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Abstract: We explore the potential of computing coastal ocean surface currents from Moderate-
Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite
(VIIRS) satellite imagery using the maximum cross-correlation (MCC) method. To improve on past
versions of this method, we evaluate combining MODIS and VIIRS thermal infrared (IR) and ocean
color (OC) imagery to map the coastal surface currents and discuss the benefits of this combination of
sensors and optical channels. By combining these two sensors, the total number of vectors increases
by 58.3%. In addition, we also make use of the different surface patterns of IR and OC imagery
to improve the tracking performance of the MCC method. By merging the MCC velocity fields
inferred from IR and OC products, the spatial coverage of each individual MCC field is increased
by 65.8% relative to the vectors derived from OC images. The root mean square (RMS) error of the
merged currents is 18 cm · s−1 compared with coincident HF radar surface currents. A 5-year long
time serious of merged MCC computed currents was used to investigate the current structure of
the California Current (CC). Weekly, seasonal, and 5-year mean flows provide a unique space-time
picture of the oceanographic variability of the CC.

Keywords: maximum cross-correlation (MCC); coastal currents; Moderate-Resolution Imaging
Spectroradiometer (MODIS); Visible Infrared Imaging Radiometer Suite (VIIRS); ocean color(OC);
thermal infrared (IR)

1. Introduction

Mapping of costal surface currents, and their space-time variability, is one of the major challenges
in physical oceanography. Surface current estimation methods must have the capability of repeatedly
resolving coastal circulation features and their temporal and spatial variations. Coastal ocean currents
can be mapped from HF radars [1,2] at high spatial and temporal resolution over the area offshore
within a distance of 50 km and up to 200 km off the coast with somewhat reduced spatial resolution
and accuracy. But the radars must be deployed near the coast and the best mapping area is
confined to the areas adjacent to the coast. In addition, it is hard to deploy them in remote
areas and extreme environments without access to the power supply needed to maintain the radar
systems. Space-based radar altimetry is extensively used to measure mesoscale currents, but these are
geostrophic currents only [3]. Another limitation is that altimetry does not work well near the coastline
or in shallow waters [4] due to land contamination of the altimeter signal and of the microwave water
vapor radiometer used to correct the altimeter. The ocean surface currents also can be retrieved using
Doppler anomaly from Sentinel-1 [5]. This is a new method that can be considered in the future.
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The maximum cross-correlation (MCC) method [6], a feature tracking method using sequential
satellite imagery, doesn’t have these limitations mentioned above for the coastal ocean. This method
has been used to measure a variety of ocean surface currents over the past several decades [6–19].
Its effectiveness for retrieving ocean surface currents from Advanced Very High Resolution Radiometer
(AVHRR) thermal infrared (IR) images has been repeatedly demonstrated [6–11]. Also, ocean color
(OC) images collected from Coastal Zone Color Scanner (CZCS) [12], Moderate-Resolution
Imaging Spectroradiometer (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) [9],
and Geostationary Ocean Color Imager (GOCI) [13–15] have been used successfully to compute the
space-time variability of the surface currents. More recently, sequential synthetic aperture radar
(SAR) images derived from ERS-2, Envisat [16], TerraSAR-X (TSX) [17], TanDEM-X (TDX) and
COSMO-SkyMed (CSK) [18] have also been used with the MCC method to map the space-time
variations of coastal currents. Moreover, this MCC method is not region-specific, and has been used
to study the current structure in diverse regions such as the California Current [9,11], the Gulf
Stream [7,10], the East Australian Current [8,19], the Tsushima Currents [14] and the Kuroshio
Current [15].

Previous studies have validated the MCC derived currents as having root mean square
(RMS) errors of 8–25 cm · s−1 compared with ADCPs, drifters or HF radar currents [8,10,14,20].
Tokmakian et al. [20] proved that the RMS errors between the IR derived MCC currents, and the
ADCP and geostrophic velocities estimated from hydrologic data were on the order of 25 cm · s−1.
Bowen et al. [8] used 7 years of AVHRR images and compared the MCC currents with geostrophic
currents and currents inferred from the trajectories of drifting buoys drifting buoys. The estimate
accuracy of the MCC currents was 8–20 cm · s−1. Chubb et al. [10] extracted the surface currents from
AVHHR sea surface temperature (SST) imagery and compared the four MCC current fields with HF
radar results. The average angle and magnitude of the complex correlation coefficient were 0.663 and
−10.2◦, respectively. Warren et al. [14] computed the ocean currents from GOCI imagery over the
Tsushima Strait using the MCC method and compared four days of MCC derived currents with HF
radar currents finding RMS errors on the order of 20 cm · s−1.

The MCC method using optical imagery is sensitive to cloud cover because it will result in
missing data in the cloud covered area and the missing data will decrease the number of current
vectors [8,14]. In addition, weak surface tracking features also fail to produce reliable MCC vectors.
For thermal IR imagery, isothermal surface conditions nullify the MCC method and produce no
vectors. OC imagery can offer complementary data to estimate surface currents under isothermal
surface conditions. Crocker et al. [9] combined the IR and OC satellite imagery to compute currents
using the MCC method. Their results demonstrated that the two velocity fields agreed well with
a mean correlation of 0.74 and a mean RMS difference of 7.4 cm · s−1. By merging the two types of
MCC fields, the spatial coverage increased by ∼25%. Yang et al. [13] applied a correlation coefficient
based method to merge the individual MCC fields inferred from several OC products. In their study,
they only showed one example of merging MCC fields retrieved from the Visible Infrared Imaging
Radiometer Suite (VIIRS) satellite images of chlorophyll-a (Chl) concentration and remote sensing
reflectance (Rrs) at 551 nm (Rrs551). The total spatial coverage of the merged field increased.

Sensors on polar orbiting satellite can provide global observations for the MCC method.
The AVHRR thermal IR imagery was for many years the most commonly used data source for
the surface current calculation with the MCC method. For the MCC application, these images must be
well geolocated. Emery et al. [21] proposed an MCC-based method to accurately navigate the AVHRR
images. This application of AVHRR IR data takes on only a historical perspective as the last and final
AVHRR for the afternoon orbit was launched on 6 February 2009. The Earth Observing System (EOS)
was intended to provide global observations by the instrumentation aboard the EOS satellites. MODIS,
SeaWiFS and VIIRS are all components of the EOS missions. However, SeaWiFS imagery is no longer
available for generating OC imagery. Even the two MODIS instruments have exceeded their initial
design mission life times. The VIIRS onboard the Suomi National Polar-orbiting Partnership (SNPP)
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satellite, which launched on 28 October 2011, is the newest sensor producing OC and IR imagery.
These images are available near-real-time and are deliverd to the user already navigated and calibrated.
Hence, the MODIS and VIIRS provide global thermal IR and OC satellite datasets, which can be used
to compute coastal surface currents with the MCC method.

In this paper, we explore the potential of mapping the coastal surface currents by combining
MODIS and VIIRS satellite imagery. This paper proceeds as follows. Section 2 introduces our study
region, satellite imagery employed and the validation datasets of HF radar currents. Section 3 describes
the MCC method, then explores the combination of MODIS and VIIRS imagery to map surface currents
with the MCC method. Subsequently, we compare the MCC derived currents with HF radar currents
and introduce our MCC current merging method. Section 4 describes the routine computation of the
coastal currents over the observation period. We then examine the current space-time variability over
the study region in Section 5. Finally, the discussion and conclusion are in Section 6.

2. Study Region and Data

2.1. Study Region

In this paper, our study region is the U.S. West Coast (Figure 1) within the region 32◦–42◦ N and
130◦–118◦ W. This area covers a large part of the California Current System (CCS). Crocker et al. [9]
and Matthews and Emery [11] mapped the surface currents in this region with the MCC method and
their results can be compared with our results. In addition, many HF radars have been deployed along
the U.S. West Coast [22] and the HF radar currents are available over our observation period covering
the coastal areas out to 200 km off the coast, as marked in grey in Figure 1. These HF radar surface
currents can be used to validate the accuracy of the MCC currents. We consider the study region
selected in this paper as an example of how the MCC method could be applied to most non-polar
coastal regions of the world.

Figure 1. Map of the study region of the U.S. West Coast, from 32◦–42◦ N to 130◦–118◦ W. The HF
radar coverage area is in gray.

2.2. Satellite Imagery

MODIS (onboard Aqua (MODISA) and Terra (MODIST) satellites) and VIIRS are polar orbiting
satellite sensors which provide global coverage of OC imagery during the day and IR imagery both
day and night. We studied the statistics of the re-visit times over our study region based on the IR
imagery over the year 2015 as shown in Figure 2. Aqua and SNPP satellites have a high overlap of
the re-visit period both during daytime and nighttime, but they also exhibit important differences.
The Terra satellite has few overlaps with Aqua and SNPP in the daytime and has totally different
coverage during the nighttime. Table 1 shows the re-visit periods of the three satellites. By combining
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the satellite imagery collected from MODIS with VIIRS, we can acquire more image pairs for our MCC
current calculations.

Figure 2. Visit time of MODIS and VIIRS sensors over the study region in 2015.

Table 1. The IR and OC products used in this paper.

Satellite Sensor MODIS VIIRS

Spatial resolution (km) 1.1 0.75
Temporal resolution (min) 98 100

Visit time period (UTC) Terra: 04:52–07:38, 17:49–20:33 08:36–12:00, 19:30–22:33
Aqua: 08:55–11:45, 20:00–22:43

Satellite imagery SST, Chl, Kd490, Rrs412, Rrs443, Rrs469, Rrs488, SST, Chl, Kd490, Rrs410, Rrs443, Rrs486,
Rrs531, Rrs547, Rrs555, Rrs645, Rrs667, Rrs678 Rrs551, Rrs671

MODIS and VIIRS can provide IR and many OC products derived from different channels.
The imagery selected in this paper are shown in Table 1. Both MODIS and VIIRS can produce IR
(11 µm channel), Chl, diffuse attenuation coefficient at 490 nm (Kd490) and the Rrs(λ) (where λ is the
wavelengths, and MODIS has 10 bands including 412, 443, 469, 488, 531, 547, 555, 645, 667 and 678 nm
while VIIRS instruments has 5 bands including 410, 443, 486, 551 and 671 nm) datasets. The common
products of the MODIS and VIIRS are IR, Chl, Kd490 and Rrs443. Each of these products can be used
to retrieve coastal surface currents independently. In this paper, we used the MODIS and VIIRS SST
and OC images from 1 January 2012 to 31 December 2016.

2.3. HF Radar Currents

Coastal-based HF radars, along the California coast, provide real-time maps of coastal surface
currents out to 50 km at high spatial and temporal resolution [1,22]. These currents extend out to 200 km
but with slightly reduced spatial resolution and accuracy. HF radars cover the entire portion of the
coast of the study region (see Figure 1) and provide hourly surface currents resampled to 6 km spatial
resolution in any weather condition over the observation period and are available from the Coastal
Observing Research and Development Center (http://cordc.ucsd.edu/projects/mapping/maps/).
We use these results to validate the accuracy of the MCC derived currents.

3. Methodology

3.1. MCC Method

The MCC method is an ocean surface current retrieval method, which automatically calculates
the current vector as the displacement of image features between a template window in the first image
and the matching features found from the maximum MCC in the larger search window in the second
image (Figure 3). The derived current is defined as the location of the maximum correlation in the

http://cordc.ucsd.edu/projects/mapping/maps/
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search window in the second image from the starting position in the template window in the first
image. The current vector is estimated by dividing the displacement vector by the time interval of the
sequential images [6,9]. Previous studies have demonstrated the MCC method’s effectiveness using IR,
OC and SAR satellite imagery.

Template window Search  window

First Image Second Image

Figure 3. Schematic of the MCC method.

The time separation of the sequential images, the sizes of the template and search windows
are the primary parameters that determine the performance of the MCC method. Previous studies
demonstrated that the MCC method performs well when the time separation of the IR and OC images
is between 3 and 24 h. The size of a good template window is 22× 22 pixels (24.2× 24.2 km), which has
been used in our study region as recommended by [9,11]. The size of the search window needs to
be large enough to accommodate the maximum velocity expected in the study region. In our study
region, the most probable maximum velocity is 70 cm · s−1 [9]. After the initial MCC calculation,
several post-filters are proposed to remove the noisy and including erroneous vectors [9]. This involves
a correlation cut-off and a next neighbor smoothing function.

3.2. Combination of MODIS and VIIRS Imagery

In this section, we explore the possibility of retrieving ocean currents from sequential imagery
at different spatial resolutions collected from MODIS and VIIRS, respectively. VIIRS has a higher
spatial resolution of ∼0.75 km relative to MODIS with a resolution of ∼1.1 km (see Table 1). Hence,
we resample the VIIRS imagery to the same spatial resolution as MODIS using a triangulation-based
cubic interpolation method. Once the resampled imagery has the same georegistration accuracy,
we can apply the MCC method to the combination of the MODIS and VIIRS imagery. Two images
from MODIS and VIIRS, having a short time separation, were selected to assess the practicality of
computing coastal currents from MODIS and VIIRS images with the MCC method. The bias, RMS and
correlation coefficients are selected as metrics to evaluate the accuracy of the results.

First, we compare the resampled individual VIIRS images with MODIS. Figure 4a,b show two
Chl images provided by MODIS and VIIRS with a time interval of 5 min. The VIIRS Chl image is
resampled to the same spatial resolution of 1.1 km as is native for MODIS. The prominent pattern of
the two images are similar. Areas close the coast have higher values. We assume that the Chl pattern
over the study region in such a short time interval, experiences relatively little change. In Figure 4c,
we present the spatial difference between Figure 4a,b where we have subtracted MODIS image from the
resampled VIIRS image. Consistent with the cloud-detection algorithm, some pixels in the non-nadir
area are omitted [23]. Both in Figure 4b,e, the area on the right of the dashed line exhibits a lack of
data while to the left of the dashed line is the nadir area, which agrees well. We do not compare
the non-nadir areas. There is a relatively large difference near the coast with values on the order of
0.8 mg ·m−3. The area far off the cost exhibits almost no differences. The number of pixels, bias,
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RMS and correlation coefficients are 314,453, −0.04 mg ·m−3, 0.22 mg ·m−3 and 0.94, respectively
(see Figure 5a). In Figure 4d,e, we present two IR images obtained from nearly coincident MODIS and
VIIRS images. These images also have similar patterns. Relative to the Chl images, the IR images
have slightly better spatial coverage, even in the blank areas in the Chl image due to the very different
cloud filter methods. However, these areas do exhibit larger errors in Figure 4f compared with the
overlapping areas covered with data. In the southeast portion of the image, there is cloud cover
both in Figure 4a,b, but in the same area, a cold feature is revealed in Figure 4d,e while the adjacent
region has higher temperatures. The temperature difference of the two images is ∼4 K. In addition,
the western portion of the study region is covered by cloud resulting in missing data in the Chl images.
But in the IR images, many individual pixels with lower temperature appear in the cloud covered
areas likely due to sub-pixel cloud contamination. The temperature difference in this area is ∼5 K.
These results imply that the cloud covered area in the IR images has low reliability in the SST values
because the cloud filtration, and atmospheric correction methods are different. These patterns may
produce spurious vectors. Hence, we mark the cloudy pixels in the Chl images and apply this cloud
filter to the SST images to remove the cloudy pixels in the SST images. Comparison of Figure 4d,e are
shown in Figure 5b, the number of pixels, bias, RMS and correlation coefficients are 314,453, −0.28 K,
0.31 K and 0.99, respectively. The differences may come from the differences between the sensors
of the two satellites, the proposed resampling and regridding method. Our results demonstrate the
resampled VIIRS Chl and IR images have significantly similar characteristics with the MODIS images
and they are on the order of accuracy of the results in [23].

Second, we apply the MCC method to the combination of the resampled VIIRS and MODIS
imagery. A MODIST image pair at 18:32 on the same day as the VIIRS image pair is used to retrieve
the MCC coastal surface currents. There are strong similarities between the two velocity maps
in Figure 4a,b, and Figure 4d,e, respectively. Additionally, we also quantitatively compare these
velocity maps where the MCC vectors derived from MODISA are used to validate the accuracy of
the VIIRS derived vectors. Figure 5c,d present the comparisons between the MODISA and VIIRS
derived velocities. The number of vectors, bias, RMS and correlation coefficients of the Chl field
are 501, 0.52 cm · s−1, 5.81 cm · s−1 and 0.90, respectively and for the SST field, the results are 304,
−2.61 cm · s−1, 6.60 cm · s−1 and 0.89, respectively. These velocity differences between the MCC and
HF radar vectors may come from the weighted average method, the depth of the estimated currents
and the regridding method. The MODIS image produces more vector velocities than VIIRS because
the non-nadir area of the VIIRS doesn’t produce any vectors. The quantitative results show that the
VIIRS derived velocities have the same accuracy as MODIS derived velocities. It demonstrates that
it’s possible to estimate the coastal surface currents by combining MODIS and VIIRS satellite imagery
using the MCC method. By combining MODIS and VIIRS, more image pairs can be used to compute
MCC velocities.
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Figure 4. Chl imagery from (a) MODISA at 21:47; and (b) VIIRS at 21:42, 1 October 2014 UTC and MCC
vectors derived from these images and the corresponding Chl image from MODIST at 18:32, 1 October
2014 UTC. (c) is the spatial difference of (a,b); The non-nadir area of the VIIRS is avoided. SST imagery
from (d) MODISA and (e) VIIRS at the same time and MCC vectors derived from these images and the
MODIST images used in (a,b); (f) is the spatial difference of (d,e). Number of vectors in (a,b,d,e) is 773,
653, 609, 450, respectively.
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(a) (b)

(c) (d)

Figure 5. Comparisons of (a) Chl and (b) SST images derived from MODISA (at 21:47) and VIIRS
(at 21:42); (c) Chl MCC currents and (d) SST MCC currents derived from MODIST images (at 18:32)
and MODISA (at 21:47) and VIIRS (at 21:42) images, respectively.

3.3. Comparison with HF Radar Currents

HF radar currents over the U.S. West Coast at 6 km spatial resolution are available over the entire
observation period for comparisons with the MCC derived currents in our study region. To compare
the MCC currents with HF radar currents, we selected an overlap of 17 pixels between the template
windows in the first image in Figure 3 to get an output with ∼5.5 km spatial resolution. Then the
MCC currents were regridded to the same grid points as the HF radar currents at a 6 km resolution.
The HF radar currents with magnitudes less than the MCC velocity resolution or greater than the
maximum expected velocity (70 cm · s−1) for this area were discarded. The hourly HF radar currents
were composited using a linear weighting method developed by [10] to coincide with the time interval
of the MCC derived currents. In Figure 6, we show the plots of regridded MCC currents derived from
the imagery products shown in Table 1 together with the HF radar currents. We show a small portion
of the coastal region MCC currents and HF radar currents, which together indicate the same general
circulation pattern. There are, however, are some disagreements between the MCC vectors and HF
radar vectors in Figure 6. In addition, these plots also reveal the disagreements between the MCC
currents derived from different datasets. Hence, several quantitative analysis methods are proposed
below to evaluate the source of these disagreements.
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(a) (b)

(c) (d)

Figure 6. Plots of the regridded MCC currents derived from (a) SST, Chl, Merged; (b) Kd490, Rrs412,
Rrs443; (c) Rrs469, Rrs488, Rrs531, Rrs547; and (d) Rrs555, Rrs645, Rrs667 Rrs678 and the overlapping
HF radar currents at 6 km spatial resolution, respectively. The maps of the MCC currents is from
MODIST at 18:50 and MODISA at 22:07, 16 April 2015 UTC.

(1) Complex Correlation: To obtain a quantitative analysis of the agreement between of the MCC
and HF radar derived currents, we calculated a complex correlation [24]

ρ=
〈VMCC ×V∗HFR〉√[〈

VMCC ×V∗MCC
〉 〈

VHFR ×V∗HFR
〉] = |ρ| eiφ

(1)

where the 2-D velocity field (u, v) for either HF radar and MCC velocities is denoted as a complex
number V defined by V = u + i× v. VMCC and VHFR represent the MCC and HF radar derived current
fields, respectively. Then the average magnitude correlation coefficient can be computed as

|ρ|=
√
[Re (ρ)]2 + [Im (ρ)]2 (2)

and the average angular phase difference between the derived velocity fields is defined as

φ=tan−1 [Im (ρ)
/

Re (ρ)
]

(3)
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The magnitude correlation indicates the relative magnitude difference between the two datasets.
The phase angle is an average anticlockwise rotation of the HF radar vectors with the MCC vectors,
and only when the magnitude correlation is high, it is meaningful.

(2) Residuals: To quantify the relationship between the MCC and HF radar currents, we computed
the residuals between the two datasets

Wi = ŵi − wi (4)

where i is the index of the corresponding pixel of the two datasets; ŵi is scalar value that represents
the u- (zonal) component, v- (meridional) component, magnitude and direction of the current vector
or the complex correlation coefficient estimated with the MCC method; wi is the corresponding value
estimated from HF radar. In Figure 7, we present the histograms of the magnitude and phase angle
residuals between the MCC vectors and HF radar vectors. The accuracy of these results is on the order
of the results in [10,14].

The bias and RMS error of the residuals can be computed as

Wbias =
1
N

N

∑
i=1

Wi (5)

WRMS =

√√√√ 1
N

N

∑
i=1

W2
i

(6)

where N is the number of overlapping pixels of the datasets.

(a) (b) (c)

Figure 7. Histograms of frequency of phase angle and magnitude between (a) SST; (b) Chl and
(c) merged currents and HF radar currents.

Without loss of generality, 60 pairs of cloud-free sequential images over the observation period,
with overlapping areas near the coast with a time separation of ∼3 h, have been used to compute the
coastal surface currents with the MCC method. These results are then compared with the HF radar
currents to assess the accuracy of the MCC surface current fields derived from these different satellite
datasets. As introduced, we calculated the RMS errors of the u- and v- components, magnitude and
phase and complex correlation coefficient of each individual velocity field. Figure 8 shows boxplots of
the RMS results derived from different satellite datasets. From Figure 8a, we see that the upper and
lower limits of RMS of the u- and v- components derived from the Rrs412 and Rrs645 imagery are
higher than those of the other parameters and they also have higher median RMS values. Also, the RMS
of the magnitude of the two products is higher than other satellite datasets (Figure 8b). In addition,
the currents extracted from the two datasets have a wider range of magnitude correlation coefficient
that ranges from 0 to 0.78 with a median value lower than the others (Figure 8c). According to the
above analysis, the Rrs412 and Rrs645 derived currents have relatively poor accuracy. They are not
considered representative of coastal surface currents and are not used in the following sections.
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(a) (b)

(c)

Figure 8. Comparisons of MCC and HF radar currents. Boxplot of RMS of (a) the u- and v- components;
(b) magnitude and phase angle and (c) complex correlation coefficient from the 60 image pairs.

3.4. Multiple MCC Source Image Current Merging

AVHRR only provides IR imagery, while GOCI and SeaWiFS are limited to OC imagery only.
MODIS and VIIRS can provide both IR and OC images during daytime and IR also at night. This makes
it an advantage to merge the MCC currents derived from both IR and OC sequential images. Each
gridded pixel area yields several vectors derived from different data sources. Each velocity has its own
cross-correlation coefficient which denotes the degree of matching in the patterns of the sequential
images. Hence, we can merge the MCC currents extracted from different kinds of imagery based on the
cross-correlation coefficient. Considering the accuracy analysis in Section 3.3, the Rrs412 and Rrs645
derived MCC vectors have relative lower accuracies than the other data types. Moreover, the Rrs645
also produces fewer vectors than that of any other imagery (see Figure 9). Thus, we avoided using
the MCC fields inferred from Rrs412 and Rrs645 in the following sections. Given that the currents
derived from the other datasets have the same order of accuracy, we can merge these current fields
using a linearly weighted sum. Assume M MCC fields do exist at a certain pixel, and the merged
vector can be calculated as 

um =
M
∑

i=1
(ciui)

/
M
∑

i=1
(ci)

vm =
M
∑

i=1
(civi)

/
M
∑

i=1
(ci)

(7)
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where ci and ui (vi) are the cross-correlation coefficient and u- (v-) component constructed from the ith
satellite imagery, respectively.

Figure 9. Histogram of total number of vectors derived from different satellite datasets.

By merging the MCC surface current fields derived from different satellite imagery, the spatial
coverage of each individual MCC current field will be increased because the various trackable surface
features produce complimentary velocities in different areas. Since the California Coast is one of the
most famous upwelling areas in the world and the phytoplankton production over this area is rich,
the Chl imagery has stronger surface patterns. The Chl product produces more vectors than other
features and are almost double the others in total number. The patterns defined by the various OC
channels must have been sufficiently different that a different number of vectors was computed for
each. OC channels are also very susceptible to atmospheric contamination and it may be that the
atmospheric correction is better in one channel than in another, resulting in the difference of number
of vectors of different channels. Also, the number of merged vectors significantly increases. Using the
proposed merging method (6), the number of vectors increased by 65.8% and 241.7% over the number
of Chl or SST only vectors, respectively.

We have also assessed the accuracy of the merged currents. The merged vectors show good
agreement with the HF radar currents visually (Figure 6a) and the quantitative comparison of the
merged currents with the coincident HF radar currents in Figure 7c demonstrates that the merged
currents maintain the same order of accuracy as with the individual Chl and IR MCC currents.
Furthermore, the boxplots of the RMS errors in Figure 8 imply that the merged currents are more stable
and maintain the same level of accuracy as the Chl only derived MCC currents. Table 2 lists the mean
RMS errors of the 60 samples. The merged results have the greatest number of vectors, and maintain
the overall accuracy of the MCC method.

Table 2. The IR and OC products used in this paper.

Year 2012 2013 2014 2015 2016

N f ields 4023 4225 4423 4371 4126
Nnon 3126 3137 3390 3272 3204

Nvectors 35,412 50,000 40,327 39,724 29,936

4. Routine MCC Current Computation

4.1. Image Selection

We grid the imagery to the array values we need for the MCC computation and the images
with less than 1% percent of data coverage (due primarily to cloud cover) are removed from
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consideration. In addition, the missing data will decrease the cross-correlation coefficients resulting
in unreliable vectors [8]. Hence, the corresponding coverage between the sequential images needs to
be considered. We computed the MCC currents from Chl images over the entire observation period.
The computational results are shown in Table 2 where there are ∼4200 current fields each year and
also for each year ∼3200 current fields have no vectors due to cloud cover or weak surface pattern
features. An overlapping test technique is proposed to reduce the computation from sequential images
that produce no vectors. We mark the overlapping area with data between the sequential images and
calculate the percentage of the pixels that are identified as not being clouds. Then an overlapping
threshold is set to identify those areas where no vector pairs will be available. We then set the threshold
from 0.5% to 3.0% with an interval of 0.5%. As displayed in Figure 10a, the vector loss increases
as the threshold improves because there are more overlapping data between the sequential images.
When this threshold is under 1.5%, the number of vectors lost is within 200. If the threshold is higher
than 2%, the number of vectors lost increases significantly. Furthermore, higher thresholds imply the
removal of more vector pairs that would need to be processed. From Figure 10b, we know that the
percentage reduction in the number of no vector fields increases as the threshold increases. When the
threshold is more than 1.5%, the reduction ratio increases slowly. According to the above analysis,
we set the overlapping threshold to 1.5% to decrease the number of the computational image pairs
having a reduction in the number of vectors.

Figure 10. To evaluate the influence of the overlapping threshold against (a) the number of vector loss
and (b) percent of MCC fields avoided to be computed.

In addition, in an effort to improve the computational efficiency of each individual MCC field,
we applied an efficient search method developed by Liu et al. [15] to decrease the computational
time of the MCC method. More details can be found in their research. By combining these strategies,
the computational performance and efficiency of the MCC method is improved making it easy to
compute the coastal currents.

4.2. Number of Vectors

We computed the MCC currents over the study region for the observation period and the
individual MCC fields estimated from different satellite imagery, which were then merged to increase
the spatial coverage of the MCC current fields. In Figure 11, we present the total number of monthly
MCC merged vectors for the entire observation period. The MODIS satellite datasets produce more
vectors than that of the VIIRS (combination) datasets. By the combination of the current vectors
computed from the VIIRS images, the total number of vectors increases 58.3% over that of the MODIS
alone. A seasonal trend was clearly exhibited in Figure 11 due to the sea surface trackable features and
the cloud cover climatology of the study region.
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Figure 11. Total number of monthly MCC merged vectors over the 5-year observation period.

4.3. MCC Current Composites

We have proposed merging MODIS and VIIRS imagery derived currents to improve the spatial
and temporal coverage of the individual MCC velocity field presented in Section 3.4. Unfortunately,
this method can’t always fill in the individual cloud covered areas. Thus, we made MCC current
composites over time for period of 7 days. The 7-day MCC composites have the original grid box of
22× 22 pixels (12.1× 12.1 km) and the seasonal composites are with a grid box of 22× 22 pixels.

Figure 12a depicts the number of composite vectors over the observation period (261 weeks).
The mean weekly number of vectors produced by the 7-day composites is 719. The histogram of
the total number of vectors is shown in Figure 12b, where most of the weeks produce from 400 to
1300 vectors. In addition, we also analyzed the spatial coverage of the 7-day MCC composites in
Figure 12c. The coastal areas offshore ∼400 km have the highest data coverage on the order of 60 and
higher. The number of vectors declines as the distance offshore increases.

Figure 12. (a) Number of the 7-day MCC composite vectors; (b) histogram of total percent of number
of vectors and (c) spatial coverage of MCC vectors over the observation period. The red line in (a) is
the mean number of vectors and the value is 719.

5. California Current System Observation

5.1. 5-Year MCC Mean Flows

To investigate the current system in our study region, we computed the multi-year mean flows
based on the 7-day composites. Centurioni et al. [25] revealed four permanent meanders in the CCS.
As our study region is slightly smaller, only three of them are captured in our 5-year mean flows
(Figure 13), which has almost the same structure as the 12-year mean flows calculated by Matthews
and Emery [11]. The first offshore jet structure originates north of Cape Mendocino, flows southward
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with a width of ∼200 km and mean current speeds of ∼15 cm · s−1. The second jet exits between Point
Arena and Point Reyes, also with a width of ∼200 km and higher mean current speeds of 25 cm · s−1,
extending to ∼350 km offshore. The third jet is investigated to the north of Point Conception and the
offshore current flows southward quickly with mean current speeds of 20 cm · s−1.

Figure 13. Time-averaged mean currents (colors show magnitude while the vectors show the currents)
from 5 years of MCC currents.

5.2. Weekly MCC Composites

To smooth the current fields and fill in the blank areas of the 7-day MCC composites, we used
the optimal interpolation (OI) method based on the covariance matrix computed from the 5-year
mean flows over the study region. More details can be found in [26]. The OI algorithm also provides
the MCC-OI mapping errors. The mean mapping errors are presented in Figure 14. Reflecting on
Figure 12c, the spatial distribution of the OI error map has many similarities with the MCC vector
coverage as it should have. The lowest error is located in the center of the study region where the
vector coverage is the highest. The offshore area within 500 km along the California coast has mapping
errors under 30%.

Figure 14. The MCC-OI mapping error expressed as percent of the signal variance.
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The CCS is eddy-rich [27,28] and the MCC-OI maps provide surface currents with sufficiently high
spatial resolution to depict these mesoscale features and study their oceanographic variabilities over the
study region. In Figure 15a,b, we present two continuous 7-day MCC-OI maps. The ocean circulation
patterns of both weeks are similar. The coastal jet between 39◦ N and 42◦ N flows equatorward in
late-April and early-May. An anticyclonic eddy centered at 38◦ N, 125◦ W is captured in the first week
and it moves offshore and gets stronger from the first week to the second. One eddy dipole is revealed
by Figure 15. The eddy dipole is in the southeast portion of the study region. Our results observe the
evolution of this eddy dipole and a cyclonic eddy over the two weeks. A cyclonic eddy centered at
33◦ N, 125◦ W in the first week, moves southeastward, then interacts with the offshore cyclonic eddy
of the eddy dipole, forming a new eddy dipole with a stronger cyclonic eddy, as discussed by Simpson
and Lynn [29]. The third jet mentioned in Section 5.1 is also investigated in the two weeks.

The 7-day surface current maps clearly show the evolution of these two eddy dipoles in the CCS.
This provides strong evidence of the representativeness of the MCC method for estimating coastal
surface currents and investigating the complex oceanography variability in coastal area.

Figure 15. 7-day MCC-OI maps start from (a) 21 April 2013 and (b) 28 April 2013.

5.3. Seasonal MCC Mean Flows

The study region is the central area of the CCS, including the persistent equatorward flow of the
surface CC, the California Undercurrent (CU) that is a poleward subsurface current and the Davidson
Current (DC) that is also a poleward current that occurs seasonally during the winter and fall near and
north of Point Conception [30].

The CC in our study region exhibits significant seasonal variations. To investigate this variability,
we computed the seasonal mean flows for 2013 since this year had the greatest number of MCC
vectors for all the years that we studied. In winter (Figure 16a), the coastal velocities reveal a complex
structure, but the poleward DC is not evident. The offshore CC tends to move closer to the shore in
winter. One inshore cyclonic eddy lies along the path of the DC and it is located between Point Sur
and Point Conception and the other one is near Point Reyes. Two eddy dipoles are observed, one is
near Cape Mendocino and the other is near Point Arena. In spring (Figure 16b), the pattern of the
surface flow over the study region is predominantly equatorward and more eddies are seen in the
spring. The coastal jet flows equatorward from north of Point Conception. The eddy dipole near Cape
Mendocino moves inshore from winter to spring and the eddy dipole near Point Mendocino moves
westward during this period. The eddy in the path of the DC dissipates in spring. Several offshore
eddies are also captured in our results. A cyclonic eddy forms to the south of Cape Mendocino in
spring. The southwestward flow starts to meander at 35◦ N, 126◦ W, with the surface flows to the
southwestward. In summer (Figure 16c), the inshore and offshore CC both flow equatorward and the
offshore CC meanders are seen from the north (40◦ N) to the south (32◦ N). The CC weakens or reverses
in the southern area. The offshore flows between Point Arena and Point Sur coincide with the strong



Remote Sens. 2017, 9, 1083 17 of 19

upwelling during the summertime. The cyclonic eddy to the south of Point Conception in spring
moves offshore over summer, and instead, an anticyclonic eddy forms in that area. Moreover, an eddy
dipole forms at 33◦ N, 122◦ W. In fall (Figure 16d), the CC flows equatorward and the poleward DC is
not evident inshore. The CC increases the complexity from summer to fall. Several eddies are captured
in the fall plots.

Figure 16. Seasonal MCC mean flows of 2013. (a) winter (January–March); (b) spring (April–June);
(c) summer (July–September); and (d) fall (October–December).

6. Discussion and Conclusions

In this paper, we explore the potential to map the coastal currents using the improved MCC
method from the combination of MODIS and VIIRS imagery. We use imagery from the CC region off
the western U.S. Evidence demonstrates the viability of the MCC method to compute reliable coastal
surface currents. First, we examined coincident imagery over the study region to analyze the temporal
resolution of the imagery (Figure 2). Second, we explored the possibility of extracting the coastal
surface currents from the combination of MODIS and VIIRS satellite images. It is possible to apply
the MCC method to sequential MODIS and VIIRS imagery merged together. The combination of the
MODIS and VIIRS datasets increases the total number of vectors by 58.3%. Third, the MCC surface
currents computed from 60 pairs of cloud free images were examined to map the coastal surface
currents and HF radar current maps are used as comparisons to validate the accuracy of the MCC
current fields. Fourth, several satellite datasets were selected for merging the different MCC fields.
This strategy makes use of different trackable surface features to improve the robustness of the MCC
method for estimating surface currents. The merged surface current results increased by 68.5% of the
spatial coverage of the individual fields relative to the Chl fields alone. Moreover, after merging the
MCC fields, the merged fields also maintain the same level of current accuracy. Based on the routine
MCC maps, we compute the weekly, seasonal and 5-year mean flows, which are used to investigate
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the current structure of the study region. These results show substantial agreement with the previous
studies [11,29,30].

In conclusion, we introduce a coastal surface current computational procedure based on the
improved MCC method and demonstrated the effectiveness of this current retrieval method for our
study region. By the combination of IR and OC datasets, we plan to estimate the surface displacement
with these different surface features. In future work, we can explore the potential of computing the
global coastal surface currents using the improved MCC method with MODIS and VIIRS data due to
the MCC method’s non-region-specific character.
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