
 

Remote Sens. 2017, 8, 1070; doi:10.3390/rs9101070 www.mdpi.com/journal/remotesensing 

Article 

Mapping Water Quality Parameters with Sentinel-3 
Ocean and Land Colour Instrument imagery  
in the Baltic Sea 
Kaire Toming 1,2,3, Tiit Kutser 1,*, Rivo Uiboupin 4, Age Arikas 4, Kaimo Vahter 4  
and Birgot Paavel 1 

1 Estonian Marine Institute, University of Tartu, Mäealuse 14, 12618 Tallinn, Estonia;  
Kaire.Toming.001@ut.ee (K.T.); Birgot.Paavel@ut.ee (B.P.) 

2 Centre for Limnology, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia 
3 Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D,  

75236 Uppsala, Sweden 
4 Department of Marine Systems, School of Science, Tallinn University of Technology, Akadeemia Road 15a, 

12618 Tallinn, Estonia; Rivo.Uiboupin@ttu.ee (R.U.); age.arikas@ttu.ee (A.A.);  
kaimo.vahter@msi.ttu.ee (K.V.)  

* Correspondence: Tiit.Kutser@ut.ee; Tel.: +372-6718-947 

Received: 2 August 2017; Accepted: 12 October 2017; Published: 20 October 2017 

Abstract: The launch of Ocean and Land Colour Instrument (OLCI) on board Sentinel-3A in 2016 is 
the beginning of a new era in long time, continuous, high frequency water quality monitoring of 
coastal waters. Therefore, there is a strong need to validate the OLCI products to be sure that the 
technical capabilities provided will be used in the best possible way in water quality monitoring 
and research. The Baltic Sea is an optically complex waterbody where many ocean colour products, 
performing well in other waterbodies, fail. We tested the performance of standard Case-2 
Regional/Coast Colour (C2RCC) processing chain in retrieving water reflectance, inherent optical 
properties (IOPs), and water quality parameters such as chlorophyll a, total suspended matter (TSM) 
and coloured dissolved organic matter (CDOM) in the Baltic Sea. The reflectance spectra produced 
by the C2RCC are realistic in both shape and magnitude. However, the IOPs, and consequently the 
water quality parameters estimated by the C2RCC, did not have correlation with in situ data. On 
the other hand, some tested empirical remote sensing algorithms performed well in retrieving 
chlorophyll a, TSM, CDOM and Secchi depth from the reflectance produced by the C2RCC. This 
suggests that the atmospheric correction part of the processor performs relatively well while IOP 
retrieval part of the neural network needs extensive training with actual IOP data before it can 
produce reasonable estimates for the Baltic Sea.  
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1. Introduction 

The launch of Ocean and Land Colour Instrument (OLCI) on board ESA Sentinel-3A satellite in 
February 2016 and the planned near future launch of identical sensor on Sentinel-3B opened a new 
era in coastal water remote sensing. Previous ocean colour sensors (Sea-Viewing Wide Field-of-View 
Sensor (SeaWiFS); Moderate Resolution Imaging Spectroradiometer (MODIS); and MEdium 
Resolution Imaging Spectrometer (MERIS)) were one-off scientific missions not designed for water 
quality monitoring. Sentinel satellites, launched in the Copernicus program, are designed to provide 
continuous long-term data flow to allow monitoring of environmental parameters with high accuracy 
enabling not only operational monitoring but also studies on environmental change. OLCI is a follow 
up of MERIS mission (2002–2012) with improved capabilities. Its spectral configuration is specifically 
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designed for optically complex coastal and inland waters, i.e., it has spectral bands in red and near-
infrared (NIR) part of spectrum where most of the useful spectral information, needed to retrieve 
different water quality parameters, is situated [1–8]. 

The Baltic Sea is an extraordinarily complex study object for ocean colour remote sensing. High 
amount of coloured dissolved organic matter (CDOM) received from boreal forest in the catchment 
area makes the water dark. This means that the water leaving signal is very low requiring highly 
sensitive remote sensing devices and very accurate atmospheric correction (typically more than 95% 
of the signal measured by satellites originates from atmosphere not water). In addition, sun elevation 
is low during most of the year. Low salinity (down to 0 Practical Salinity Unit (psu) in some parts) 
and high latitudes are the cause why large portion of the Baltic Sea is covered by ice in winter. There 
are two distinct phytoplankton seasons in the Baltic Sea [9]. Diatoms dominate the spring bloom that 
occurs after ice melt and cyanobacteria dominate during summer and early autumn. Optical 
properties of these two assemblages are so different that seasonal remote sensing algorithms may be 
needed [10,11]. There are also indications that the seasonality is changing [12,13].  

The optical complexity of the Baltic Sea is probably one of the reasons why Copernicus Marine 
Environment Monitoring Services (CMEMS) have not managed to develop ocean colour products 
that perform reasonably well. For example, the correlation between CMEMS chlorophyll a product 
and in situ data is r2 = 0.20 [14] while for some wavelengths of the reflectance products r2 is around 
0.5. The neural network used to retrieve chlorophyll a and reflectance products first estimates 
inherent optical water properties (IOPs) such as the total absorption coefficient, the absorption 
coefficients of pigments, detritus and CDOM, and the particulate backscattering, which are then used 
to calculate derived products (such as the chlorophyll a, total suspended matter, Secchi depth, etc.). 
These products are provided at the global scale and for some regional seas, but not for the Baltic Sea. 
Therefore, it is not possible to validate the CMEMS IOP products and there is need to find other 
methods to retrieve water quality parameters in the Baltic Sea. 

Estimation of the phytoplankton biomass (usually expressed as chlorophyll a concentration) is 
especially complicated in the Baltic Sea during cyanobacterial season when blooms may cover area 
of more than 200,000 km2 [15]. Cyanobacteria, unlike most phytoplankton, can regulate their 
buoyancy and in calm conditions (wind below 2 m s−1) choose the depth optimal for their growth. 
Vertical distribution of the biomass has significant impact on the measured reflectance [16] and 
consequently our ability to estimate cyanobacterial biomass. Moreover, cyanobacteria that have lost 
their buoyancy control form surface scum that may be several centimetres thick. It is not possible to 
estimate the biomass within the scum as the thickness cannot be estimated and the amount of still 
alive cells (chlorophyll a) may be significantly lower on the surface of the scum (due to 
photodegradation) than inside of it. Obviously, it is not possible to estimate phytoplankton biomass 
below the opaque scum. It has been shown that the cyanobacterial blooms are extremely 
heterogeneous and chlorophyll a may vary by three orders of magnitude within one OLCI pixel [4]. 
This causes problems in algorithm development and validation. First of all, the in situ sample 
collected with typical point measurement does not represent the same situation satellites are 
detecting. In addition, the reflectance measured by satellite does not represent the actual situation. 
For example, pixel that is partially covered with surface scum (high NIR reflectance, similar to 
terrestrial plants) and partially with relatively clear water below (negligible reflectance in NIR) is 
often detected as subsurface bloom (peak between 700–710 nm) [4]. 

Despite the above-mentioned complexity, studies demonstrate reasonable performance of 
remote sensing, at least at regional scales and/or in open parts of the Baltic Sea. Different remote 
sensing products (chlorophyll a, CDOM, suspended matter, diffuse attenuation coefficient, etc.) have 
been developed or adopted for the Baltic Sea [3,4,6,8,11,17–28]. Many of the recent studies rely on 
MERIS data and the results can probably be implemented on Sentinel-3 OLCI data as well. The aim 
of this study was to test the performance of Sentinel-3A OLCI in coastal waters of the Baltic Sea by 
evaluating the results of atmospheric correction, ocean colour products produced by the standard 
processor (C2RCC) and selected empirical algorithms that have shown promising results in the Baltic 
Sea when applied on other sensors or modelled data. 
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2. Materials and Methods 

2.1. Study Sites and in Situ Data 

In order to compile as many data sources as possible in testing the performance of Sentinel-3 
OLCI, we used in situ data from three different sources:  

• Field campaigns dedicated for Sentinel-2 and Sentinel-3 validation where bio-optical 
measurements were carried out from a boat with comprehensive set of optical instrumentation 
followed by water sample analysis in laboratory (circles on Figure 1). 

• Bio-physical sampling campaigns on R/V Salme included both fixed station sampling with 
limited number of optical measurements (reflectance, IOPs), accompanied with water sampling, 
and ferrybox measurements between the stations (triangles and lines on Figure 1). 

• Reflectance measurements collected for satellite data calibration and validation with Rflex 
systems [29] on ships of opportunity under the frame of the BONUS FerryScope project 
(www.ferryscope.org), along with in situ data collected with ferrybox systems (markers in the 
Southern part of the Baltic Sea).  

Three dedicated field campaigns (16 measurements, on 24 May, 14 September, and 12 October 
2016) were carried out from a boat. Water samples for the analysis of chlorophyll a (in mg m−3), total 
suspended matter (TSM, in mg L−1), inorganic fraction of suspended matter (SPIM, in mg L-1), the 
organic fraction of suspended matter (SPOM, in mg L-1) and aCDOM (in m−1) were collected from surface 
layer (top 0.5 m). Besides the water sampling, in situ data collection included reflectance 
measurements (described in Section 2.2), spectral absorption, attenuation, scattering and 
backscattering measurements (WetLabs AC-S, ECO-vsf3, ECO-bb3, Philomath, USA), volume 
scattering at three angles and three wavelengths (WetLabs ECO-vsf3, Philomath, USA), CTD 
(SeaBird, Philomath, USA) data collection and fluorometric measurements of chlorophyll a, 
phycocyanin and CDOM (Trios, microFLU, Oldenburg, Germany). 

Two ship cruises were conducted using the vessel R/V Salme (17 measurements, on 26 July and 
3 August) in 2016. Reflectance measurements (described in Section 2.2) were carried out in fixed 
stations together with water sampling from surface layer (top 0.5 m) for the analysis of chlorophyll a 
(in mg m−3) and total suspended matter (TSM, in mg L-1). In addition, spectral absorption and 
attenuation in the wavelength range from 402 nm to 732 nm were measured at each station using AC-
S instrument (WetLabs, Philomath, USA).  

A ferrybox system (by GO-Systemelektronik BlueBox-System) installed on board the R/V Salme 
collected data at 2 m depth between the fixed sampling stations (822 measurements on 26 July; 1088 
measurements on 3 August 2016). During the cruises, water was pumped continuously through 
measuring system equipped with fluorometers for chlorophyll a (in mg m−3), phycocyanin (ppb), and 
turbidity (NTU, ECO Fluorometers, WetLabs, Philomath, USA). Measurements, together with GPS 
signal, were logged by BlueBox-system at 60 s frequency, giving a spatial resolution of about 250 m.  

A time series of shipborne remote sensing reflectance (described in Section 2.2), chlorophyll a 
and turbidity (385 measurements, on 10 May 2016) were collected from the Southern Baltic Sea. This 
is a subset of data collected in the frame of the FerryScope project [30]. The mean time difference 
between Sentinel-3 OLCI and in situ data was approximately one day. 
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Figure 1. Locations of the sampling points: Squares, FerryScope; circles, boat measurements; triangles, 
research vessel R/V Salme; rout behind the triangles, R/V Salme ferrybox; 1, Matsalu Bay; 2, Hiiu 
Strait; and 3, Nordgrund. 

Concentration of chlorophyll a was determined by filtering the water samples through Whatman 
GF/F glass microfibre filters (pore size 0.7 μm, diameter 47 mm, Whatman International Ltd., 
Mainstone, UK), extracting the pigments with ethanol (96%) and spectrophotometrically measuring 
absorption at wavelengths of 665 nm and 750 nm [31]. The values of chlorophyll a were calculated 
with the Lorenzen formula [32]. 

The concentration of TSM, was measured gravimetrically after filtration of the same amount of 
water through pre-weighed and pre-combusted (103–105 °C for 1 h) GF/F filters. The increase of filter 
weight indicates TSM concentration in the water sample. The inorganic fraction of suspended matter 
(SPIM) was measured after combustion at 550 °C for 30 min. The organic fraction of suspended matter 
(SPOM) was determined by subtraction of SPIM from TSM (ESS, 1993). 

aCDOM was measured with a spectrometer (Hitachi U-3010 UV/VIS, at the range of 350–750 nm) 
in water filtered through a Millipore 0.2 μm filter. Measurements were carried out in a 5 cm cuvette 
against distilled water and corrected for residual scattering according to [33]. aCDOM(412) was used for 
measuring CDOM concentration in the algorithm analyses. Different algorithms use different 
wavelengths for CDOM, but as Kowalczuk et al. [19] has shown, the slope of the CDOM in the Baltic 
Sea is relatively stable throughout the year so using a different wavelength as reference should not 
change the performance of the algorithm [11]. 

Secchi depth was measured from a boat and R/V Salme with a 30 cm diameter Secchi disk. 

2.2. Reflectance Measurements 

Reflectance measurements used in this study were collected in three different ways: the in situ 
measurements from a boat were carried out with radiance (Lu) and irradiance (Ed) sensor, the 
measurements from R/V Salme were performed with an irradiance (Ed) sensor and the measurements 
from ships of opportunity were carried out with triple radiometer system (Lu, Ld, Ed).  

The boat reflectance measurements were carried out with two TriOS RAMSES sensors, where 
RAMSES-ACC-VIS measured sky irradiance and RAMSES-ARC upwelling radiance. The 
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downwelling irradiance sensor was looking straight up and the upwelling radiance sensor was 
looking straight down. Reflectance was calculated as Lu/Ed. Reflectance measurements were carried 
out both in the air and under water. The methodology, which also includes glint-free measurements, 
was described in more detail in [34]. RAMSES measures with 3.3 nm spectral interval at the 
wavelength range of 350–900 nm. In order to avoid errors in reflectance spectra that occur due to the 
slight wavelength differences between the two sensors, both radiance and irradiance values were 
interpolated to a 2-nm step before calculating the reflectance. 

The R/V Salme measurements were carried out just below the water surface using a RAMSES-
ACC hyperspectral radiometer. The RAMSES used measures with a 3.3 nm spectral interval at the 
wavelength range of 305.9–1142.8 nm (wavelength range from 350 nm to 900 nm was used in current 
analysis). Downwelling (Ed) irradiance was measured when the sensor was looking straight up, 
upwelling (Eu) irradiance was measured by turning the device face down and measuring at the same 
height/depth. Irradiance reflectance was calculated as Eu/Ed.  

The ship of opportunity reflectance measurements were carried out with Rflex systems [29] that 
consists of three Ramses sensors and a moving platform with software that keeps the sensor package 
at optimal viewing angles proposed by [35]. It measures with a 3.3 nm spectral interval at the 
wavelength range of 320–947 nm. 

2.3. Sentinel-3 OLCI Data 

Sentinel-3 OLCI full resolution (FR) Level-1 and Level-2 data products with 300 m spatial 
resolution were used for analyses. Sentinel-3 OLCI cloud free images were available on 9 May, 21 
May, 26 July, 3 August (with system vicarious calibration), 14 September and 10 October (without 
system vicarious calibration) 2016. Spectral bands of Sentinel-3 OLCI are brought out in Table 1. 

Sentinel-3 Toolbox Kit Module (S3TBX) version 5.0.1 in Sentinel Application Platform (SNAP) 
version 5.0. On Windows 10 was used to process the images. Cloud free pixel values corresponding 
to the locations of sampling points were extracted from OLCI imagery. To get the Level-1 Top of 
Atmosphere (TOA) and Level-2 (L2) Bottom of Atmosphere (BOA) reflectance images (derived from 
the associated L1 products) Case-2 Regional/Coast Colour (C2RCC) atmospheric correction (AC) 
module version 0.15 for Sentinel-3 OLCI was applied. Output products of the C2RCC are: BOA 
reflectance, inherent optical properties (absorption coefficient of phytoplankton pigments, detritus, 
coloured dissolved organic carbon and total absorption at 443 nm, scattering coefficient of marine 
and white particles at 443 nm), chlorophyll, TSM and CDOM, which were compared with appropriate 
in situ measurements.  

Table 1. Spectral bands, central wavelengths (nm) and bandwidths (nm) of Sentinel-3 OLCI. 

Band Number Central Wavelength (nm) Bandwidth (nm) 
Oa1 400 15 
Oa2 412.5 10 
Oa3 442.5 10 
Oa4 490 10 
Oa5 510 10 
Oa6 560 10 
Oa7 620 10 
Oa8 665 10 
Oa9 673.75 7.5 

Oa10 681.25 7.5 
Oa11 708.75 10 
Oa12 753.75 7.5 
Oa13 761.25 2.5 
Oa14 764.375 3.75 
Oa15 767.5 2.5 
Oa16 778.75 15 



Remote Sens. 2017, 9, 1070  6 of 20 

 

Oa17 865 20 
Oa18 885 10 
Oa19 900 10 
Oa20 940 20 
Oa21 1020 40 

In addition to the standard processor (C2RCC), common empirical algorithms were tested (Table 2). 

Table 2. List of empirical algorithms tested in this study. 

Algorithm (Wavelength) Algorithm (OLCI Bands) Reference 
Chlorophyll a and Other Pigments 

R560/R665 B6/B8 [36] 
R665/R709 B8/B11 [21] 
R665/R754 B8/B12  
R674/R709 B9/B11 [37] 
R674/R754 B9/B12  
R709/R754 B11/B12 [38] 

(1/R6651/R709) × R754 (1/B8 − 1/B11) × B12 [39] 
(R490 − R665)/R560 (B4 − B8)/B6 [40] 

R709 − ((R665 + R754)/2) B11 − ((B8 + B12)/2) [41] 
R709 − R754 B11 − B12  

 Total Suspended Matter  
R665/R560 B8/B6 [42] 

R709 B11 [43] 
Coloured Dissolved Organic Matter 

R665/R490 B8/B4 [21] 
R665/R560 B8/B6 [44] 

 Secchi  
(R560/R709)0.788 × 1.125 (B6/B11)0.788 × 1.125 (turbid waters) [45] 
(R490/R709)0.697 × 2.137 (B4/B11)0.697 × 2.137 (clear waters) [45] 

3. Results 

3.1. In Situ Data 

The in situ data used in this study come from three different sources, as described above. 
Therefore, the number and type of parameters varies. Table 3 summarises the results of the 
measurements. 

The boat measurements included absorption and scattering that are also products of the C2RCC 
processing chain. The absorption, attenuation and scattering coefficient measurements were 
hyperspectral and backscattering measurements were carried out at six wavelengths. Some total 
absorption coefficient spectra are shown in Figure 2 together with data from our other Baltic Sea 
study sites to demonstrate how the results of this study fit within the range of optical properties we 
have observed previously. 
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Table 3. In situ data of chlorophyll a (Chl a), phycocyanin, total suspended matter (TSM), the inorganic fraction of suspended matter (SPIM), the organic fraction of 
suspended matter (SPOM), turbidity, aCDOM(412), Secchi disc depth (Secchi), total absorption at 443 nm (atot), total attenuation at 443 nm (ctot), total scattering at 443 
nm (btot), and total backscattering at 470 nm (bbtot) collected during three different field campaigns on 24 May, in on 14 September and on 12 October 2016 (Boat), on 
board the R/V Salme on 26 July and 3 August 2016 (R/V Salme stations), by Ferrybox installed on board research vessel R/V Salme on 26 July and 3 August 2016 
(R/V Salme Ferrybox) and measured in the frame of the FerryScope project on 10 May 2016 (FerryScope).  

 
Chl a  

(mg m−3) 
Phycocyanin (ppb) 

TSM 
(mg L-1) 

SPIM 
(mg m−3) 

SPOM 
(mg m−3) 

aCDOM(412) (m−1) Turbidity (NTU) Secchi (m) 
atot

(m−1) 
ctot

(m−1) 
btot

(m−1) 
bbtot  
(m−1) 

Boat 

Mean 1.53 1.52 6.83 4.94 1.90 0.99 - 5.18 0.55 1.61 1.07 0.02 
Min 0.38 0.11 4.55 2.90 0.99 0.60  - 2.20 0.39 0.69 0.29 0.01 
Max 2.95 2.93 9.14 7.36 3.50 3.20  - 12.7 0.80 2.33 1.76 0.05 

N 17 17 17 17 17 17  - 17 15 15 15 15 

R/V Salme stations 

Mean 4.33 1.14 2.23 - -  - - 3.32 0.64 2.12 1.48 - 
Min 1.81 0.13 1.20  -  -  -  - 2.50 0.58 1.84 1.2 - 
Max 6.02 1.44 4.53  -  -  -  - 4.00 0.75 2.79 2.2 - 

N 16 8 16  -  -  -  - 16 16 15 15 - 

R/V Salme Ferrybox 

Mean 1.12 0.35 - - -  - 0.66 - - - - - 
Min 0.00 0.00  -  -  -  - 0.24  -  -  -  -  - 
Max 2.63 1.81  -  -  -  - 12.8  -  -  -  -  - 

N 822 299  -  -  -  - 771  -  -  -  -  - 

FerryScope 

Mean 1.60 - - - -  - 0.29 - - - - - 
Min 0.82  -  -  -  -  - 0.19  -  -  -  -  - 
Max 2.48  -  -  -  -  - 0.36  -  -  -  -  - 

N 385  -  -  -  -  - 385  -  -  -  -  - 
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Figure 2. Selected total absorption coefficient spectra of the Baltic Sea. The Gotland spectrum is from 
our other field study [46] to show typical absorption we have measured in the open parts of the Baltic 
Sea and Swedish Archipelago waters during our previous field campaigns. 

3.2. Atmospheric Correction and Reflectance Spectra 

In situ reflectance spectra were recalculated into Sentinel-3 OLCI bandwidths and compared 
with the C2RCC corrected reflectance. The comparison between OLCI bottom of atmosphere 
reflectance spectra and FerryScope project Rflex system results are shown in Figure 3, with R/V Salme 
underwater irradiance reflectance in Figure 4 and with glint-free remote sensing reflectance 
measured from a boat in Figure 5.  
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Figure 3. Reflectance spectra of the open Baltic Sea area: (a) Bottom of Atmosphere (BOA) reflectance 
of Sentinel-3 OLCI after correction with C2RCC (9 May 2010); and (b) FerryScope reflectance spectra 
measured on 10 May 2016 and recalculated to match Sentinel-3 OLCI bands. 
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Figure 4. Reflectance spectra of the coastal waters of Baltic Sea: (a) Bottom of Atmosphere (BOA) 
reflectance of Sentinel-3 OLCI after correction with C2RCC (26 July and 3 August 2016); and (b) R/V 
Salme. Reflectance spectra measured on board the research vessel R/V Salme on 26 July and 3 August 
2016 and recalculated into Sentinel-3 bands. 
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Figure 5. Reflectance spectra of the coastal waters of the Baltic Sea: (a) Bottom of Atmosphere (BOA) 
reflectance of Sentinel-3 OLCI after correction with C2RCC (21 May, 14 September and 10 October 
2016); and (b) boat. Glint-free reflectance spectra measured with the methodology described in [35] 
during three different field campaigns (24 May, 14 September, 12 October 2016) and recalculated into 
Sentinel-3 OLCI bands. 

We also calculated band by band correlations between the atmospherically corrected OLCI data 
and three different types of in situ reflectance. The correlation coefficients are given in Table 4. 

Table 4. Correlation (and corresponding p-values) between bottom of atmosphere (BOA) reflectance 
of Sentinel-3 OLCI after correction with C2RCC and in situ reflectance. Reasonably good correlations 
are highlighted in bold. R, correlation coefficient; P, p-value. 

Central Wavelength (nm)/Band 
FerryScope R/V Salme Field  

R P R P R P 
400 (B1) 0.06 0.25 0.55 0.03 0.51 0.04 
413 (B2) 0.06 0.26 0.56 0.03 0.55 0.02 
443 (B3) 0.07 0.20 0.66 0.01 0.67 0.00 
490 (B4) 0.31 0.00 0.65 0.01 0.77 0.00 
510 (B5) 0.59 0.00 0.38 0.16 0.81 0.00 
560 (B6) 0.77 0.00 −0.16 0.58 0.82 0.00 
620 (B7) 0.71 0.00 −0.48 0.07 0.77 0.00 
665 (B8) 0.68 0.00 −0.47 0.08 0.68 0.00 
674 (B9) 0.69 0.00 −0.49 0.06 0.68 0.00 
681 (B10) 0.69 0.00 −0.51 0.05 0.68 0.00 
709 (B11) 0.64 0.00 −0.41 0.13 0.58 0.02 
754 (B12) 0.60 0.00 −0.18 0.51 0.43 0.09 
779 (B16) 0.60 0.00 0.06 0.82 0.37 0.14 
865 (B17) 0.60 0.00 0.07 0.82 0.61 0.01 
885 (B18) 0.59 0.00 −0.63 0.01 0.71 0.00 

The height of the peak between 700 and 710 nm has been used as a proxy of phytoplankton 
biomass (chlorophyll a) for a long time [41]. The NIR part of spectrum is also important for detecting 
surface scum, as was mentioned above [4]. Therefore, the correct representation of the 709 nm band 
height and NIR signal are especially important for the Baltic Sea. Our own observations, as well as 
published results [46], suggest that most atmospheric correction procedures had problems in 
retrieving the 709 nm peak properly (compared to in situ data), especially in the earlier phases of 
MERIS mission. There was dense cyanobacterial bloom slightly outside the R/V Salme route on 26 
July 2016. We chose a few pixels from the image where it was sure that there is at least a very dense 
subsurface bloom if not surface scum present and checked how the C2RCC performs in such 
situation. The comparison between TOA and BOA reflectance is given in Figure 6, which indicates 
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that the C2RCC atmospheric correction provides unrealistic reflectance spectra in cyanobacterial 
bloom situations 

 

 
Figure 6. Sentinel-3 OLCI reflectance spectra from the bloom area near the R/V Salme route (26 July 
2016): (a) top of atmosphere (TOA) reflectance of OLCI; and (b) bottom of atmosphere (BOA) 
reflectance of OLCI after correction with C2RCC. 

3.3. Results of the Remote Sensing Products vs. in Situ Data 

The C2RCC processor retrieves first inherent optical properties, such as absorption and 
scattering coefficients, and then estimates the concentrations of optically active substances from the 
IOPs. It is seen in Figure 7 that none of the OLCI products had statistically significant correlation (p 
> 0.05) with in situ measured values. 
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Figure 7. Comparison of inherent optical properties of C2RCC and appropriate in situ measurements: 
(a) atot(443), (b) aCDOM(443), (c) aph(443), (d) adet(443), (e) btot(443), (f) ctot(443). Grey dots, R/V Salme; blue 
dots, boat; and black regression line, R/V Salme + boat. 

OLCI chlorophyll a and TSM products are calculated from estimated IOP values (pigment 
absorption and total scattering products at 443 nm respectively). Therefore, it is surprising that the 
concentration products have slightly better correlation with in situ data than the IOPs they were 
derived from (Figure 8a,b), although the highest correlation (R2 = 0.25) is still very low. The 
correlations were even higher when we used in situ data collected with ferrybox flow through 
systems (Figure 8c,d). However, it is clearly seen that the scatter of the results is very high despite 
the correlation coefficients in the range of 0.4–0.5. For example, C2RCC chlorophyll a varies between 
0 and 11 mg m−3 when the ferrybox concentration is around 2.5 mg m−3 and for C2RCC concentrations 
6 mg m−3 ferrybox values range between 1.5 and 6 mg m−3 (Figure 8c). It must be noted that there are 
no in situ IOP data for the points where ferrybox data were collected. 
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Figure 8. Comparison of output products of C2RCC: (a,c,d) chlorophyll a (Chl a), and (b) total 
suspended matter (TSM) and appropriate (a,b) in situ, (c) R/V Salme ferrybox and (d) FerryScope 
measurements: (a,b) grey dots, R/V Salme; blue dots, boat; and black regression line, R/V Salme + 
boat.  

3.4. Results of the Empirical Remote Sensing Algorithms vs. in Situ Data 

The IOPs and concentrations of optically active substances retrieved with the C2RCC processor 
did not provide reasonable results. On the other hand, reflectance spectra produced by the C2RCC 
were quite realistic in non-bloom situations both in shape and magnitude (Figures 3–5). Therefore, 
we decided to test whether simple empirical algorithms perform better than the neural network 
approach included in the C2RCC. The algorithms used are given in Table 2 and some better results 
are shown in Figures 9–13. 

  

 
Figure 9. Correlation between the empirical algorithm calculated from the bottom of atmosphere data 
of Sentinel-3 OLCI (atmospherically corrected with C2RCC) and chlorophyll a (Chl a): grey dots, R/V 
Salme; blue dots, boat; and black regression line, R/V Salme + boat. 
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Figure 10. Correlation between the empirical algorithm calculated from the Sentinel-3 OLCI data and 
chlorophyll a (Chl a) measured in the frame of the FerryScope project: (a) empirical algorithm 
calculated from the top of atmosphere reflectance; and (b) band ratio calculated from the bottom of 
atmosphere reflectance (atmospherically corrected with C2RCC).  

 
Figure 11. Correlation between the empirical algorithm calculated from the bottom of atmosphere 
data of Sentinel-3 OLCI (atmospherically corrected with C2RCC) and total suspended matter (TSM): 
grey dots, R/V Salme; blue dots, boat; and black regression line, R/V Salme + boat. 

 

 
Figure 12. Correlation between the empirical algorithm calculated from the bottom of atmosphere 
data of Sentinel-3 OLCI (atmospherically corrected with C2RCC) and coloured dissolved organic 
matter (CDOM) measured from boat.  
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Figure 13. Correlation between the empirical algorithms [45] calculated from the bottom of 
atmosphere data of Sentinel-3 OLCI (atmospherically corrected with C2RCC) and Secchi disc depth: 
grey dots, R/V Salme; blue dots, boat; and black regression line, R/V Salme + boat. 

4. Discussion 

Optical properties of the studied waters varied over a quite wide range. Our previous results 
[46] and the current study (Figure 2) demonstrated that the absorption coefficient varies over an order 
of magnitude in the coastal waters of the Baltic Sea. Many rocky and relatively deep archipelago 
waters (e.g., Sweden) are often optically similar to open parts of the Baltic Sea, whereas shallow sandy 
coastal and archipelago waters (e.g., Estonia and Latvia) are much more absorbing and scattering by 
resuspended from the sea bottom particles may play significant role in windy days as extensive areas 
are just a few meters deep. The range of observed absorption coefficients is demonstrated in Figure 
2. It is seen that the absorption in the clearest sites was only by about 45–65% higher than typical 
central Baltic Sea absorption values. On the other hand, the absorption coefficient was almost by an 
order of magnitude higher in Matsalu Bay, which is a typical estuary with CDOM-rich inflow from 
nearby wetlands. Thus, we may say that the study covers a reasonable range of optical variability. 

The reflectance spectra produced by C2RCC processing chain from OLCI data for non-bloom 
conditions are quite reasonable, in both shape and magnitude (Figures 3–5). In the case of Rflex 
systems on ships of opportunity, the corrected OLCI spectra have too high values in the blue part of 
spectrum whereas the in situ data has high and variable reflectance in NIR part of spectrum that 
suggest presence of glint or some other artefact in the reflectances measured from moving ship 
(Figure 3). Comparison of OLCI reflectance and R/V Salme subsurface irradiance reflectance 
measurements (Figure 4) also suggest that the BOA OLCI reflectances are too high in blue part of 
spectrum. The best match between the in situ and OLCI reflectances was observed in the case of boat 
measurements (Figure 5). It must be noted that the reflectances measured from the boat do not 
contain any surface reflection (sky and sun glint), as they were measured keeping upwelling radiance 
sensor just below the water surface [34]. C2RCC is supposed to remove these components from the 
measured signal as well. Probably, the B1 and B2 values are slightly too high in the OLCI BOA 
reflectance spectra, but in general the atmospherically corrected spectra are very realistic in non-
bloom conditions.  

The problems in atmospheric correction are the highest in the blue part of spectrum, as is seen 
in Figures 3–5 and Table 4. ESA also has ongoing activities to improve OLCI calibration in shorter 
wavelengths bands, but atmospheric correction of blue bands is very difficult anyway as atmospheric 
and glint effects are higher in the blue part of spectrum. Water leaving signal in the Baltic Sea is 
typically close to zero in the blue part of spectrum [11,25] and in coastal waters may be low also at 
longer wavelengths. This makes atmospheric correction of the Baltic Sea imagery especially difficult. 
The errors in retrieving correct reflectance do affect results obtained by neural networks as all spectral 
bands are taken into account in the processing. On the other hand, these errors in both instrument 
calibration and atmospheric correction do not affect results obtained by means of empirical 
algorithms as blue wavelengths are not used in empirical algorithms developed for optically complex 
waters and there are no issues in calibrations and atmospheric correction of green to NIR bands.  

Cyanobacterial blooms cover up to 200,000 km2 of the Baltic Sea every summer [15] and the 
duration of the blooms may be quite long. Therefore, in the Baltic Sea the performance of any 



Remote Sens. 2017, 9, 1070  15 of 20 

 

atmospheric correction procedure and water quality retrieval algorithm is especially critical during 
the cyanobacterial season in the Baltic Sea. The C2RCC atmospheric correction does not provide 
realistic reflectance in cyanobacterial bloom situations as is seen in Figure 6. The top of atmosphere 
spectra have significant signal at 709 nm band (critical for the retrieval of chlorophyll a [42]) and 
further in NIR part of spectrum (necessary to separate surface scum from dense subsurface bloom). 
All this useful information is removed by the C2RCC. Ten years ago, there were problems with 
MERIS atmospheric correction and therefore it was suggested to retrieve chlorophyll a by using the 
height of the 709 nm peak taken from the TOA signal instead of BOA [47]. Later atmospheric 
correction procedures preserved the 709 nm peak better [48], but still not completely. Thus, the 
C2RCC has made a step backwards in correcting OLCI data compared to the latest developments in 
MERIS processing. Some atmospheric correction procedures, such as FLAASH (Fast Line-of-sight 
Atmospheric Analysis of Hypercubes), produce very realistic subsurface bloom and surface scum 
reflectance spectra [4]. C2RCC is a neural network approach that requires training data to perform 
well and produce realistic water reflectances. Thus, there is a strong need for in situ reflectance data 
from bloom conditions to train the C2RCC processor in order to retrieve realistic reflectance both in 
the Baltic Sea and large lakes where optically similar blooms do occur. The training data should 
include surface scum and subsurface blooms with different biomass and different vertical structure 
as, unlike other types of phytoplankton, cyanobacteria can move in the water column themselves and 
the vertical distribution of biomass has significant impact on the remote sensing signal [16]. 

The next step in the C2RCC processing chain, after retrieving water reflectance, is estimating 
IOPs (absorption and scattering coefficients). For example, the total absorption at 443 nm is retrieved 
and is then split into contributions by CDOM, phytoplankton and detritus. Our earlier lake remote 
sensing studies with MERIS [49] have shown that the total absorption coefficient is retrieved better 
than its components (aph, aCDOM, etc.). We measured absorption, scattering and backscattering 
coefficients during our boat sampling campaigns. Comparisons of the OLCI products with the in situ 
data showed that the neural network approach used in the C2RCC does not allow yield accurate 
estimates of IOPs in the Baltic Sea (Figures 7 and 8). Neural networks as such require extensive 
amount of training data to perform well. The C2RCC processor was trained with simulated 
reflectance data [50] and was developed to cope better with highly scattering coastal waters such as 
coccolithophore blooms, which do not occur in the Baltic Sea. However, the Baltic Sea waters in 
general are highly absorbing [4,11,25] except in very shallow areas with high resuspension during 
strong wind or some river estuaries that bring higher amount of sediments to the coastal waters. For 
example, CDOM absorption in several of our sampling sites goes beyond the normal maximum 
training range of C2RCC. On the other hand, the extreme maximum training range of the C2RCC 
goes even an order of magnitude higher. Despite that we see no correlation between the measured 
and estimate from OLCI data IOPs.  

It is obvious that the correlations between measured and C2RCC processor estimated water 
products (chlorophyll a, TSM) are close to zero if the retrieved IOPs did not have correlation with in 
situ values. The best results were obtained when comparing ferrybox data from FerryScope database 
and the R/V Salme ferrybox measurements with C2RCC chlorophyll (Figure 8). The r2 was up to 0.56 
in coastal waters (R/V Salme measurements) and 0.43 in the open parts of the Baltic Sea (FerryScope 
measurements). This is obviously not satisfactory for any remote sensing product that could be used 
in quantitative monitoring of phytoplankton biomass not speaking about long time trend studies.  

It is seen in the Figure 9 that chlorophyll a estimates made with different empirical algorithms 
(band ratios) vary for boat sampling and the R/V Salme measurements and the difference is quite 
consistent for different algorithms. The first potential explanation could be that the C2RCC has some 
kind of stability problems as the boat and the R/V Salme measurements were made on different dates. 
However, this cannot be the case, whereas both boat measurements and ship measurements were 
made on multiple dates and the consistency within these two groups of data (boat and ship) is good. 
Therefore, this difference must come from in situ data. The R/V Salme measurements were carried 
out during cyanobacterial bloom (July–August), whereas boat measurements were carried out in 
May, September, and October when other groups of phytoplankton dominated in the water column. 
Extracting pigments from cyanobacteria is a complicated problem [51]. Consequently, some of the 
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chlorophyll a remains in the cells and is not measured in the spectrophotometer. As a result the 
measured chlorophyll a values are lower than the actual chlorophyll a concentrations (what remote 
sensing can detect) in cyanobacterial cells. This should produce the opposite difference between boat 
and R/V Salme measurements compared to what we observe now. 

One of the possible explanations may be differences between the chlorophyll a values obtained 
in different institutes as problems in the bad performance of C2RCC or dominance of different 
phytoplankton assemblages should have caused different discrepancies than we observe now. Water 
samples from R/V Salme and boat cruises were carried out with the same methodology—surface 
samples were used in both cases. The laboratory methodology used in both institutes is also the same, 
however, the results we observe are different. Ruling out potential effect of different laboratories 
would require analysing parallel samples taken from the same stations. This is a topic that needs 
further analysis. 

It is assumed in all remote sensing studies that the in situ values are the “truth” when actually 
the in situ values have their own errors which may be quite large. HELCOM has carried out 
intercalibration measurements of chlorophyll a around the Baltic Sea (analysis of water from the same 
sample) that showed large discrepancies between different institutes. With trainings and further 
intercalibration experiments, these errors were taken down to 14% [52]. However, the laboratory 
analysis error is still quite large. The errors resulting from taking the water samples may be even 
larger. HELCOM protocol [52] requires taking integral water sample (subsamples taken at different 
depths are mixed together). This is fine when algae dominate in the phytoplankton community as 
these are passive particles that are uniformly mixed in the top layer of water (10–20 m in the Baltic 
Sea). However, cyanobacteria can regulate their buoyancy and in calm weather (wind less than 2 m 
s−1) tend to move to water depth most optimal for their growth. The main biomass of cyanobacteria 
may be condensed in relatively narrow (a few meters) layer. Thus, it may happen that all subsamples 
taken for the integral water sample are actually from depths which are very low in cyanobacterial 
biomass. In that case there is no correlation between the bloom satellites are detecting and the clear 
water sample analysed in laboratory. On the other hand, one or several subsamples for the integral 
sample may come from exactly this or these depth(s) where the cyanobacterial bloom was. In that 
case, the laboratory results will show higher values than remote sensing can detect. During both the 
boat measurements and R/V Salme measurements all water samples were taken from the surface 
layer (top 0.5 m). Thus, the discrepancies in in situ values due to different sample collection strategies 
may be ruled out. 

The issue of quality of in situ data is one that needs stronger attention. In the situation of general 
lack of data for algorithm development and validation, remote sensing scientists use whatever is 
available not knowing how the water samples were collected and how they have been analysed. 
Using exactly the same sampling and laboratory analysis methodologies can result concentration 
errors in the order of ten(s) of per cent. On the other hand, differences in sample collection methods 
and strategies (i.e., sampler type, depth(s), how much care was taken to preserve the natural state of 
the bloom, etc.) may cause variability in measured biomass that can be in the orders of magnitude. It 
is obvious that developing and/or validating remote sensing products with such inconsistent data is 
problematic.  

It must be noted that there were no IOP data available for the continuous autonomous 
measurements of chlorophyll a carried out from moving ships. Therefore, it was not possible to check 
whether the C2RCC IOP products would have produced reasonable results for the open parts of the 
Baltic Sea or not.  

It must also be noted that the chlorophyll a fluorometers cannot provide reasonable results when 
cyanobacteria dominate in water as in cyanobacteria chlorophyll a is in the non-fluorescing 
photosystem [53]. Meaning that phycocyanin fluorometers have to be used to describe cyanobacterial 
biomass. R/V Salme cruises were carried out during cyanobacterial bloom, but only in the relatively 
low biomass edge of the bloom where the biomass of other cells of phytoplankton was probably not 
very low. Slightly elevated phycocyanin values (up to 1.8 ppb) were registered by the ferrybox system 
onboard R/V Salme in the Gulf of Finland while phycocyanin concentration values of ~1.2 ppb were 
observed in the Moonsund (Väinameri) area. It is seen in Figure 10 that scattering of data points is 
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very high despite the relatively high correlation coefficient. For example, if the C2RCC estimate of 
chlorophyll a is 0.5 mg m−3 then the fluorometer values varied between 0.5 and 4; for C2RCC 
chlorophyll 6 mg m−3 the fluorometer values varied between 1.5 and 6; or for fluorometer values of 3 
mg m−3 C2RCC estimated values between 0 and 11 mg m−3. Reflectance spectra produced by the 
C2RCC were realistic as was shown on Figures 3–5 above. Therefore, it was logical to try simple 
empirical algorithms in water quality parameter retrieval when C2RCC failed to do this. We did not 
undertake a full empirical algorithm testing study, as the aim was to test C2RCC as one of the main 
processors for OLCI data. Nevertheless, several empirical (band ratio) algorithms produced good 
estimates of chlorophyll a, CDOM, TSM, and Secchi depth (Figures 9–12). The result for chlorophyll 
a retrieval was already described above. As was expected the algorithms utilizing green to red (and 
NIR) part of spectrum performed the best as the impact of phytoplankton on the blue part of 
spectrum is usually negligible in CDOM-rich waters such as the Baltic Sea. 

Performance of the TSM algorithms was relatively poor. It is not surprising considering that the 
TSM samples were collected and analysed during the R/V Salme and the boat cruises in near coastal 
waters. Most of the TSM collected during the R/V Salme measurements were of organic nature 
(cyanobacterial cells), while boat measurements were carried out in relatively shallow waters, where 
resuspension of inorganic particles plays significant role, and closer to rivers, which may bring 
inorganic material into coastal waters. SPIM and SPOM were measured separately only from the boat 
cruises data and the dominance of inorganic particles is seen also in the Table 3. 

Unfortunately, there was only one sampling station where the CDOM value was relatively high 
compared to the majority of sampled values. Therefore, the conclusion about the performance of 
CDOM retrieval algorithms using C2RCC corrected OLCI data is not very strong. However, the 
single high value (3.2 m−1) of this study is not very high for the coastal parts of the Baltic Sea. In our 
recent study [11], we had aCDOM(412) rage between 0.28 m−1 and 13.46 m−1. Satellite estimates [54] have 
shown that CDOM absorption may go over 30 m−1 near some rivers bringing highly absorbing waters 
from wetlands. Nevertheless, the regression equations that are heavily influenced by one data-point 
should be used with caution.  

OLCI Secchi depth estimates showed also some dependency on the source of in situ data. There 
may be differences in Secchi depth estimates between measurements carried out from an altitude of 
a few meters (research vessel) or from a boat (observer a meter or two above the water surface). 
However, most of the discrepancies between the two data sources seem to come from the fact that 
the Secchi depth varied very little during R/V Salme measurements while it was varying significantly 
during the boat measurements. 

The results of the study showed that there is strong need in developing the Baltic-Sea-specific 
C2RCC processor. The current one provides reasonable reflectance results in non-bloom conditions, 
but fails in cyanobacterial blooms while the IOP and other products do not have correlation with in 
situ data. On the other hand, there is also strong need in improving the consistency of in situ data 
used in calibration and validation of satellite data products. Usually, it is assumed that in situ data 
are the truth against which satellite products are validated. It must be remembered that the in situ 
data also (even if measured with the same methods, such as chlorophyll a analysis in the lab) have 
errors that are relatively large. We combined reflectance from different sources measured using three 
different methods and analysis performed in different laboratories. Our study showed that this had 
also had an effect on the results. Comparing point measurements with large (300 m) pixel values is 
problematic in coastal waters and in cyanobacterial blooms where dramatic changes in water 
properties occur at meter scales. Combining this with the methodological problems and 
measurement errors of in situ data described above makes improving remote sensing products 
extremely difficult. 

5. Conclusions 

Combining the BOA reflectance spectra obtained by means of C2RCC processor with the in situ 
reflectance spectra shows that the atmospheric correction part of the neural network performs quite 
well in non-bloom conditions. In the case of dense subsurface blooms and surface scum of 
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cyanobacteria, the atmospheric correction removes the most valuable piece of information—signal at 
wavelengths longer than 700 nm.  

Several empirical algorithms using green to NIR part of spectrum performed relatively well in 
retrieval of different water quality parameters. This also suggests that the performance of 
atmospheric correction part of the C2RCC is robust for this part of spectrum. 

No correlation between measured and retrieved IOPs was observed. Consequently, there was 
also no correlation between the retrieved parameters (such as chlorophyll a) and in situ data. To a 
certain degree, this result may have been caused by the suboptimal performance of atmospheric 
correction at shorter wavelengths, as the neural network uses all spectral bands not just green to NIR 
part like the empirical algorithms. However, the main problem is that the C2RCC is not trained with 
sufficient amount of data from the Baltic Sea. Significantly more in situ data from different parts of 
the Baltic Sea collected during different seasons are needed to train the neural network and produce 
reasonable IOP estimates for the Baltic Sea.  

The data collection and analysis methodology may also need improvement in order to develop 
robust remote sensing products that perform well in optically complex waters. Horizontal, vertical 
and temporal variabilities of water properties, especially during cyanobacterial blooms or near river 
estuaries make it challenging to acquire reliable in situ data. Intercalibration of laboratory methods 
between different institutions is advisable to ensure validation of satellite products against data with 
well characterized accuracy.  
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