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Abstract: Monitoring the reaction of grassland canopies on fertilizer application is of major
importance to enable a well-adjusted management supporting a sustainable production of the
grass crop. Up to date, grassland managers estimate the nutrient status and growth dynamics of
grasslands by costly and time-consuming field surveys, which only provide low temporal and spatial
data density. Grassland mapping using remotely-sensed Vegetation Indices (VIs) has the potential to
contribute to solving these problems. In this study, we explored the potential of VIs for distinguishing
five differently-fertilized grassland communities. Therefore, we collected spectral signatures of
these communities in a long-term fertilization experiment (since 1941) in Germany throughout the
growing seasons 2012–2014. Fifteen VIs were calculated and their seasonal developments investigated.
Welch tests revealed that the accuracy of VIs for distinguishing these grassland communities varies
throughout the growing season. Thus, the selection of the most promising single VI for grassland
mapping was dependent on the date of the spectra acquisition. A random forests classification
using all calculated VIs reduced variations in classification accuracy within the growing season and
provided a higher overall precision of classification. Thus, we recommend a careful selection of VIs
for grassland mapping or the utilization of temporally-stable methods, i.e., including a set of VIs in
the random forests algorithm.

Keywords: field spectroscopy; classification; random forests; vegetation index; grassland;
multitemporal; ground-based sensors

1. Introduction

Grasslands are the largest of the Earth’s four major vegetation types and belong to the world’s
most productive agricultural lands [1]. Grass swards are known for their high spatial and temporal
variability [2] and therefore require intensive monitoring to enable a management that is well adjusted
to the prevailing environmental conditions. Maps displaying the phenological status of grassland allow
creating a spatio-temporal model of grassland production [3]. Such information is crucial for adjusting
the nutrient management in order to mitigate water pollution (through leaching of soil nutrients) and to
conserve the flora and fauna of grassland ecosystems. Commonly, grassland agronomists evaluate the
phenological status, the quality and the spatial distribution of grasslands in costly and time-consuming
field surveys, as described in Cornelissen et al. [4]. The methods defined in this handbook require
destructive sampling and allow only a low spatial and temporal data density. Research developing
non-destructive, cost-effective and time-saving methods for grassland mapping and monitoring is
urgently needed. These goals can be reached using a combination of minor field sampling efforts and
remote sensing [5].
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Among remote sensing methods, Vegetation Indices (VIs) are frequently used for assessing
different grasslands types (e.g., [5,6]). Classification of these types based on VIs requires consideration
of the timing of data acquisition in relation to growth stage, as well as of type, wavelength and
bandwidth of the VI used. Aragón and Oesterheld [5,7] have shown that classification accuracy
of grasslands depends on the date of the spectral observation. The reason for these changes in
classification accuracy is that the optical properties of grassland vegetation are underlying permanent
variations [8].

These variations in the individual VIs throughout a growing season are caused by changes
in the vegetation’s biophysical properties as a result of climatic conditions in interaction with
management actions [9]. VIs composed of near-infrared and visible light strongly correlate with
biomass [10], LAI and chlorophyll content [11,12]. Thus, VIs based on these wavelengths are capable
of distinguishing vegetation canopies, as long as they differ significantly in these variables. In contrast,
spectral reflectance at longer wavelengths (between 1300 and 2500 nm) is highly influenced by water
absorption of plants [13,14]. This relation between plant water content and absorption of incoming
radiation affects the spectral reflectance of plants. Thus, selecting VIs sensitive to the vegetation’s water
content may enable a successful classification at times when those VIs appear relatively similar, which
are sensitive to other crop variables, such as biomass, leaf area index or chlorophyll content. Further,
VIs more sensitive to nitrogen and lignin content, as well as to morphological and physiological
properties indicating plant stress may improve classifications at times when grasslands differ in
these variables.

Furthermore, bandwidth and spectral resolution have a major impact on the ability of VIs to
distinguish grassland communities. Although several efforts have been made to classify grasslands
using broadband data [15–17], it was found that they are not spectrally distinct in the broadband
system throughout all times of a growing season [18]. Numata et al. [18] have shown that the utilization
of hyperspectral data may significantly improve the quality of maps displaying the distribution of
different grassland communities. Novel or planned hyperspectral satellite missions (such as Hyperion,
EnMAP and Hyperspectral Infrared Imager—HyspIRI) may open new perspectives for mapping
grasslands using narrowband VIs and are of special importance for distinguishing grassland types
and management characteristics, as well as for monitoring these plant communities [1].

Hyperspectral RS can provide a cost-effective, time-saving and non-destructive method for
mapping differences in growth dynamics as induced by fertilizer application, as well as the
spatial distribution of grassland communities at high spatial and temporal resolution. However,
multitemporal studies investigating the performance of hyperspectral and broadband VIs for mapping
Central-European grasslands are still missing. Basic research into this direction necessitates not
only a high temporal, but also a high spatial and spectral resolution of remote sensing data across
clearly-defined grassland communities. These requirements are not met using satellite data only,
because frequent cloud cover and low spatial coverage of hyperspectral satellite systems prevents
acquiring dense time series in Central Europe. The solution lies in utilizing field spectrometers, which
can acquire hyperspectral data on demand for dates when cloud cover is low. To collect spectra of
clearly separable grassland communities, we identified a fertilizer experiment on grassland as the
ideal setting.

The above-mentioned deficits in the classification of grassland types make clear that studies are
required where the criteria growth stage, bandwidth and type of VI are rigorously tested. Therefore,
the aim of this study was to identify single VIs providing the most valuable information at specific
points in time that enable grassland scientists to distinguish between differently-managed grassland
communities. Furthermore, we introduce a novel approach in grassland research, which uses multiple
VIs sensitive to changes in different plant properties for classifying grasslands. Accordingly, our key
hypotheses were:
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1. Each plant community on grassland is characterized by a unique VI development throughout the
growing season.

2. The performance of each VI for distinguishing such plant communities varies throughout the
growing season.

3. VIs sensitive to a certain plant property (e.g., chlorophyll content) may allow a successful
classification at times when VIs sensitive to other plant properties (e.g., water content,
biomass, etc.) fail to classify correctly.

4. Combining several VIs for grassland classification allows a temporally more stable classification
of grassland communities than one single VI because for distinguishing communities at a point
in time, a set of optimal VIs is selected.

To test these hypotheses, we collected a series of spectral signatures of five species-rich grassland
communities in a long-term fertilization experiment for 38 dates during the growing seasons of
2012–2014. Subsequently, we calculated fifteen broadband and narrowband VIs and tested the
performance of each single VI for distinguishing these five communities using the Welch test [19].
In addition, we tested multiple VIs for classifying the same grassland communities using the random
forests algorithm [20]. Finally, we compared the classification accuracy achieved using single VIs and
the Welch test to the performance reached by the random forests algorithm.

2. Materials and Methods

2.1. Study Area

The Rengen Grassland Experiment (RGE) is a long-term fertilization experiment, which was
set up in 1941. It is located near the village of Rengen (Rhineland-Palatinate, Germany) in the
Eifel Mountains, approximately 60 km west of Koblenz. The experiment is located at the position
50◦14′21.6”N, 6◦49′34.6”E at an elevation of 475 m asl. The temperate, maritime climate at the
site features an annual mean precipitation of 811 mm and a mean annual temperature of 6.9 ◦C
(Rengen Experiment Meteorological Station). A detailed description of the experiment is given in
Schellberg et al. 1999 [21]. In brief, the experiment was set up on a formerly wet heathland site in
randomized block design. In 1941, the area was grubbed, and a mixture of grasses and herbs was
sown. Five fertilizer treatments have been applied annually: lime only as calcium oxide (CaO, Ca),
lime and nitrogen (CaO/N, CaN), lime, nitrogen and phosphorous (CaO/N/P2O5, CaNP) and lime,
nitrogen and potassium (CaO/N/P2O5/KCl, CaNPKCl and CaO/N/P2O5/K2SO4, CaNPK2SO4,
respectively). The plots in this experiment are representative of grassland fields on farms under
different management intensities and stand for fields of a similar type spread all across European
grassland areas. Treating the plots with different types of fertilizer resulted in significant differences in
plant and soil nutrient content (for more details, see [22]).

This work was conducted on five plots of the RGE with a size of 3 m × 5 m (Figure 1). The plots
were harvested twice annually, i.e., once at the beginning of July and once in the middle of October.
Previously-published data from this experiment [21,23] indicate that dry matter production increased
gradually from Ca, CaN, CaNP, CaNPK2SO4 to the CaNPKCl treatment and that biomass production
in the first cut was higher than in the second cut. Furthermore, long-term fertilization resulted in
significant differences in the floristic compositions of the communities. The vegetation in the Ca and
CaN treatments mostly resemble the montane meadow of Geranio-Trisetetum (Polygono-Trisetion),
whereas the CaNP plot features a transitional type between Poo-Trisetetum and Arrhenateretum
(both from the Arrhenatherion alliance) [24]. In the NPK treatments, vegetation corresponded to the
mesotrophic Arrhenateretum meadows [24].

All of these differences in the properties of plant canopies have strong effects on their optical
characteristics. Generally, a more rapid change in visual appearance at the beginning of the growing
seasons is observed in the NPK-treated plots each year. These plots develop rapidly in green biomass
and reach high LAIs and a bright green canopy. Later, in June, senescence of plants commences, which
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leads to higher contributions of senesced yellow plant material. In contrast, development in green
biomass in the Ca and CaN treatment is usually much slower, but the color of these canopies remains
green, even later in the growing season.

2.2. Spectral Measurements

Field spectrometers have successfully been used for discriminating differences in grassland types
caused by management practices or climatic variability [1,8]. In addition, there is evidence in the
literature that field spectrometer data are highly correlated with satellite data [9] and relatively free of
atmospheric effects [25]. Thus, we collected spectral measurements in the RGE during the growing
seasons of 2012–2014 (Table 1) using an ASD Fieldspec® 3 spectroradiometer (Analytical Spectral
Devices, Boulder, CO, USA). This instrument covers a spectral range between 350 nm and 2500 nm in
1-nm steps, with a 3-nm full width at half maximum (FWHM) at a wavelength of 700 nm and 10 nm at
1400 nm and 2100 nm (ASD Inc. 2010).

Table 1. Number of data acquisition days between 2012 and 2014.

No. of Acquisition Days

2012 2013 2014

1st growth 4 7 8
2nd growth 7 6 6

The spectrometer was mounted on a motor-driven rail-crane that automatically moved along a
rail track next to the five plots. It was equipped with a photoelectric guard (light barrier) to ensure a
systematic sampling of spectral properties at the same position (Figure 1; cf. [26]). From this vehicle,
spectra of the vegetation were measured on three circular spots within each plot from a height
of 2 m above ground at nadir position, resulting in a Field Of View (FOV) of 90 cm in diameter
per spot (Figure 1). On each measuring day, between twelve and thirty-three spectra per plot were
acquired between 10:00 a.m. and 4:00 p.m., i.e., between 210 min before and 150 min after solar noon.
Spectra were recorded under clear (sunny) conditions, which ensured that influences of clouds were
minimal. The spectral reflectance of the plant canopies was calculated based on a Spectralon® 400-cm2

white-reference zenith polymer target (95% reflectance, Labsphere Inc., North Hutton, NH, USA)
always after three measurements were taken.
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2.3. Calculation of the Temperature Sum

It is well known that changes in plant development are closely related to changes in weather
variables, such as precipitation and accumulated temperature [9,27], and not to the date or day of year.
Thus, we decided to use the temperature sum (T∑) as the temporal variable. T∑ was calculated for
the years 2012–2014 based on the average daily temperatures given in the 1 × 1 km mosaic, provided
by Deutscher Wetterdienst [28] according to the method by Ernst and Loeper [29]. Daily mean
temperatures above 0 ◦C were added up. To correct for low solar irradiation during the winter months,
a weight factor of 0.5 was assigned to January, 0.75 to February and 1 to the remaining months [29].
As a starting point of the growing season, a value of 200 ◦C d was assumed. At this point and before
the onset of the second growth in July, T∑ was set to zero to provide equal scales for the first and the
second growth.

2.4. Calculation of the VIs

Based on the spectral measurements (Supplement Table S1), 12 narrowband and 3 broadband VIs
were calculated (Table 2). For calculating the broadband VIs, five bands of the multispectral RapidEye
satellites were simulated using their spectral response function ([30]; Supplement Table S2):

γx =

∫ n
n0 γn ∗ ρn

ρt
(1)

where γx is the reflectance of the simulated RapidEye band, n is the band number of the spectral
measurement, γn is the reflectance of band n, ρn is the response of band n, given in the spectral response
function, and ρt is the sum of values given in a response function of band x. RapidEye appeared for us
as an interesting broadband sensor because its spatial resolution (6.5 m) is higher than that of other
broadband systems (e.g., Landsat 7, 8 or Sentinel 2) and was thus better comparable to the high spatial
resolution of field spectrometer data. We selected these VIs because they are sensitive to different
plant properties, contained different spectral information and are commonly used in grassland science.
The VIs that were used can be grouped into three categories according to Table 2:

1. VIs sensitive to green vegetation, biomass and leaf area,
2. VIs sensitive to plant chlorophyll content,
3. VIs sensitive to the plants’ content in lignin, nitrogen, water, pigments or to plant physiological

performance and phaeophytization (environmental stress).

To display the temporal development of the VIs as smoothed curves, first daily averages for each
VI were calculated. Subsequently, the local polynomial smoothing algorithm (loess) [31], which is
implemented in the ggplot2 [32] package for R [33], was used to create smoothed VI curves.

2.5. Welch Test

Using Welch’s t-test [19], we determined how well the different grassland communities can be
distinguished at different points in time using certain VIs. The Welch test essentially delivers similar
results as a two-sample t-test, but does not assume a normal distribution and equal variances of the
samples, which were not given in our dataset. The Welch test was calculated for each VI for a given
T∑ by testing the VI value measured in one plot against the VI value measured in all other plots.
The VI value of a certain plot at a certain T∑ was assumed to be different from the remaining plots if p
was estimated <0.01. The results of the five plots were summarized, and the classification accuracy
was calculated for each T∑ (Supplement Tables S3 and S4). The overall accuracies for the two growths
were calculated by averaging each VI’s accuracy at each T∑. Subsequently, the Welch test accuracies
were plotted using local polynomial smoothing (loess) [31] in the ggplot 2 package [32] in R [33].
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Table 2. Selected VIs for discriminating differently-fertilized grassland plots.

VI VI Full Name Formula Sensitivity Source

GNDVI Green Normalized Difference Vegetation Index (NIR − GREEN)
(NIR + GREEN)

Green vegetation/biomass, LAI [34]

nGNDVI narrowband Green Normalize Difference Vegetation Index (780 nm − 550 nm)
(780 nm + 550 nm)

Green vegetation/biomass, LAI [34]

NDVI Normalized Difference Vegetation Index (NIR − RED)
(NIR + RED)

Green vegetation/biomass, LAI [35]

nNDVI narrowband Normalized Difference Vegetation Index (800 nm − 670 nm)
(800 nm + 670 nm)

Green vegetation/biomass, LAI [35]

nREP narrowband Red Edge Position 700 + 40× 670 nm + 780 nm
2 − 700 nm

740 nm − 700 nm
Chlorophyll [36]

LCI Leaf Chlorophyll Index (NIR − RE)
(NIR − Red) Chlorophyll [37]

nLCI narrowband Leaf Chlorophyll Index (850 nm − 710 nm)
(850 nm + 680 nm)

Chlorophyll [37]

nNPCI narrowband Normalized Pigment Chlorophyll Index (680 nm − 430 nm)
(680 nm + 430 nm)

Chlorophyll [38]

nNDLI narrowband Normalized Difference Lignin Index log 1
1754 nm − log 1

1680 nm
log 1

1754 nm + log 1
1680 nm

Lignin content [39]

nNDNI narrowband Normalized Difference Nitrogen Index log 1
1510 nm − log 1

1680 nm
log 1

1510 nm + log 1
1680 nm

Nitrogen content [39]

nPRI narrowband Photochemical Reflectance Index (550 nm − 530 nm)
(550 nm + 530 nm)

Physiology (photosynthesis, pigments) [38]

nWC narrowband Water Content 1193 nm
1126 nm Water content/water stress [40]

nWI narrowband Water Index 900 nm
970 nm Water content [41]

nSIPI narrowband Structure Intensive Pigment Index (800 nm − 450 nm)
(800 nm + 650 nm)

Pigments [42]

nNPQI narrowband Normalized Phaeophytization Index (415 nm − 435 nm)
(415 nm + 435 nm)

Phaeophytization [43]
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2.6. Random Forests Classification

Random forests [20] is a classification method based on classification and regression trees.
To classify data, in the first step, a random sample with known output class is extracted from the
dataset. Based on this random sample, a number of binary decisions (splits) are made, which at the
end, achieves the highest possible purity of the output classes. At each split, a number of variables
is tested as the splitting variables. More splits are performed until the highest possible purity of the
output classes is reached. This network consisting of a few to some hundreds of splits is called a tree.
Subsequently, a number of additional trees is grown based on other random samples. The sum of trees
grown by this principle is called a random forest. Usually, approximately 63% of the samples of the
complete dataset are used for growing the trees, and the remaining 37% of the samples are left for
model validation. Finally, the decision of an observation belonging to a class is made based on the
number of trees within a forest assigning the value of the observation to that class.

In this study, all fifteen VIs were tested as split variables at each node. A number of n = 200
trees for creating the forest was identified to be sufficient. To investigate the classification accuracy,
the Out-Of-Bag (OOB) error was calculated. This error indicates the accuracy reached by the forest
through testing the decisions created by the forest against the validation dataset. Subsequently,
OOB errors of all VIs were averaged for each T∑, and a plot was created using lines created by
the smooth.spline function in R [44]. Furthermore, the variable importance indicating the probability
of a VI being used in the classification at a split was calculated by dividing the number of splits
based on one VI by the total number of splits in a tree. The average importance of the VIs of each
growth revealed their overall importance and was further tested for significance using a two-paired
t-test. Furthermore, variable importance was plotted for five selected VIs using the local polynomial
smoothing algorithm (loess) [31] in the ggplot 2 package [32] in R [33].

3. Results

The results of this multi-temporal study are presented in the following sections separately for
pooled data on Growth 1 and Growth 2. Treating the two growths individually was important
because they varied significantly in their development. This implies important consequences for the
classification of the grassland communities.

3.1. Seasonal Curves of the VIs

In Figure 2, the developments of narrowband Red Edge Position (nREP), Leaf Chlorophyll Index
(LCI), NDVI, narrowband Water Index (nWI) and narrowband Water Content (nWC) by T∑ within
the five plant communities are shown. These VIs were selected for visual presentation because they
represent the best performing VIs for each group averaged over both growths of VIs according to
Section 2.4, as well as the best performing VIs of each growth. Information on the performance of the
eleven other VIs is attached in Supplement Table S8. The shape of the curves of all VIs measured in
the Ca, CaN and CaNP treatment were more similar in Growth 2 than in Growth 1. This was mostly
related to the lower amplitude of changes in VIs that we observed in Growth 2.

The curves of nREP, LCI, NDVI and nWI increased at the beginning of both growths in all plots.
Thereby, the slopes of the curves derived for the NP(K)-treated plots were steeper than those in the
Ca and CaN plot, but the CaNP treatment did not reach as high VI values as the NPK treatments.
The T∑ at which peaks of these four VIs in the NP(K)-treated plots were reached differed between
the VIs and between the two growths. The highest values in these four VIs were found at higher T∑s
in Growth 1 than in Growth 2. Furthermore, the chlorophyll- and biomass-related VIs (nREP, LCI
and NDVI) reached their peaks earlier than the water-related nWI. Towards the end of both growths,
values of the four VIs decreased steeply in the NPK treatments. In contrast, VIs in the Ca and CaN
plots remained relatively stable. Opposed to the four previously-mentioned VIs, the curve of nWC
decreased at the beginning of both growths. Thereby, the highest decline rates were observed in the
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NP(K) treatments, which reached their minimum later in Growth 1 than in Growth 2. Afterwards,
nWC in the NP(K) treatments began to rise. nWC in the Ca and CaN treatments decreased slower
than in the NP(K) treatments at the beginning of both growths, but remained relatively stable towards
their end.
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(e) nWC in Growing Seasons 1 and 2.

In Growth 1, curves in the Ca, CaN and CaNP treatments featured differences in their values of
nREP, LCI and nWC throughout most phases of the growing season. However, the curves measured in
the CaNPKCl and CaNPK2SO4 treatments were similar in these three VIs. At the same time, these
treatments differed considerably in nWI, particularly at the end of Growth 1. At the beginning of
Growth 1, NDVI values were different between the plots. At later stages, NDVI values in the five plots
became relatively similar. In Growth 2, larger differences between the CaNPKCl and the CaNPK2SO4

treatment were identified for nREP, LCI and NDVI than in Growth 1. In contrast, both NPK treatments
showed similar courses of their curves for nWI and nWC.

3.2. Distinguishing the Grassland Communities Using the Welch Test

Although time courses of many VIs tested in this study followed similar patterns, uncertainty
remained for how the identified differences have influenced the accuracy for classifying the grassland
plots using one VI at a time. Table 3 displays the overall accuracies of the single VIs achieved using the
Welch test. In the first growth, nWC significantly differed between the five plots in 91% of the cases and
provided the highest rates of discrimination, followed by nWI, nLCI, narrowband Structure Intensive
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Pigment Index (nSIPI) and LCI. The weakest accuracy was achieved by narrowband Normalized
Phaeophytization Index (nNPQI), followed by narrowband Photochemical Reflectance Index (nPRI),
narrowband Normalized Pigment Chlorophyll Index (nNPCI) and narrowband Green Normalize
Difference Vegetation Index (nGNDVI). In the second growth, significant differences in the VIs between
the plots were most frequently found using LCI, nWI, nREP, nSIPI and nWC. As in Growth 1, the lowest
classification rates in the second growth were reached with nPRI, nNPQI and NPCI.

Regarding the differences in classification accuracy reached by the broadband and narrowband
versions of VIs, results between the two growths differed. In Growth 1, broadband NDVI and GNDVI
outperformed their narrowband versions, whereas the opposite relation was found in Growth 2.

Table 3. Ranks and overall accuracies of the 15 indices for the first and the second growth, as determined
by the Welch test (12 < n < 33, p = 0.01, α = 0.99).

1st
growth

Index nWC nWI nLCI nSIPI LCI nNDLI NDVI nNDNI
Accuracy 0.91 0.85 0.84 0.84 0.83 0.83 0.80 0.80

Index nNDVI nREP GNDVI nGNDVI nNPCI nPRI nNPQI Average
Accuracy 0.79 0.79 0.76 0.75 0.73 0.68 0.41 0.77

2nd
growth

Index LCI nWI nREP nSIPI nWC nLCI nNDLI nNDNI
Accuracy 0.76 0.75 0.72 0.71 0.71 0.67 0.64 0.64

Index nGNDVI nNDVI NDVI GNDVI nNPCI nNPQI nPRI Average
Accuracy 0.62 0.62 0.61 0.61 0.46 0.46 0.44 0.63

The probability for nREP, LCI, NDVI, nWC and nWI to distinguish plots at different T∑s correctly
is shown in Figure 3. At the beginning of the first growth, accuracies of LCI, NDVI, nWI and nWC
were above 80% and further increased to more than 95%. The accuracy of nREP was about 50% at
the onset of growth, but drastically increased during the initial stages of Growth 1 and successfully
separated more than 95% of the plots at a T∑ of 450 ◦C d. Afterwards, the accuracies of nREP, LCI and
NDVI dropped to levels between 65% and 70%. Accuracies of nWC and nWI remained more stable,
making them the strongest and second strongest VI, respectively. At the end of Growth 1, the accuracy
of the chlorophyll-related VIs started to increase earlier than the accuracy of the water-related VIs.
Thus, they achieved similar accuracies, like the water-related VIs.

Remote Sens. 2017, 9, 81  9 of 19 

 

Normalized Phaeophytization Index (nNPQI), followed by narrowband Photochemical Reflectance 
Index (nPRI), narrowband Normalized Pigment Chlorophyll Index (nNPCI) and narrowband Green 
Normalize Difference Vegetation Index (nGNDVI). In the second growth, significant differences in 
the VIs between the plots were most frequently found using LCI, nWI, nREP, nSIPI and nWC. As in 
Growth 1, the lowest classification rates in the second growth were reached with nPRI, nNPQI  
and NPCI. 

Regarding the differences in classification accuracy reached by the broadband and narrowband 
versions of VIs, results between the two growths differed. In Growth 1, broadband NDVI and GNDVI 
outperformed their narrowband versions, whereas the opposite relation was found in Growth 2. 

Table 3. Ranks and overall accuracies of the 15 indices for the first and the second growth, as 
determined by the Welch test (12 < n < 33, p = 0.01, α = 0.99). 

1st 
growth 

Index nWC nWI nLCI nSIPI LCI nNDLI NDVI nNDNI  
Accuracy 0.91 0.85 0.84 0.84 0.83 0.83 0.80 0.80  

Index nNDVI nREP GNDVI nGNDVI nNPCI nPRI nNPQI  Average 
Accuracy 0.79 0.79 0.76 0.75 0.73 0.68 0.41  0.77 

2nd 
growth 

Index LCI nWI nREP nSIPI nWC nLCI nNDLI nNDNI  
Accuracy 0.76 0.75 0.72 0.71 0.71 0.67 0.64 0.64  

Index nGNDVI nNDVI NDVI GNDVI nNPCI nNPQI nPRI  Average 
Accuracy 0.62 0.62 0.61 0.61 0.46 0.46 0.44  0.63 

The probability for nREP, LCI, NDVI, nWC and nWI to distinguish plots at different T∑s 
correctly is shown in Figure 3. At the beginning of the first growth, accuracies of LCI, NDVI, nWI and 
nWC were above 80% and further increased to more than 95%. The accuracy of nREP was about 50% 
at the onset of growth, but drastically increased during the initial stages of Growth 1 and successfully 
separated more than 95% of the plots at a T∑ of 450 °C d. Afterwards, the accuracies of nREP, LCI 
and NDVI dropped to levels between 65% and 70%. Accuracies of nWC and nWI remained more 
stable, making them the strongest and second strongest VI, respectively. At the end of Growth 1, the 
accuracy of the chlorophyll-related VIs started to increase earlier than the accuracy of the  
water-related VIs. Thus, they achieved similar accuracies, like the water-related VIs. 

 
Figure 3. Accuracies of nREP, LCI, NDVI, nWI and nWC to distinguish plots at different T∑s. Raw 
data, including single data points, are deposited in Supplement Tables S5 and S6. 

During the onset of the second growth, the highest classification accuracies were reached using 
nWI (above 90%). Similar to the previous growth, the accuracies of all VIs (except for nREP) increased 
until T∑s of 400–450 °C d were reached. Afterwards, all VIs’ accuracies dropped, except for REP, 
which remained constant at this time. As LCI recovered as the first VI, it was the best performing VI 
between 800 and 1150 °C d. The water-related VIs recovered in their accuracies the latest. At the end 
of Growth 2, nREP steeply increased and outperformed the other four VIs. 
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including single data points, are deposited in Supplement Tables S5 and S6.

During the onset of the second growth, the highest classification accuracies were reached using
nWI (above 90%). Similar to the previous growth, the accuracies of all VIs (except for nREP) increased
until T∑s of 400–450 ◦C d were reached. Afterwards, all VIs’ accuracies dropped, except for REP,
which remained constant at this time. As LCI recovered as the first VI, it was the best performing VI
between 800 and 1150 ◦C d. The water-related VIs recovered in their accuracies the latest. At the end
of Growth 2, nREP steeply increased and outperformed the other four VIs.
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3.3. Random Forests Classification

The random forests classification was performed to investigate how the utilization of several
VIs improves the classification accuracies, compared to single VIs. The error rate of the classification
was expressed as OOB error, which is shown as a function of T∑ in Figure 4. It was observed that
OOB errors in the second growth (12%) were higher than in the first growth (5%). Furthermore,
the classification error in Growth 1 remained relatively stable (between 2.5% and 6%). In contrast, OOB
errors in Growth 2 varied significantly with the T∑ and ranged between 2.5% and 17.5%.
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To identify the probability of a VI for being selected as a split variable in random forests, the
variable importance was calculated and averaged for each growth (Figure 5). The results of the t-test
(cf. Table A1) indicate significant differences in the VIs’ importance. In the first growth, nWI reached
the highest importance (16% of the decisions made) and was selected significantly more frequently than
all other VIs, except for nREP, which ranked second. LCI, nSIPI, nWC and narrowband Normalized
Difference Lignin Index (nNDLI) outperformed NDVI, nGNDVI, nNDVI, GNDVI, nPRI, nNPCI and
nNPQI significantly. Medium to low importance (between 6% and 4%) was found for nNDNI, nLCI,
NDVI, nGNDVI, nNDVI and GNDVI. These VIs have been of significantly higher importance than
nNPCI and nNPQI. During the second growth, the differences in importance between the VIs were
lower than in the first growth. However, similar VIs influenced the classification the strongest: nREP,
nWI, LCI, nSIPI and nWC were of significantly higher importance than nLCI, nNDVI, GNDVI, NDVI,
nPRI and nNPQI. Of medium to low importance were nNDNI, nNPCI, nGNDVI, nNDLI, nLCI,
nNDVI, GNDVI and NDVI. nNPQI and nPRI were of significantly lower importance (2.9% and 3.5%,
respectively) than all other VIs.

Figure 6 shows the variation in importance of nREP, LCI, NDVI, nWI and nWC throughout
the growing season. At the beginning of Growth 1, nREP was most important for the classification.
However, at T∑s above 400 ◦C d, the importance of all biomass and chlorophyll-related VIs (nREP,
LCI and NDVI) decreased, whereas the importance of the water-related VIs (nWI and nWC) increased.
Thus, at T∑s larger than 600 ◦C d, nWI was of highest importance, followed by nWC or nREP.
After a T∑ of 900 ◦C d was reached, the importance of nWI and nWC decreased. Consequently, the
classification was more influenced by chlorophyll-related VIs (particularly LCI and nREP) at T∑s larger
than 1150 ◦C d. During the entire first growth, NDVI was among the VIs with the lowest importance.

At the onset of the second growth, nREP was the most important VI. However, over time, the
importance of LCI and nWI increased and exceeded nREP at T∑s larger than 650 ◦C d. Similar to nWI,
nWC increased in importance at the beginning of the second growth, but did not reach the high levels
of nREP, LCI and nWI. At T∑s larger than 950 ◦C d, the importance of nWI decreased. Thus, during
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the remaining period of Growth 2, LCI or nREP featured the highest importance. Similar to Growth 1,
NDVI had a minor impact on the classifications throughout the entire growth.Remote Sens. 2017, 9, 81  11 of 19 
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4. Discussion

4.1. Critical Reflection on the Experimental Settings

In this work, the performance of fifteen different VIs for distinguishing five differently-fertilized
grassland communities (Ca, CaN, CaNP, CaNPKCl, CaNPK2SO4) was tested. Constant fertilization
lead to a characteristic plant species composition in each plot, which differed between treatments
and changed only marginally between years [23]. Similarly, biomass production varied between the
plots; the lowest biomass was produced in the Ca treatment, followed by CaN, CaNP and the NPK
treatments [21,22] (cf. Supplement Table S7).

Because observations were made in three years, it was assured that annual fluctuations in
precipitation or radiation were captured in the dataset. This setup, as well as the utilization of
T∑ as the temporal variable secured that no climatic or management factors influenced the species
composition and the biomass development. Minor disturbances such as lodging of plants (especially
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at the end of the first growth in the NPK-treated plots) and the naturally-occurring variability of the
plant canopies was diminished by acquiring measurements at three different locations within each plot.
Stagakis et al. [45] identified significant effects of the sensor viewing angle and the sensor height on the
spectral reflectance measured over plant communities. In this study, the utilization of the crane system
allowed systematic measurements from a 2-m height and nadir position, which widely eliminated
these effects. Changing cloud cover [26,46], as well as changes in solar elevation angle [45] are often
considered as additional confounding factors of the spectral measurements. Diurnal changes in solar
elevation were adapted by acquiring spectra between 10:00 a.m. and 4:00 p.m. and averaging this
information for an entire day. Visual inspection of VI values recorded on the single days revealed that
VI values were relatively stable. Furthermore, acquiring data in a large interval in time covered the
daily occurring variance in spectral signal and further stabilized VI values. However, seasonal changes
in solar elevation may have altered the irradiation conditions. However, we assume that these effects
were minimized by utilizing VIs because their use significantly lowers the impact of illumination
conditions and cloud cover (cf. [47]). Additionally, frequent measurements of the white reference panel
ensured that reflectance was adapted for changes in solar irradiance.

4.2. Seasonal Curves of the VIs

Based on multitemporal measurements of five different VIs (nREP, LCI, NDVI, nWI and nWC)
sensitive to different biophysical parameters, differences in the VI development over time were
investigated. Comparing both growths, similar developments were observed. However, lower
maxima of positively-developing VIs (nREP, LCI, NDVI and nWI), as well as higher minima for
negatively-developing VIs (nWC) were observed in Growth 1. The reason behind this is that growth
rates were lower in the second growth (cf. Supplement Table S7), resulting in lower intensities of green
vegetation reflectance and lower amounts of water stored in plants.

As observed by other scientists [8,48], VIs followed strong seasonal dynamics throughout the
growing season. In the NPK-fertilized plots, VIs related to biomass, as well as to chlorophyll and
water content, such as nREP, LCI, NDVI and nWI, passed through a rapid increase at the beginning
of both growths. At later stages, nREP, LCI and NDVI decreased as a result of starting senescence in
the NPK-treated plots. This was supported by [13], who found significant effects of senesced grass
components on the near-infrared reflectance, which has been used for the calculation of these VIs.
In contrast, nWI remained at a high level for a longer time, indicating that water content stayed at a
high level at the onset of senescence. At the time, NP(K) fertilized plots started senescing, all four VIs
in the Ca and CaN plots increased because these plots host slow-growing species [23,24]. Such species
not only increase in their biomass over a longer time-span, but also remain relatively constant in their
water and chlorophyll content. nWC developed contrary to the four other VIs due to its negative
response to water content.

4.3. Testing the Classification Accuracy of the Fifteen VIs Using the Welch Test

To test the ability of every single VI for distinguishing the five different vegetation communities,
a Welch test was performed for each T∑. The average of the Welch tests’ results allowed an estimation of
the overall classification accuracy of each VI in the individual growths. The average of the classification
accuracies revealed that classification of all VIs (except nNPQI) was lower in Growth 2 than in Growth 1.
The explanation for this is that VI curves in the second growth featured lower amplitudes and were
less distinct from each other. These relatively low amplitudes were caused by a lower and more similar
sward height and biomass production in Growth 2 (Table A2).

At the beginning of both growths, classification accuracies were relatively low. We assume that
this was caused by small differences in canopy biomass occurring at this stage. This is supported by
measurements of Compressed Sward Height (CSH), which are highly correlated to canopy biomass [49].
CSH featured a standard deviation in compressed sward height between the five communities of
2.93 cm in the initial stage (464 ◦C d, 2014) and 18.21 cm in the final stage (464 ◦C d, 2014) of Growth 1
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(Table A2). Similarly, a standard deviation of 1.18 cm was shown at the beginning (210 ◦C d, 2014)
and 4.57 cm at the end (1353 ◦C d, 2014) of Growth 2 (Table A2). Furthermore, it is likely that
subtle differences in the reflectance of the plant canopies in the early stages of both growths have
been concealed by the influence of soil on the reflectance signal (cf. [18]). At later stages of the
two growths, biomass increased steadily, which mitigating the contribution of soil reflectance to the
spectral reflectance (cf. [2,50]). Combined with increasing differences in biomass occurring between
the different fertilizer treatments, an increase in the classification accuracies was achieved. However,
as soon as biomass production in the NPK-treated plots languished, classification accuracies dropped,
as canopies were optically more similar.

Due to the onset of senescence in the NPK-treated plots, on the one hand, and the constant
abundance of green biomass in the Ca and CaN plot, on the other hand, classification rates at the ends
of both growths increased. This contradicts with results published by Fava et al. [10], who stated that
the senescence of vegetation lowers the differences between VIs. We assume that the postponed onset
of senescence in the Ca and CaN plots led to increased classification accuracies in this study. This is
supported by Sanchez-Azofeifa et al. [51], who demonstrated that the ability to distinguish plant types
based on spectral information is strongly dependent on their phenological stage.

During the first growth, the most successful separation in this experiment was achieved using
nWC and nWI, which are known to respond to plant water content. The high overall classification
rates of nWI and nWC were caused by the relatively stable classification accuracy in the middle
of the growth. This stability was caused by differences in water holding capacity of the canopies
because canopies featuring low biomass production (Ca and CaN treatments) desiccate earlier after
rain events than the canopies of highly productive communities (NPK treatments). VIs coined for
detecting changes in biomass, such as NDVI, as well as nNDVI, GNDVI and nGNDVI, achieved lower
classification accuracies. The reason for the poor performance of these VIs is the strongly decreasing
classification accuracy in the middle of the growths. An explanation for this decrease in classification
accuracy are the saturation effects of these VIs, which were observed under high LAIs (cf. [52–54]).
Interestingly, LCI, which is related to chlorophyll content, was less affected by saturation in the middle
of the growth and seems to be more suitable for mapping grasslands featuring high LAIs than the
previously-mentioned VIs. In the final stage of Growth 1, the classification accuracies of nREP and
LCI increased and reached the accuracy level of nWI and NWC. This behavior is explained by the
good performance of these VIs for distinguishing the senescing NPK treatments from the Ca and
CaN treatments. nNPQI (related to phaeophytization), nPRI (indicating plant vitality) and nNPCI
(related to chlorophyll content) achieved the lowest accuracies.

During the second growth, the highest classification accuracies were achieved by LCI, followed by
nWI and nREP, which confirms the strong performances of these VIs found in Growth 1. The relatively
good performance of LCI and nREP compared to the water content-related VIs in Growth 2 leads to the
assumption that the lower LAIs support the utilization of chlorophyll- or biomass-related VIs. Again,
our results indicate that nNPQI, nPRI and nNPCI, as well as the nGNDVI, nNDVI, NDVI and GNDVI
are not well-suited for classifying our grassland communities. Finally, nWI and nSIPI, provided high
classification accuracies for both growths, which suggests that these VIs are relatively stable for the
classification of grasslands affected by different growing conditions.

No clear result was obtained whether broadband or narrowband VIs provide the highest
accuracies for classifying the studies grassland communities. In Growth 1, broadband NDVI
and GNDVI outperformed the narrowband versions, whereas in Growth 2, the narrowband
versions provided higher classification accuracies. These results contradict the findings made by
Thenkabail et al. [55], who found an increased classification accuracy using exclusively narrowbands
to separate weeds, shrubs, crops and grasses in Africa compared to a classification using exclusively
broadbands. This suggests that the selection of broadband or narrowband VIs for achieving optimal
classification is also dependent upon the timing of spectral data acquisition.



Remote Sens. 2017, 9, 81 14 of 20

4.4. Random Forests Classification

We applied a random forests classification to investigate how much the inclusion of all fifteen VIs
improved the classification of the five plots compared to single VIs. Our results show that classification
accuracy increased by 4% in Growth 1 and 12% in Growth 2 in comparison to the strongest VI using
the Welch test. Furthermore, the classification accuracy achieved by random forests was more stable
(remaining always above 82%) than the best performing VIs identified using the Welch test. In Growth 1,
classification rates varied marginally over time, whereas OOB errors in Growth 2 fluctuated between
2.5% and 17.5%. These variations in Growth 2 and the resulting lower overall accuracy were most likely
caused by larger influences of soil reflectance on the signal (cf. [2]) at the beginning of Growth 2, as well
as by smaller differences in between the plots’ canopy biomasses in the green-up phase (Table A2).
The increasing classification accuracy at the end of Growth 2 was caused by the onset of senescence
in the NPK-treated plots, whereas the other plots remained stable in their amount of green leaf area
(cf. [56]).

Variable importance indicates the frequency a VI is selected inside a random forest. In Growth 1,
nWI was the most important VI, followed by nREP and LCI. Our results show that other VIs,
such as nSIPI, nNDLI, nNDNI and nLCI, carry additional important information for improving
the classification. Interestingly, other biomass-related VIs (i.e., NDVI, nGNDVI, nNDVI and GNDVI),
as well as water-related VIs (i.e., nWC) were of relatively low importance compared to the Welch
test. We assume that nWI as a water-related VI, as well as nREP and LCI as chlorophyll-related VIs
carried redundant information and lead to the low importance of these VIs. Of minor importance were
nPRI, nNPCI and nNPQI, which indicates that these VIs marginally support the classification. In the
second growth, the ranking in importance of the VIs was similar, but the weight of the VIs was more
evenly distributed. This even distribution supports the assumption that especially if classification
accuracy was low using single VIs, the addition of VIs sensitive to other biophysical variables increased
the classification accuracy. Therefore, nREP as the most important VI was closely followed by nWI,
LCI, nSIPI and nNDNI. As biomass-related VIs were less influenced by the high LAIs in Growth 2,
nGNDVI and nNPCI increased in importance compared to Growth 1. As these two VIs included similar
information as nNDVI, GNDVI and NDVI, the latter VIs were of lower importance. As observed in
the first growth, nPRI and nNPQI were rarely selected by random forests.

Using nREP, LCI, NDVI, nWI and nWC, the importance of the VIs under changing T∑s was
investigated. In Growth 1, the results of variable importance widely confirmed our findings made
using the Welch test. It was shown that the importance of water-related VIs was relatively stable at
times when biomass- and chlorophyll-related VIs saturated due to high LAIs of the grass canopies
(cf. [52–54]). NDVI was of low importance throughout the entire first growth, which confirms its
low classification accuracy identified using the Welch test. Throughout the entire second growth, the
chlorophyll-related VIs nREP and LCI were relatively stable in their importance. However, nWI and
nWC added valuable information especially at T∑s between 400 and 1000 ◦C d, indicating that these
VIs are particularly important when LAIs in the canopies are high and obscure differences in biomass
or chlorophyll content. Again, NDVI was of minor importance.

5. Conclusions

This study presents an approach for classifying grassland communities along a gradient from
intensive to extensive fertilizer management in a two-cut-system using a set of fifteen remotely-sensed
vegetation indices (VIs). It was shown that VIs are useful to identify differences between the
grassland communities at different times throughout a growing season. Each VI featured characteristic
fluctuations over time in the individual plots. It is well documented for this particular experiment
that plots differ significantly in their biophysical properties, such as biomass production. Hence, we
conclude that the VIs that we tested were sensitive to these properties.

The different time courses of VI development have far-reaching consequences for the use and
interpretation of VIs when classifying grassland. None of the VIs was able to feature constantly high
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classification accuracies throughout the entire growing season. However, while classification accuracies
of VIs sensitive to one biophysical variable decreased, the accuracies of other VIs remained more stable
allowing higher classification accuracies. Biomass- or chlorophyll-related VIs, such as nREP, NDVI or
LCI, provided good results when plants had further developed in the intensively-managed plots than
in the extensively-managed plots. However, at later stages when the extensively-managed plots caught
up in development, water content-related VIs, such as nWI or nWC, were the better alternative for a
classification because biomass-related VIs were affected by saturation effects. Further, classification
in the second growth was more difficult than in the first growth, due to less distinct differences in
biophysical characteristics in between the plant communities. Thereby, the classification performed
particularly weak when slow-growing canopies had fully developed and fast-growing canopies had
not yet entered senescence. At this stage, nWI and nWC did not reach the high classification accuracies
they reached in the Growth 1, so that none of the VIs separated the communities reliably.

This problem was solved by applying all fifteen VIs in the random forests algorithm. A time
series of random forest models using the best VIs for classifying the plant communities was created.

As spectral information in this procedure was used more effectively, classification accuracies
increased in both growths, but most considerably in the second growth. Furthermore, our
multitemporal analysis has shown that classification accuracies using this approach remained relatively
stable throughout the entire first growth. Although classification rates in the second varied to some
degree, significant improvements were made compared to the utilization of single VIs.

These results suggest that the selection of an appropriate VI (depending on the plant development)
is essential for classifying grasslands using single VIs. However, an alternative using random forests
was promising, because it yielded a more robust grassland classification.

The utilization of this multi-VI approach for grassland mapping at larger spatial extent could
improve the separation of designated plant communities with respect to their floristic composition and
plant properties. Future research should be guided towards testing random forests classifiers using
VIs for grassland mapping with aerial or satellite imagery for other grassland communities featuring
higher or lower temporal variability in biomass production and spectral reflectance. Results of such
studies may significantly improve existing monitoring techniques (e.g., using single VIs), improve
grassland mapping and contribute to a more sustainable management of grassland ecosystems.
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Spectra measured in the five grassland plots throughout the growing seasons of 2012–2014; Table S2: Spectral
response function of the RapidEye sensor; Table S3: Welch test, classification accuracy using single VIs: Growth 1;
Table S4: Welch test, classification accuracy using single VIs: Growth 2; Table S5: Random forests, percent VI
importance: Growth 1; Table S6: Random forests, percent VI importance: Growth 2; Table S7: Rising plate meter
measurements for 2013 and 2014; Table S8: Temporal development of VIs from 2012–2014.
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Appendix A

Table A1. Performance of the fifteen VIs for distinguishing the five grassland communities in Growth 1 and Growth 2 (Welch test with α= 0.9; * p < 0.1; ** p < 0.05;
*** p < 0.01, n = 19).

Growth 1

nWI nREP LCI nSIPI nWC nNDLI nNDNI nLCI NDVI nGNDVI nNDVI GNDVI nPRI nNPCI nNPQI

nWI - - ** ** *** *** *** *** *** *** *** *** *** *** ***
nREP - - - * ** ** *** *** *** *** *** *** *** *** ***
LCI ** - - - - - ** *** *** *** *** *** *** *** ***

nSIPI ** * - - - - - ** ** ** ** *** *** *** ***
nWC *** ** - - - - - - * * * ** *** *** ***

nNDLI *** ** - - - - - - * * * ** *** *** ***
nNDNI *** *** ** - - - - - - - - - * ** ***

nLCI *** *** *** ** - - - - - - - - ** ** ***
NDVI *** *** *** ** * * - - - - - - * ** ***

nGNDVI *** *** *** ** * * - - - - - - * * ***
nNDVI *** *** *** ** * * - - - - - - - ** ***
GNDVI *** *** *** *** ** ** - - - - - - - ** ***

nPRI *** *** *** *** *** *** * ** * * - - - - -
nNPCI *** *** *** *** *** *** ** ** ** * ** ** - - -
nNPQI *** *** *** *** *** *** *** *** *** *** *** *** - - -

Growth 2

nREP nWI LCI nSIPI nWC nNDNI nNPCI nGNDVInNDLI nLCI nNDVI GNDVI NDVI nPRI nNPQI

nREP - - - - * ** *** *** *** *** *** *** *** *** ***
nWI - - - - - * ** ** ** ** ** *** *** *** ***
LCI - - - - - * *** ** ** *** *** *** *** *** ***

nSIPI - - - - - - ** ** ** *** *** *** *** *** ***
nWC * - - - - - * - - ** ** ** *** *** ***

nNDNI ** * ** - - - - - - - - - - ** **
nNPCI *** ** *** ** * - - - - - - - - *** ***

nGNDVI *** ** ** ** - - - - - - - - - * **
nNDLI *** ** ** ** - - - - - - - - - * *
nLCI *** ** *** *** ** - - - - - - - - ** ***

nNDVI *** ** *** *** ** - - - - - - - - *** ***
GNDVI *** *** *** *** ** - - - - - - - - * **
NDVI *** *** *** *** *** - - - - - - - - * *
nPRI *** *** *** *** *** ** *** * * ** *** * * - -

nNPQI *** *** *** *** *** ** *** ** * *** *** ** * - -
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Table A2. Averages and standard deviations of the Compressed Sward Height (CSH) measurements
for 2013 and 2014.

Year Growth T∑∑∑ (◦C d) CSH (cm) SD (CSH)

2013

1 947 20.59 10.63

2
964 6.49 2.51
1077 4.62 2.15
1378 6.98 2.95

2014

1

464 5.52 2.93
560 7.75 4.23
757 18.12 8.47
883 17.72 10.09
1017 17.18 9.64
1307 24.5 18.21

2

210 5.17 1.18
804 10.54 5.37
972 12.94 4.90
1174 13.28 4.97
1353 11.21 4.57
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