial
coherence of final classification maps [43]. Average RMSE calculated with an independent set of
GCP on co-registered images was 17.5 m. For MSS images we followed the same approach, using
as reference a Landsat 4 summer scene acquired in 1985 by both sensors, MSS and TM, aboard the
same platform. MSS output pixel size was set to 60 m × 60 m from the nominal 79 m × 57 m. RMSE
for MSS co-registration was independently estimated in 23 m. For Landsat 7 ETM+ SLC-off images
acquired after 31 May 2003 we applied gap filling based on the segmentation model approach [44].
Such a method does not use external data to interpolate gaps but segments from the original image
elements. With a similar method Chen et al. [45] demonstrated similar land cover map classification
accuracies compared to gap-free scenes.

Images were then atmospherically corrected and transformed into reflectance values using the
Pons and Solé-Sugrañes [46] method based on the dark object model [47]. No topographic correction
was applied since in the study area relief is negligible (the study area range being less than 10 m a.s.l.).

Finally, all the images were radiometrically normalized to allow comparisons across different
sensors, dates, and atmospheric conditions by using a set of pseudo-invariant areas [40,48,49].
Pseudo-invariant areas comprised over 60,000 pixels inside the scene, covering the full reflectance
range, and selected from eight area types: deep sea, reservoirs, sand dunes, rocky outcrops, bare soils,
airport runways, urban areas, and open mines [22]. They were confirmed to have low seasonal changes
in reflectance and to be present from the beginning of the image time series. The method includes a
cloud masking process based on empirical slicing of the Landsat thermal and red bands. Accordingly,
pseudo-invariant pixels were rejected whenever covered by clouds. We used the same Landsat 7
ETM+ image as the radiometric reference image, which provided a high sun angle and overall good
radiometric quality. For every combination of scene and band, we calculated a linear regression model
using all pseudo-invariant pixels. Pixels with regression residuals greater than 1 Standard Deviation
were assumed to have changed significantly in reflectance between the scenes and were therefore
rejected. Once removed, a new regression model was then adjusted. Offsets and gains from the fitted
regression models were used to normalize the time series of images to the reference one (band to
band processing). More than 97% of the scenes bands were fitted with R2 values greater than 0.90.
As expected, offset values were consistently lower for winter scenes. Certain bands of up to 18 scenes
could not be normalized due to radiometric inconsistencies and they were discarded.

2.4. Ground Truthing

The Doñana marshes are a highly dynamic seasonal wetland. They may appear as a dry cracked
clay soil in summer, bare water pools during the flooding season, or pools densely covered by
emergent and floating plants. In addition, the marshes usually exhibit patchy turbidity patterns due to
differences in suspended sediment concentrations (Figure 2). In order to capture such variability,
we carried out 31 extensive ground-truth field campaigns coincident with 29 different Landsat
overpasses (17 TM and 12 ETM+) from 2003 to 2013.

Ground-truth transects were designed to cross heterogeneous flooded areas and sampled
simultaneous or recently after a satellite overpass. Sampling points were taken every 60 m in
homogeneous covers collecting field information from a radius of 15 m, representative of the
30 m × 30 m Landsat TM and ETM+ pixel size. In order to collect the complete flooding gradient we
recorded four different flooding classes (Figure 2) in relation to the percent of soil covered by water:
dry soil (0%), wet (1%–25%), waterlogged (25%–75%), and flooded (>75%). Additionally, we recorded
ancillary information on many other relevant variables such as water turbidity, water depth, percent of
bare ground, plant and open water cover, and plant species abundance and dominance (Table 1). Such
complementary information might help in assessing the discriminative ability of flooded pixels under
different conditions. Geolocation of every point was recorded by means of PDA-GPS units with less
than 4 m horizontal position error on average.
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found in these wetlands. The flooded picture shows the shallow inundation with variable plant cover 
and turbidity. 
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Alien spp abundance Percent per pixel 0%, 1%–5%, 5%–25%, 25%–50%, 50%–75%, >75% 
Open water Percent per pixel 0%, 1%–5%, 5%–25%, 25%–75%, >75% 
Flood cover Percent per pixel 0%, 1%–5%, 5%–25%, 25%–75%, >75% 
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Figure 2. Different flooding features in Doñana marshes showing the spatio-temporal variability
found in these wetlands. The flooded picture shows the shallow inundation with variable plant cover
and turbidity.

Table 1. Ground-truth points collected variables with their corresponding units and categories.

Variable Units Categories/Range

Turbidity Nefelometric Turbid
Units (NTU) Continuous (0–653)

Water Depth Centimeter Continuous (0–140)
Water conductivity microSiemens/cm2 Continuous (300–42,700)

Dry bare-ground cover Percent per pixel 0%, 1%–5%, 5%–25%, 25%–75%, >75%
Plant type Plant dominant species Emergent, floating, submerged, algae

Plant status Alive/Dead % Green/% Dry
Plant cover per plant type Percent per pixel 0%, 1%–5%, 5%–25%, 25%%–75%, >75%

Alien spp abundance Percent per pixel 0%, 1%–5%, 5%–25%, 25%–50%, 50%–75%, >75%
Open water Percent per pixel 0%, 1%–5%, 5%–25%, 25%–75%, >75%
Flood cover Percent per pixel 0%, 1%–5%, 5%–25%, 25%–75%, >75%

A total of 6005 field sampling points were collected by transects on foot and on horseback—and,
in certain flood occasions, by canoe—to extend the ground-truth dataset. Ground-truth data were used
to train (80% of the sample) and validate (20%) the classification procedures.

2.5. Flood Mapping and Accuracy Assessment

Clear water bodies have a very low reflectance in the optical spectrum, especially in the Near
and Mid Infrared bands (bands 4, 5, and 7 of TM and ETM+). Reflectance in the visible and IR
regions depends on the reflectance of the submerged soil, the water depth, the amount of suspended
particles, and their optical properties [50,51]. The abundance of optically active components, such as
phytoplankton, suspended minerals, and dissolved organic carbon directly affect water turbidity and
colour [52]. The more turbid water bodies have higher reflectance values in the green and red visible
bands [22].
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Several procedures have been proposed to identify shallow inundated areas based on the low
reflectance values of water bodies in the SWIR (Short Wave InfraRed) region. We tested various
optical indices proposed in the literature ([53–55]) and several empirical classification approaches
(Maximum Likelihood, Discriminant Function Analysis, and Logistic Regression using all six Landsat
optical bands, and Classification Trees [18] using Landsat TM and ETM+ band 5) to automatically
determine the flooding level in Landsat scenes. Kyu-Shun et al. [56], working in shallow wetlands
with different turbidity levels, showed that Landsat TM band 5 (1.55–1.75 µm) is less sensitive to
sediment-charged waters and therefore the best at delineating the limits between water and dry ground
in turbid waters. Similar results were found by Bustamante et al. [57], showing that a classification
tree on band 5 of Landsat TM and ETM+ sensors performed better when discriminating the Doñana
shallow flooding levels.

As our study is focused on flood and hydroperiod mapping, we generated from the four flooding
classes a simple flooding binary masks by merging the dry and wet classes as non-flooded and the
waterlogged and flooded classes as flooded class.

We tested the different classifiers on a set of eight Landsat TM and ETM+ scenes (between 2004
and 2007) with coincident ground-truth data identifying flooded and non-flooded classes. The set of
scenes was selected in order to use a balanced sample of ground-truth points (flooded vs. non-flooded),
to work with exact matching between acquisition dates and sampling dates (see Table S1 for acquisition
dates and ground-truth data). We built up classification trees with every band 5 of the training images
by using a subset of ground-truth data as training sample (80% of points). For every scene we obtained
different thresholds to provide the two classes: flooded and non-flooded. Classification trees on band
5 for every training date provided slightly different threshold values. Classification performance
was assessed with coincident ground-truth observations for every single scene. Predictive accuracy
was assessed using a random set from 20% of all sampling points (183 samples) and by computing
the Cohen’s Kappa statistic [58] in order to measure the degree of agreement between classified and
observed data and to test whether the prediction exceeded one that could be produced by chance
alone (where k = 1 means perfect agreement and k = 0 no more agreement than by chance alone).
Additionally, confusion matrices were calculated to retrieve Global Accuracy Values for every single
classification tree, as an additional measure of the total accuracy of the classified maps [59].

However, in order to select the best threshold for the whole time series, we carried out a
global accuracy assessment by following a Jackknife inter-scene cross-validation approach [18,60,61]
(Figure 3). The proposed threshold should be consistent throughout years, sensors, illumination angles,
and land cover changes. The Jackknife procedure estimates the classification agreement for each
subsample of images omitting the ith observation to estimate the previously unknown agreement
value. This inter-scene cross-validation consisted of three steps:

1. Computing classification trees, using the whole set of training images except for one of them each
time, which was used as a validation image.

2. Computing the classification tree using all the training images.
3. Evaluating threshold accuracies from the all training images classification tree over the validation

image with the ground-truth data for the corresponding date.

Once the optimal threshold was selected we applied it to the whole time series of images. Finally,
as our study area corresponds to the Doñana marshes, we built up a background mask with the
limits of the marshes, excluding the surrounding area where a network of water ponds may appear as
flooded. Such a binary mask was systematically applied over every resulting flooding mask.
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2.6. Hydroperiod Mapping and Trend Analysis

Once the best flood mapping method was identified, we applied a simple method to retrieve
hydroperiod value (H) per pixel for every flooding cycle (Hc). We computed Hc according to the
following equation:

Hc =
n−1

∑
i=1

(DoCi+1 − DoCi) = (DoC2 − DoC1) + . . . + (DoCn − DoCn−1)

where DoC stands for Day of Cycle (flooding cycle is set to 1 on the 1st of September of the previous
year and to 365 on 31st of August of the year that follows). For every flooding cycle, the ith image
corresponds to the first date the pixel was classified as flooded, while the n image is the last date
when the pixel was labelled as flooded. The n value may eventually equal the total available number
of flooding masks per cycle when a pixel is classified as flooded at every flooding mask for the
complete flooding cycle. The procedure assumes constant flooding for a pixel classified as flooded
between two consecutive available scenes. We calculated two different indexes in order to assess the
representativeness of Hc for inter-cycle comparisons:
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1. Cycle range (Cr): the ratio between the DoC range (earliest available date minus latest available
date) per cycle and the complete cycle value (365 days). This index provides a rapid assessment
of the percentage of the complete cycle covered by the first and last flooding mask available for
each cycle.

2. Gini Index [62]: Calculated as the area under the equality curve and the cumulative proportion
of available dates in relation to possible dates (22 Landsat MSS or TM acquisitions for a complete
flooding cycle from 1974 to 1998 and 45 Landsat TM and ETM+ acquisitions from 1999 to 2011).
The Gini Index provides a quick assessment on the evenness of available flood masks along
the flooding cycle (values from 0 to 1). The higher the Gini Index for a cycle the lower the
representativeness of the Hc values.

A low number of flood masks per flooding cycle produced a systematic bias in permanent
inundated areas like the ocean or the river. In order to remove such bias we applied a linear stretch to
the Hc estimate multiplying Hci by 365 and dividing by Hcmax, with Hci the value of the pixel and
Hcmax the maximum value of Hc obtained for permanent waters like the sea. Such post-processing
eliminates this systematic bias for the initial flooding cycles in the time series with a low number of
flood masks.

Final hydroperiod maps indicate the number of days a pixel was detected as flooded
(from 0 to 365) during the flooding cycle. Independent accuracy assessment of hydroperiod estimates
by remote sensing was carried out using historical readings of water column values from a network
of permanent limnimetric scales distributed across the Doñana marshes (see Figure S1 containing
a location map of the scales in the marsh together with an example of a full flooding cycle reading
values). Fixed limnimetric scales are periodically visited and the water column recorded by national
park rangers. We selected the readings of the N28 limnimetric scale (Figure 4) since it has been agreed
to be the most representative of the flooding levels for the whole marshland. In addition, N28 is the
one with the longest continuous record of readings (1394 readings from 1995 to 2009). From such
data, the ground-truth hydroperiod was therefore calculated by subtracting the last flooding day
(water column reading = 0 cm) from the first observed flooding day (water column reading > 0 cm).
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Figure 4. (a) Overlay of flooding masks for the wet cycle in 2003–2004 (total rainfall = 775 mm);
(b) calculated hydroperiod in number of days for the same cycle. Color palettes and number of
classes are the same for comparison purposes. The white tack indicates the location of the N28
limnimetric scale.
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Time series of annual hydroperiod maps were used to calculate the Theil–Sen median trend,
which uses a robust non-parametric trend operator highly recommended for assessing the rate of
change in short or noisy time series [63]. Theil–Sen analysis calculates the slope of the trend from the
median value of every pairwise combination of cycles. An interesting feature of the median trend is
its breakdown bound. The breakdown bound for a robust statistic is the number of wild values that
can occur within a series before it will be affected. For the median trend, the breakdown bound is
approximately 29%. Thus the trends expressed in the image have to have persisted for more than 29%
of the length of the series in flooding cycles (i.e., more than nine years for Doñana marshes).

Finally, in order to assess significant interannual changes, we computed hydroperiod anomalies
for every flooding cycle as the difference between Hc and the mean hydroperiod of the whole time
series [64]. For comparison purposes, MSS flooding masks were resampled to 30 m pixel size.

3. Results

3.1. Flood Mapping and Global Accuracy Assessment

Table 2 shows the mean global accuracies and mean Kappa values for every classification method.
We chose a classification tree as the most accurate according to high Kappa and global accuracy and
low variance.

The Jackknife inter-scene cross-validation procedure allowed us to derive the most accurate
classification tree threshold value for the normalized band 5 of Landsat TM and ETM+ sensors
($ < 0.186) for all the scenes with an average Kappa value of 0.66 and an average global accuracy of
94% (Table 3). The same process was applied to band 4 of Landsat MSS (0.8–1.1 µm) images, which
provided a MSS band 4 threshold value of 0.10. Overall, the threshold reflectance values computed
for single training scenes were lower than those calculated for training scenes. Such results indicate a
much higher consistency expected for the threshold applied over the complete time series of images.

Table 2. Mean overall agreement values and mean Kappa values for the five classification methods
compared for the classes flooded and non-flooded. Standard deviation is shown in brackets. Statistics
are from the eight Landsat training scenes.

Method Mean Accuracy Mean Kappa

Maximum Likelihood 0.78 (0.14) 0.50 (0.23)
Mahalanobis Distance 0.80 (0.13) 0.55 (0.23)
Discriminant Analysis 0.84 (0.07) 0.62 (0.16)

Logistic Regression 0.85 (0.06) 0.61 (0.16)
Classification Tree 0.85 (0.06) 0.64 (0.14)

Table 3. Band 5 reflectance thresholds estimated from classification trees on the set of training Landsat
images. Kappa and global accuracy values for every classification tree are also provided. Dates in
the first column indicate the discarded scene for every cross-validation model. The total number of
ground-truth points (N) used for validation is also shown.

Discarded Scene Models $ Threshold Global Accuracy Kappa N

25 March 2004 0.188 0.955 0.429 112
11 February 2006 0.185 0.980 0.912 50

8 April 2006 0.184 0.980 0.878 50
2 May 2006 0.182 0.981 0.922 53
3 June 2006 0.189 0.858 0.325 122

10 November 2006 0.180 0.946 0.817 93
2 March 2007 0.190 0.928 0.418 138
18 March 2007 0.184 0.914 0.560 160

All scenes model 0.186 0.933 0.605 778
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Final binary flood masks were calculated by applying the selected threshold to band 5 of the
345 Landsat TM and ETM+ images from 1984 to 2014 and the $ < 0.10 threshold to band 4 of the
46 Landsat MSS images from 1974 to 1984.

3.2. Hydroperiod Mapping

Figure 4a shows, as an example, the overlay of the 2003–2004 flooding masks; Figure 4b depicts
the corresponding hydroperiod map. The hydroperiod map (Figure 4b) provides a more reliable and
synoptic picture of the spatial distribution and duration of Doñana marshes flooding than the simple
overlay of flooding masks. While the hydroperiod map provides quick information on how long every
pixel was flooded for the selected cycle, the overlay of flooding masks does not allow us to visualize
the whole extent of a single date because of overlying constraints.

Hydroperiod estimated from flooding masks derived from satellite images showed a significant
and positive correlation with the one calculated from limnimetric readings (r2 = 0.90, p < 0.005, n = 13).

Hydroperiods between 1974 and 2014 were calculated for every flooding cycle except for the
1974–1975, 1977–1978, 1980–1981, 1981–1982, 1982–1983, and 1990–1991 cycles. We discarded these
cycles because of the low total number of available flooding masks and the small Cycle Range and
Gini coefficient values (Figure 5).

Once computed, mean hydroperiod and maximum flooded area per cycle showed a significant
positive relationship with total rainfall during the flooding cycle (R2 = 0.36 and R2 = 0.56, respectively;
p < 0.005, n = 33; see Figure 6). Yet there is still ca. 64% of unexplained hydroperiod variability that
might be linked to non-coherent marsh trends and consequently to management actions or, less likely,
to accumulated error in flood mapping and hydroperiod calculation. Although long assumed to be
steadily increasing [65], the global mean marsh hydroperiod (with non-flooded pixels in the marshes
accounting for 0) did not show any significant temporal trend. However, such global indicators may be
hiding local opposing trends, which makes it essential to assess spatial variability along the time series.
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Figure 5. Number of total available flooding masks per flooding cycle. Gini coefficients are also 
depicted (solid line), pointing up the uniform distribution of flooding masks for every flooding cycle 
(high values indicate uneven distribution of available flooding masks). Cycle range values are also 
shown (dotted line), revealing the time span between the earliest and latest flooding masks. Asterisks 
indicate the discarded cycles for time series analysis. 

Figure 5. Number of total available flooding masks per flooding cycle. Gini coefficients are also
depicted (solid line), pointing up the uniform distribution of flooding masks for every flooding cycle
(high values indicate uneven distribution of available flooding masks). Cycle range values are also
shown (dotted line), revealing the time span between the earliest and latest flooding masks. Asterisks
indicate the discarded cycles for time series analysis.
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Figure 6. Mean marsh hydroperiod versus total accumulated rainfall per flooding cycle. Asterisks 
indicate the discarded cycles for time series analysis. Rainfall data available since 1978. 

3.3. Hydroperiod Historical Trend and Anomalies 

We evaluated interannual variation on hydroperiod dynamics by estimating the time series 
mean hydroperiod from 1974 to 2014 (excluding the previously mentioned cycles) and calculating 
the hydroperiod anomalies per flooding cycle (Figure 7).  

Mean hydroperiod still reveals the dominance of hydrological features such as caños and lucios 
with higher hydroperiod values. The relationship with the marsh Digital Elevation Model derived 
from LiDAR [66] showed a tight correlation between microtopography and hydroperiod (r2 = 0.90, p 
< 0.001). The remaining unexplained variability might well reflect the wind drag effects that have 
been described in such a shallow wetland [25]. 

However, local management decisions have left several footprints in such a synoptic map. For 
instance, a recently incorporated area of 2700 ha into Doñana National Park (labelled as 1 in Figure 
7a) was cultivated, mainly with cereals, from 1970 up to 2004. This plot was hydrologically 
disconnected from the marshes to prevent flooding [67–69]. The mean hydroperiod in this area is 
close to 0, which highlights a negligible effect of the recovery to the former hydrological conditions 
10 years after restoration. On the other hand, artificially flooded areas such as Lucio de la FAO or 
Lucio del Lobo (labelled as 2 and 3 in Figure 7a) stand for the maximum hydroperiod values.  

Alternatively, hydroperiod anomalies evidence the spatial patterns of temporal changes on 
hydroperiod versus the historical average flooding patterns, enabling the identification of changes 
attributed to management decisions and/or interannual climatic variability (Figure 7b). For instance, 
the 2007–2008 flooding cycle was close to the historical average rainfall (550 mm), but it was 
unevenly distributed along the cycle. This situation led to an average low hydroperiod in the marsh 
(mostly red in Figure 7b), which led to a low waterbird diversity [70] and productivity [71] in that 
year. Not only are natural drivers clearly evidenced in Doñana flooding regime, but anthropic 
management actions are locally conspicuous. During that flooding cycle the northwestern area of the 
marsh showed a relevant increase in hydroperiod values, as revealed by the anomaly image. The 
accretion of a large depositional delta with sandy sediments from El Partido tributary stream [72] 
has dammed the surface inflow waters and re-drawn the original water course, bringing more water 
to areas that previously did not receive so much (label 4 in Figure 7b). The flooding of artificial 
ponds in the Caracoles restored area [69] is also evident (label 5 in Figure 7b). 

Figure 6. Mean marsh hydroperiod versus total accumulated rainfall per flooding cycle. Asterisks
indicate the discarded cycles for time series analysis. Rainfall data available since 1978.

3.3. Hydroperiod Historical Trend and Anomalies

We evaluated interannual variation on hydroperiod dynamics by estimating the time series
mean hydroperiod from 1974 to 2014 (excluding the previously mentioned cycles) and calculating the
hydroperiod anomalies per flooding cycle (Figure 7).

Mean hydroperiod still reveals the dominance of hydrological features such as caños and lucios
with higher hydroperiod values. The relationship with the marsh Digital Elevation Model derived
from LiDAR [66] showed a tight correlation between microtopography and hydroperiod (r2 = 0.90,
p < 0.001). The remaining unexplained variability might well reflect the wind drag effects that have
been described in such a shallow wetland [25].

However, local management decisions have left several footprints in such a synoptic map.
For instance, a recently incorporated area of 2700 ha into Doñana National Park (labelled as 1 in
Figure 7a) was cultivated, mainly with cereals, from 1970 up to 2004. This plot was hydrologically
disconnected from the marshes to prevent flooding [67–69]. The mean hydroperiod in this area is close
to 0, which highlights a negligible effect of the recovery to the former hydrological conditions 10 years
after restoration. On the other hand, artificially flooded areas such as Lucio de la FAO or Lucio del Lobo
(labelled as 2 and 3 in Figure 7a) stand for the maximum hydroperiod values.

Alternatively, hydroperiod anomalies evidence the spatial patterns of temporal changes on
hydroperiod versus the historical average flooding patterns, enabling the identification of changes
attributed to management decisions and/or interannual climatic variability (Figure 7b). For instance,
the 2007–2008 flooding cycle was close to the historical average rainfall (550 mm), but it was unevenly
distributed along the cycle. This situation led to an average low hydroperiod in the marsh (mostly
red in Figure 7b), which led to a low waterbird diversity [70] and productivity [71] in that year. Not
only are natural drivers clearly evidenced in Doñana flooding regime, but anthropic management
actions are locally conspicuous. During that flooding cycle the northwestern area of the marsh showed
a relevant increase in hydroperiod values, as revealed by the anomaly image. The accretion of a large
depositional delta with sandy sediments from El Partido tributary stream [72] has dammed the surface
inflow waters and re-drawn the original water course, bringing more water to areas that previously
did not receive so much (label 4 in Figure 7b). The flooding of artificial ponds in the Caracoles restored
area [69] is also evident (label 5 in Figure 7b).
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Figure 7. (a) Mean hydroperiod for Doñana marshes (1974–2014); (b) Hydroperiod anomaly calculated
for the flooding cycle 2007–2008. Both are expressed in days per year. Numbers in both figures indicate
interesting features (see text for more details).

The calculated Theil-Sen slope for hydroperiod reveals a consistent and significant increase on
hydroperiod in the north-western area of the marsh and a relevant decrease in the South and the centre
of the marshes (Figure 8). The average trend is 0.09 days per year, what confirms the negligible whole
marsh trend. However, local trends critically evidence a two-fold and opposite functioning areas in
the marsh:

(a) an area (bluish colours in Figure 8) fed by tributaries, both canalized and natural (Caño Travieso,
Caño Guadiamar, Arroyo de la Rocina see Figure 1), pumping stations (Lucio de la FAO, label 2 in
Figure 7a), groundwater seepages (Lucio del Hondón and Vera Sur labelled as 1 in Figure 8) or
brackish waters from Guadalquivir River; and

(b) a region (reddish colours in Figure 8) strictly fed by rainfall and eventually drained under
management decisions for the avoidance of harmful algal blooms [73].
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4. Discussion

4.1. Overall Assessment of the Method

Flooding patterns in the Doñana shallow marshes have been retrospectively mapped by means
of Landsat imagery. The semiautomatic methodology based on simple threshold in the SWIR band
was the most accurate method not only for single dates but also for the whole multi-sensor time
series of images. Pre-processing with geometric co-registration and normalization of the Landsat
time series proved to be essential to provide consistency to the results [51,57]. A simple threshold
on the SWIR band performed accurately across sensors, dates, and marsh conditions. The method
worked acceptably with turbid waters as well. Turbidity may eventually reach values of ca. 600 NTU
in Doñana marshes. During such episodes flooding was successfully discriminated too. Similar
results were observed for flooded pixels densely covered by emergent vegetation. For a few scenes
(<1%), errors have been found for areas shadowed by small clouds over the marsh. Cloud masking
provided accurate removal of pixels covered by clouds but not cloud shadows. The method is being
updated for Landsat 8 OLI and Sentinel-2 images in order to extend the time series of flooding masks
and hydroperiods. Microwave sensors such as Sentinel-1 are going to be explored, seeking for an
enhancement of hydroperiod estimates by incorporating information for cloud-covered scenes.

While most of the remote sensing applications for wetlands have focused on delineating surface
water extent or retrieving water levels [17], few of them have provided insights into hydroperiod
mapping. Although optical winter images in the area are influenced by cloud cover—especially in
rainy years and winter, images are more problematic due to the low sun angle and shadows—the
Doñana hydroperiod estimated from the Landsat time series has been shown to be consistent with in
situ observations at limnimetric scales.

4.2. Monitoring Flooding Regime of Doñana Marshes: The Scientific Contribution

The analyzed time span of 40 years adequately represents the immense rainfall variability in
Doñana marshes (169 mm in the 2004–2005 cycle; 1032 mm in the cycle 1995–1996; mean rainfall of
550 mm). Rainfall is confirmed as the main driver of the flooding regime in the Doñana marshes.
The almost complete isolation from the Guadalquivir estuary before the time series began gives the
marshes its endorheic character. Topographical features such as depressions and water courses keep
flooding for longer, but sediment transport and siltation dynamics, especially the deposition in the
marshes of sandy sediments from tributary ravines, are continuously shaping the marsh bottom [72,74].
The effects of such alterations are evidenced by the synoptic outputs from our analysis.

The rainfall regime over the last 36 years shows no significant trend, with 20 cycles below and
17 above the mean total cycle rainfall. Detailed analysis of management periods shows critical
cut-offs, from which the cycles 1983–1984 and 1998–1999 represent subtle shifts towards slight
hydroperiod increase (Figure 6). For both dates, management actions were focused on the construction
and prolongation of an artificial levee along the Guadalquivir river bank (the so-called Montaña
del Río). Restoration actions by the Project Doñana 2005 have been assessed using this valuable
information [74]. The deposition rate at the mouth of the El Partido ravine has declined in the last
years as a consequence of the upstream dam control. However, the dramatic shift produced in the
main water course is evidenced by the hydroperiod increase observed downstream (Figure 7b label 4).
The adaptive restoration action in the Caracoles area (Figure 7b label 5), consisting of the creation of
artificial ponds and profiling of one tidal course (Caño Travieso), is being revealed by the reconstructed
hydroperiod patterns. Nowadays, the restoration program has just implemented the major decision
of re-connecting the marsh with the Guadalquivir estuary and with the most relevant tributary to
the marsh (the Guadiamar ravine; see Figure 1). The follow-up application of this methodology will
enable us to identify early trends as a consequence of such management actions.

The ecological implications of the observed flooding regime are likely visible in the aquatic plant
distribution and the habitats available for the waterfowl of Doñana marshes. The flooding gradient
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has been identified as a major driver for the distribution of emergent helophytes and submerged
macrophytes [75]. Submerged macrophytes do play a major role in the marsh metabolism [38].
Hydroperiod becomes a net predictor for aquatic plant species distribution, marsh primary production,
and habitat characteristics. Several works have already identified the importance of the hydroperiod
duration in predicting the presence, abundance, and breeding success of different waterbird species in
the Doñana marshes [76–81], and also on raptors foraging in the marshes [82]. The output layers for
every single date, i.e., flooding masks and hydroperiod maps per cycle, are accessible online via Web
Map Services [83].

5. Conclusions

A semiautomatic procedure to delineate the flooded surface of the Doñana marshes for the last
40 years has provided accurate results sufficient for assessing hydroperiod trends. Time series of
Landsat images were standardized to produce consistent flooding masks. Amid different classifiers,
a classification tree was found to be the most accurate, using a set of Landsat acquisitions and
ground-truth data. The inter-scene cross-validation provided a single optimal threshold for the
Landsat TM/ETM+ 5 band and Landsat MSS 4 band. A direct method to estimate the flooding cycle
hydroperiod in Doñana marshes has been proposed and tested, providing consistent hydroperiod
estimates and revealing a flooding regime mainly driven by rainfall, topography, and local hydrological
management actions. Historical trend was assessed by time series analysis, depicting two opposite
patterns in the hydroperiod of the Doñana marshes: a significant decrease in the southern area
and an increase in the northwestern region. Flooding anomalies are periodically calculated per
flooding cycle, allowing us to synoptically assess management decisions and climatic variability
and monitor hydrological effects on marsh functioning. Several studies have revealed the utility
of the produced spatial layers in predicting changes in associated flora and fauna, also useful for
conservation management and restoration programs. The proposed semiautomatic procedure can
easily be replicated for other shallow seasonal wetlands.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/9/775/s1,
Figure S1: Location of limnimetric scales in Doñana marshes and water level readings. (A) Location of limnimetric
scales in Doñana marshes (red dots). Yellow dots are the ones selected for the plot S2C. Black lines depict the
limits of Doñana protected area; (B) Location of Doñana in Spain; (C) Water level readings above sea level (a.s.l.)
during the 2003–2004 flooding cycle of the yellow dotted scales in Figure S2A. Table S1: Ground-truth data and
training scenes used.
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