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Abstract: Leaf inclination angle distribution is an important canopy structure characteristic which
directly impacts the fraction of the intercepted solar radiation. Together with the leaf area index
(LAI) it determines the structure and fractional cover of a homogeneous crop canopy. Unfortunately,
this key canopy parameter has usually been ignored when applying common multispectral vegetation
indices to the mapping of LAI, although its impact is known from model simulations. Therefore,
we measured leaf angles and determined their distribution (quantified using the leaf mean tilt
angle, MTA) for six crop species with different structures growing on 162 plots with a broad range of
LAI (1.1–5.0) and leaf chlorophyll content (26–94 µg cm−2). Next, we calculated six vegetation indices
widely used for LAI monitoring—the normalized difference vegetation index (NDVI), the enhanced
vegetation index (EVI), the two band enhanced vegetation index (EVI2), the modified triangular
vegetation index (MTVI2), the optimized soil adjusted vegetation index (OSAVI) and the wide
dynamic range vegetation index (WDRVI)—from airborne imaging spectroscopy data. We calculated
the Spearman’s correlation coefficient Rs, a non-parametric statistic chosen because of the non-normal
distribution of canopy parameters. All studied indices depended on the LAI (0.50 ≤ Rs ≤ 0.71),
but the dependence on the MTA was of similar magnitude (−0.83 ≤ Rs ≤ −0.53) with EVI,
EVI2, OSAVI and MTVI2 depending more strongly on MTA than on LAI. All studied indices were
good proxies (0.78 ≤ Rs ≤ 0.88) for vegetation fractional cover (Fcover) which, for homogeneous
crop canopies, is a nonlinear function of LAI and MTA. EVI2 and MTVI2 were the most strongly
correlated with Fcover, although the difference to the other studied indices was small. This first study
involving a large range of crop structures confirms the results from canopy reflectance simulations
and emphasizes the necessity of leaf angle information for the successful mapping of LAI with Earth
observation data.

Keywords: canopy structure; mean tilt angle; leaf angle distribution; imaging spectroscopy; NDVI;
EVI; EVI2; MTVI2; OSAVI; WDRVI; PROSAIL

1. Introduction

Canopy structure, or its architecture, is understood as the spatial distribution and orientation
of vegetation components within a canopy. It directly affects the interception of solar radiation and
thus also how radiation is reflected or intercepted by the canopy. Vegetation structure has an effect
on land surface energy balance and it influences leaf temperature, photosynthetic activity and plant
growth [1–4]. Vegetation structure thus plays a dual role in remote sensing. First, it is a canopy
characteristic which needs to be retrieved to understand biophysical processes. Second, due to its
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direct effect on canopy reflectance, it needs to be taken into account—and corrected for—when other
canopy biophysical or biochemical variables are determined from remote sensing data.

The complexity of canopy structure varies with biome and plant functional type. Crop canopy
is usually assumed to be the simplest possible case—horizontally homogeneous and with a constant
distribution of leaf normals, i.e., the vertical profile of the canopy is the same at all locations.
Its structure can thus be described by the amount of leaves above the unit horizontal ground area and
their directional distribution, which can be quantified using the leaf area index (LAI) and leaf angle
distribution (LAD), respectively. LAI is a key variable for understanding the biophysical characteristics
of the vegetated areas of the planet [5–7]. For agricultural management, crop LAI measured over
large areas can be used to estimate productivity on national to global scales. The other structural
characteristic, LAD, quantifies the distribution of the angles between leaf normals and the vertical
direction. If the azimuth angles of leaves are uniformly distributed, LAD and LAI completely determine
the transmission of radiation through the canopy [8]. Compared with LAI, much less attention has
been paid to LAD when describing the biophysical characteristics of vegetation.

Spectral vegetation indices (VIs), calculated from canopy reflectance in a small number of selected
spectral bands mostly in the visible and near infrared (NIR) spectral domains [9–12], are commonly
used for the remote estimation of vegetation biophysical characteristics. Visible bands are utilized for
determining the absorption by plant pigments active in this spectral region, whereas the reflectance in
the NIR domain, where green leaves have minimal scattering, contains information on canopy cover
and thickness. However, in addition to the number of leaves, canopy reflectance is also affected by
many factors, such as soil background, atmospheric effects, canopy element optical properties and
canopy architecture.

Despite its central role, there is a noticeable lack of empirical evidence on the effect of LAD on
even the most common VIs. The main reason is likely a lack of in-situ measurements of canopy LAD,
or the central moment of the distribution, the mean tilt angle (MTA). A traditional direct approach for
LAD measurement is using clinometers in contact with the leaf surface [13]. This method is laborious
and time consuming, and direct measurement is inevitable to disturb the leaf natural orientation.
Indirect leaf mean tilt angle estimation relies on the inversion of the gap fraction below the canopy [14].
Some specialized techniques were applied to characterize 3D canopy structure, e.g., portable laser
canning [15,16], which were resource demanding and rigid to operate. A digital photography method
was developed to estimate the LAD of tree species [17–19] and extended and validated for field
crops [20].

The effect of MTA is obvious across the whole optical spectrum as this parameter affects canopy
transmittance in both the view and illumination directions and thus the brightness and visibility of the
vegetation background. An especially strong dependence of reflectance on MTA has been found in the
far-red edge spectral region, around 750 nm [21,22]. However, this spectral region is not included in
most satellite instruments for which data is commonly available, and hence also in the most widely
used VIs. We therefore point our focus on the effects of LAD on the most common wavelength
combinations in the visible spectrum and NIR used in vegetation remote sensing.

A number of VIs have been developed for estimating LAI by establishing statistical
relationships between VIs and measured LAI for various vegetation types. The most obvious
first choice is the normalized difference vegetation index (NDVI) [23] which reflects the fractional
absorbed photosynthetically active radiation and exhibits a strong relationship with vegetation
characteristics [24–26]. This classic VI based on reflectance in red and NIR bands has numerous
modifications aimed at improving robustness under varying atmospheric and background conditions,
as well as linearity with specified biophysical variables. We included in this study the enhanced
vegetation index (EVI) [27], which includes also reflectance in the blue band, the two-band version
of EVI (EVI2, [28]), OSAVI [29], the modified triangular vegetation index (MTVI2) [30], which also
includes a green band, and WDRVI [31,32]. All these indices have reported dependencies on MTA at
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low to middle LAI [33], based on simulated reflectance spectra. To our knowledge, the relationships
have not been tested using empirical data covering a wide range of canopy structures.

The purpose of our study was to determine the role of two key canopy structural variables,
MTA and LAI, in determining the values of commonly used and robust vegetation indices under actual
field conditions. We measured the leaf angle distributions and reflectance properties of 162 study plots
growing six different species with a large variation in both LAI and MTA. To generalize and validate
the accuracy of our field-measured data, we also applied a common canopy reflectance model with
inputs taken from spectral and structural measurements at the test site.

2. Materials and Methods

2.1. Study Area and Field Measurements

This study was carried out at the Viikki agricultural test field located in Helsinki (Finland)
(60.224◦N, 25.021◦E). The size of the research area was approximately 4 km × 4 km. The annual
average temperature in Helsinki is 6 ◦C; in July, the average temperature is 18 ◦C. Six crop species were
included in this study growing on 162 plots: faba bean (Vicia faba L. “Kontu”), narrow-leafed lupin
(Lupinus angustifolius L. “Haags Blaue”), turnip rape (Brassica rapa L. ssp. oleifera (DC.) Metzg. “Apollo”),
wheat (Triticum aestivum L. emend Thell. “Amaretto”), barley (Hordeum vulgare L. “Streif”, “Chill” and
“Fairytale”) and oat (Avena sativa L. “Ivory” and “Mirella”). The largest plots were 600 m2 (50 m × 12 m)
and the smallest ones 20 m2 (10 m × 2 m). The soil types in the area were fertile luvic stagnosol, haplic
gleysol and sulfic cryaquept. The plots differed in seeding density (55–700 m−2) and fertilizer treatment
(0–150 kg N m−2) leading to LAI range of 1.1–5.0 and a chlorophyll content range of 26–94 µg cm−2

(see the Table 1 in the reference [20]).
Canopy leaf-angle distribution was determined using the photographic approach [17], validated

and extended to field crops [20] on 6 July 2012 in the same growth stage as during the spectroscopy
measurement. Canopy photographs were taken using a Nikon D1X digital camera mounted on a tripod
and leveled with bubble level outside of the plots approximately 1 m away from the edge of the field.
The camera height was between 30 and 50 cm depending on crop height. Five to six photographs
were taken for each species from one or several plots. Finally, the inclination angles of 75–100 leaves
or leaf fragments oriented perpendicularly to the viewing direction were measured using ImageJ
1.47 software, which is an open source image processing program [34], and used for the calculation of
the leaf mean tilt angle (MTA). We assumed LAD to be species-specific, as it has been shown to vary
more among species than within species [8,13,35]. A more detailed description of the test site and the
photographic method was given by Zou et al. [20].

Airborne spectroscopy imagery covering the study area was acquired using an AISA Eagle II
imaging spectrometer (Specim Ltd., Oulu, Finland) on 25 July 2011. The data were collected between
09:36 and 10:00 local time at approximately 600 m above ground. The flight direction was parallel with
the sunrays. The solar zenith angle varied between 50.4◦ and 48.1◦ and the measurement zenith angle
between 0 and 18.9◦ was determined by the swath width of the sensor and aircraft orientation changes.
Reflected radiation was measured in 64 channels in the visible and NIR spectrum (400–1000 nm) with
a spectral resolution of 9–10 nm and a spatial resolution of 0.4 m. The spectroscopic imagery was
radiometrically calibrated using the CaliGeo 4.9.9 software package (Specim Ltd., Oulu, Finland)
and georectifed using Parge (ReSe Applications Schläpfer, Wil, Switzerland). Finally, the radiometric
data were converted to top-of-canopy hemispherical-directional reflectance factors using ATCOR-4
(ReSe Applications Schläpfer, Wil, Switzerland). The spectroscopic data were extracted from the
imagery and averaged as average plot spectra.

A SunScan ceptometer (Delta-T Devices, Cambridge, UK) was used to measure LAI in the field.
The data used in this study were collected within five days of the airborne campaign. The SunScan
ceptometer bar was entered from the edge of the plot at approximately 45◦ to the row direction to
minimize the row effects on LAI measurement as suggested in the instrument manual. LAI was
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calculated from the measured transmittance following the model implemented in the SunScan
hardware. The possibility of light transmitted through the canopy at polar angle θ can be modeled for
a random spatial distribution element canopy using an exponential model:

P(θ) = exp
[
− k(θ, χ) LAI

√
a

cos θ

]
, (1)

where a is the leaf absorptivity for light set to 0.85 in this study (SunScan SSI user manual) and k(θ, χ)

is the canopy directional light extinction coefficient depending on LAD. The canopy transmittance
model used by SunScan uses an ellipsoidal LAD model depending on the single parameter χ to
characterize LAD. Commonly, χ is assumed to have equal unity corresponding to random distribution
of leaf normals due to a lack of information on the actual LAD. In this study, we calculated χ from the
measured MTA using the following function derived from Equation (16) in [36]:

χ = 3 +
(

MTA
553

)−0.6061
. (2)

For an ellipsoidal leaf angle distribution model, k(θ, χ) can now be calculated as [13]:

k(θ, χ) =

√
χ2 + tan2(θ)

χ + 1.774(χ + 1.182)−0.733 . (3)

The calculations were performed as follows. First, we determined MTA from the measured leaf
angles. Next, we calculated the species-specific ellipsoidal leaf angle distribution parameter χ from
Equation (2) and two extinction coefficient values from Equation (3): k(θS, χ) corresponding to the
solar zenith angle θS at the time of the SunScan measurements, and k(0, χ) for the nadir direction.
To obtain the LAI, we solved Equation (1) for LAI and used the SunScan-measured P(θS) and k(θS, χ).
Finally, the LAI for each plot was averaged from 4–5 sequential SunScan readings. We used the LAI
value for each plot to calculate the fraction of the canopy cover as:

Fcover = 1− P(0), (4)

where the light transmission in the nadir direction, P(0), was calculated from Equation (2) with θ = 0.
Fcover can also be directly related to SunScan measurements. After making all the substitutions listed
above, we can write an equation relating Fcover and SunScan-measured transmittance measurements:

Fcover = 1− P(θS)
k(0,χ) cos θS

k(θS ,χ) . (5)

A portable spectroradiometer (ASD Handheld, Boulder, CO, USA) with spectral range between
325 and 1075 nm and a spectral resolution of 3 nm was used to measure the bare soil reflectance in
four sample plots in a harvested area on 7 October 2011. Bare soil reflected radiation was collected at
a distance approximately 40 cm above the soil surface and a field of view of 25◦. Soil reflectance was
calculated as the ratio of soil-reflected radiance to that measured above a calibrated white Spectralon
panel (Labsphere Inc., Sutton, NH, USA). Due to the different solar illumination conditions between
soil spectral and airborne spectral measurements, the measured soil reflectance was corrected with
a bidirectional reflectance distribution function (BRDF) model developed by Walthall et al. [37] and
modified by Nilson and Kuusk [38]. The soil spectrum used for PROSAIL model simulation is presented
in Figure 1.
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Figure 1. The soil reflectance used for PROSAIL simulations.

2.2. Vegetation Indices

The VIs (Table 1) used in the study (NDVI, EVI, EVI2, MTVI2 and OSAVI) make use of a total
of four spectral bands (blue, green, red, and NIR) available in most modern satellite remote sensing
instruments. The corresponding wavelengths used in the study are blue: 470 nm, green: 550 nm,
red: 680 nm and NIR: 800 nm. As these exact wavelengths were not available in the AISA data, we used
the closest available wavelength. The actual wavelengths used in the analysis were 470 nm, 551 nm,
682 nm, and 795 nm, respectively.

Table 1. Vegetation indices used in this study.

Index Formula References

NDVI R800−R680
R800+R680

[23]

EVI
2.5(R800 − R680)

R800 + 6R680 − 7.5R470 + 1
[27]

EVI2
2.5(R800 − R680)

1 + R800 + 2.4R680
[28]

OSAVI
R800 − R680

R800 + R680 + 0.16
[29]

MTVI2
1.5[1.2(R800 − R550)− 2.5(R680 − R550)]√
(2R800 + 1)2 −

(
6R800 − 5

√
R680

)
− 0.5

[30]

WDRVI
αR800 − R680
αR800 + R680

+
1− α

1 + α
, α = 0.1 [31,32]

2.3. PROSAIL Simulations

We studied the sensitivity of the VIs to canopy structure (MTA and LAI) using the PROSAIL
canopy reflectance model. The model is a combination of the leaf optical reflectance model
PROSPECT-5 [39] and the canopy reflectance model SAILH [40,41]. The PROSPECT-5 model simulates
leaf reflectance and transmittance from six input parameters: leaf chlorophyll a and b content (Cab),
leaf carotenoid content (CCar), leaf dry matter content (Cm), leaf water content (Cw), leaf brown pigment
content (Cbp), and the mesophyll structure parameter N. The SAILH sub-model simulates canopy
reflectance using LAI, MTA, hot spot size parameter, soil reflectance, solar zenith angle, sensor view
angle, sensor azimuth angle and the fraction of incident diffuse sky radiation. The leaf inclination
angle distribution is characterized from the leaf mean tilt angle to generate an ellipsoidal leaf angle
distribution [42].
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First, to illustrate the effects of LAI and MTA on VIs, we varied the MTA between 15 and 75 degrees,
set the LAI value to 1, 3 and 5, and set all other parameters to values characteristic of healthy green
vegetation: Cab = 40 µg cm−2, CCar = 8 µg cm−2, Cw = 0.001− 0.02 cm. Other parameters were fixed
to values taken from the literature: Cm = 0.005 g cm−2 (the average value of the six species [43–46]),
N = 1.55 (the average value of various crops [27]), Cbp = 0 (assuming the leaves were green during the
measurements), and the hot spot parameter was set to 0.01 (this parameter has no practical influence
on the results as the view direction was far from the hot spot because of low sun). The fraction of
diffuse radiation was calculated using the 6S atmosphere radiative transfer model [47] from actual
observation geometry and nearby sun photometer measurements. The parameters describing the
illumination and view geometry in the model were set to coincide with the airborne spectroscopy
imagery acquisition: solar zenith angle 49.4◦, sensor zenith angle 9◦, and azimuth angle 90◦.

Next, we generated 100,000 parameter combinations by uniformly sampling the variation ranges
of Cab, Cw, LAI and MTA within the measured (for field-measured parameters) or natural variation
range (for parameters for which this information was available). According to measurements [20],
Cab varied between 25 and 100 µg cm−2, LAI between one and five, and MTA between 15 and
70 degrees (MTA = 15, 30, 40, 50, 60 and 70◦). Cw varied in a wide natural range of the parameter,
between 0.001 and 0.020 cm; Ccar was linked to Cab as 1:5 based on the LOPEX93 dataset [48].

2.4. Statistical Analysis

We analyzed the correlation between VIs and canopy parameters (LAI, MTA and Fcover) for
model simulations and empirical data using the Spearman’s correlation coefficient Rs (−1 ≤ Rs ≤ 1)
which is a statistical measure of the strength of the relationship between paired data. Its interpretation is
similar to that of Pearson’s correlation coefficient: the closer the Rs is to ±1 the stronger the correlation.
Unlike Pearson’s R, there is no requirement of normality and assumption of a linear relationship
between the two variables.

3. Results

In the modeled data for typical healthy green vegetation, all indices showed a clear and mostly
negative dependence on MTA (Figure 2). The curves were most similar for the lowest LAI value,
LAI = 1. At medium LAI values (LAI = 3) of the three LAI levels, the indices showed a smaller
dependence on MTA. Also, the curves in Figure 1 become nonlinear and indicate lower dependence on
MTA at low MTA values. The latter is especially evident for NDVI (Figure 2a) and WDRVI (Figure 2f).
At LAI = 5, the nonlinearity was even larger compared with lower LAI values. The dependence of NDVI
and WDRVI on MTA was slightly positive for the smallest MTA values. However, the dependence was
very small and for practical purposes, NDVI and WDRVI were insensitive to the variation of MTA
between below MTA = 50◦ for large LAI values. The other indices, EVI, EVI2, OSAVI and MTVI2,
were still highly sensitive to MTA (Rs > 0.6) even at LAI = 5.

All indices showed a monotonic dependence on LAI when all other inputs in the PROSAIL model
(see Section 2.3) were fixed to the values of green healthy vegetation (Figure 2). The dependence,
measured as the distance between the lines in Figure 1, generally decreased with LAI and MTA.
For NDVI, the lines for LAI = 3 and LAI = 5 nearly intersect at MTA = 15◦ indicating a lack of
dependence of the index on LAI. This well-known saturation with LAI, however, is not present in EVI,
EVI2 and MTVI2, for the LAI intervals investigated here.

In the 100,000 simulations (Figures S1–S3) and empirical data, the results visualized in Figure 2
were corroborated: VIs showed generally stronger correlations with MTA than LAI (Table 2). The only
exceptions were NDVI and WDRVI, for which the correlation with LAI was stronger than with
MTA in both datasets; for NDVI, the correlation with LAI was stronger than with MTA in the
field-measured data. However, even the strongest correlations with LAI, (simulated dataset: Rs = 0.71
and measured dataset: Rs = 0.58) for NDVI and WDRVI were weaker than the strongest correlation
(simulated dataset: Rs < −0.81 and measured dataset: Rs < −0.71) for EVI, EVI2 and MTVI2.
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Figure 2. Relationship between MTA and VIs at different LAI values (low: LAI = 1, medium: LAI = 3 
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by NDVI and WRDVI. 

The correlations in the empirical dataset are presented graphically in Figures 3–5. The 
species-specific MTA values cause the clustering of points into vertical stripes in these figures. The 
length of each stripe depends on the variation of a VI on parameters other than MTA. The variation 
of these parameters in the measured dataset is provided in Table 1 in the reference [20]. Despite 
considerable variation, the strong effect of MTA on EVI, EVI2, OSAVI and MTVI2 is clear from 
Figure 3b–e. For the other indices (Figure 3a,f) ܴୱ was lower (ܴୱ= −0.53) and the index values at 
MTA = 54° and MTA = 58° (wheat and oat, respectively) could be as high as for MTA = 18° and 
MTA = 27° (lupin and faba bean, respectively). 

Figure 2. Relationship between MTA and VIs at different LAI values (low: LAI = 1, medium: LAI = 3
and high: LAI = 5) for (a) NDVI, (b) EVI, (c) EVI2, (d) OSAVI, (e) MTVI2, (f) WDRVI.

The strongest correlations in both the simulated and measured datasets were found between all
studied indices and Fcover (Table 2). In the simulated dataset, Rs was consistently above 0.93 with
Rs = 0.95, indicating a near-perfect correlation for NDVI and WRDVI. In the measured data, the values of
Rs were somewhat smaller, around 0.8, with the lowest value (Rs = 0.78) produced by NDVI and WRDVI.

The correlations in the empirical dataset are presented graphically in Figures 3–5.
The species-specific MTA values cause the clustering of points into vertical stripes in these figures.
The length of each stripe depends on the variation of a VI on parameters other than MTA.
The variation of these parameters in the measured dataset is provided in Table 1 in the reference [20].
Despite considerable variation, the strong effect of MTA on EVI, EVI2, OSAVI and MTVI2 is clear
from Figure 3b–e. For the other indices (Figure 3a,f) Rs was lower (Rs= −0.53) and the index values
at MTA = 54◦ and MTA = 58◦ (wheat and oat, respectively) could be as high as for MTA = 18◦ and
MTA = 27◦ (lupin and faba bean, respectively).
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Figure 3. Empirical relationships between MTA and VIs calculated from Spearman’s correlation 
coefficient Rs: (a) NDVI, (b) EVI, (c) EVI2, (d) OSAVI, (e) MTVI2, (f) WDRVI. A simple trend line 
calculated from linear regression was added to visualize the trend of the variation.  

The correlation between the VIs and LAI were all positive (Figure 4). No obvious saturation at 
high LAI values (LAI > 3) was visible for any of the indices used in this study. However, the point 
clouds were divided into two subclouds with a small set of measurements with LAI = 2–3 
(corresponding to faba bean and lupin, the two non-cereal crops with the lowest recorded MTAs) 
with VI values higher than the rest of the data.  

Figure 3. Empirical relationships between MTA and VIs calculated from Spearman’s correlation
coefficient Rs: (a) NDVI, (b) EVI, (c) EVI2, (d) OSAVI, (e) MTVI2, (f) WDRVI. A simple trend line
calculated from linear regression was added to visualize the trend of the variation.

The correlation between the VIs and LAI were all positive (Figure 4). No obvious saturation
at high LAI values (LAI > 3) was visible for any of the indices used in this study. However, the
point clouds were divided into two subclouds with a small set of measurements with LAI = 2–3
(corresponding to faba bean and lupin, the two non-cereal crops with the lowest recorded MTAs) with
VI values higher than the rest of the data.
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The large Rs values between the VIs and Fcover in Table 2 are accompanied by the close to linear
point clouds with little scatter in Figure 5. Especially the VIs with the largest Rs values (EVI, EVI2,
OSAVI, MTVI2) are also characterized by the smallest scatter; however, the performance differences
between the indices are small. A small non-linearity with Fcover can be visually detected for EVI, EVI2
and MTVI2 (Figure 5b–e), but not for OSAVI (Figure 5d).
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Remote Sens. 2017, 9, 994 11 of 15

Table 2. Spearman’s correlation coefficient (Rs) between spectral indices and canopy structural variables.

Spectral Index Simulations Measurements

MTA LAI Fcover MTA LAI Fcover

NDVI −0.59 0.71 0.96 −0.53 0.58 0.78
EVI −0.83 0.52 0.93 −0.75 0.50 0.87
EVI2 −0.82 0.54 0.93 −0.76 0.50 0.88

OSAVI −0.78 0.58 0.95 −0.71 0.51 0.86
MTVI2 −0.81 0.54 0.93 −0.76 0.50 0.88
WDRVI −0.59 0.71 0.96 −0.53 0.58 0.78

4. Discussion

Clearly, the observed correlation with the leaf inclination angle in the field crop canopy (quantified
by MTA) cannot be ignored when estimating other canopy biophysical parameters. Although it is
possible that the spectral effect is caused by some other parameter strongly correlated with MTA,
no other parameter has been identified in earlier modeling studies [29]. Thus far, the influence of LAD
on VIs has not been adequately investigated with empirical data. In this study, we attempted to bridge
this gap for six commonly used multispectral VIs characterizing canopy greenness.

The field-measured set of vegetation parameters covers a wide range of values covering a large
majority of natural variations in both LAI and MTA. This allowed us to use a simple comparison of
correlation coefficients, which depend on the level of variation included in each of the studied variables.
Since the measured MTA and LAI ranges are representative of their natural variation, a comparison of
the values of Rs tells us about the role of each vegetation parameter in determining the studied VIs.

According to both PROSAIL model simulations and empirical data, all studied VIs depended
on MTA with NDVI being the least affected. This supports the findings of previous studies by
Liu et al. [33]. WDRVI is a nonlinear transformation of NDVI performed identically with NDVI when
measured with Spearman’s R, however, the more common Pearson’s R2-value was slightly higher
for WDRVI (0.25 and 0.30 for measured NDVI and WDRVI, respectively). NDVI and WDRVI were
also the two indices with the strongest correlations with LAI in both the modeled and measured
data (Table 2). However, the relatively strong (compared with other indices studied here) correlation
between LAI and NDVI is compromised by the well-known saturation of the VI’s sensitivity to LAI
evident in the variation of the distance between the lines in Figure 1a. The same non-linearity is present
in WDRVI (Figure 1f).

EVI, EVI2 and MTVI2 were designed to be more sensitive to the variations inside the canopy
by minimizing background influence, and working at large LAI values without saturation. In our
measured dataset, the indices saturate less, with the lines in Figure 2b–e nearly parallel and more
closely equidistant. Unfortunately, these VIs were more strongly correlated with MTA (Rs < −0.71)
than NDVI and WDRVI. The specific strength of the correlation between MTA and NDVI and WDRVI
may somewhat depend on the spectral properties of soil. Using the sample curves in Figure 1b,
a narrow-leafed lupin (MTA = 18◦) canopy with LAI = 1 would have EVI ≈ 0.5. A similar EVI value is
produced by an oat (MTA = 58◦) canopy of LAI = 4. Our results demonstrate empirically that it is very
difficult to quantify LAI using remotely sensed VIs when the MTA is unknown [49].

EVI and EVI2 are widely used for tracing the dynamics of vegetation gross primary production
(GPP) and phenology inter- or inner-annually [50–53]. As MTA had a stronger effect on these VIs
than LAI, caution should be used when applying them to estimate LAI across structurally potentially
different canopies, e.g., seasonality studies or application over multiple crop species. Depending on
cover type and LAI values, it may be more optimal to use NDVI or WDRVI, which produced relatively
high Rs with LAI in both model simulations and empirical data: the Rs between the LAI and NDVI
was 0.71 and 0.58 in simulated and measured data, respectively. This also agrees quantitatively with
the previous finding by Colombo et al. [54] of R2 = 0.33 for data pooled over five vegetation types
(soybean, corn, vineyards, poplar plantation and deciduous forest).
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In our study, the correlation between Fcover and WDRVI was the strongest with the Rs values
close to the value of 0.96 reported by Gitelson [55] in the simulated dataset. They also proposed the
following equation for calculating Fcover from remote sensing data:

Fcover = 80.838WDRVI + 34.021 (6)

(Equation (2) in [55]). The proposed equation was more accurate for empirical (RMSE = 0.22,
bias of mean = 0.18) than model-simulated (RMSE = 0.38, bias of mean = 0.37) data with some
overestimation in both datasets.

For measured data, the best-performing indexes for estimating Fcover were EVI2 and MTVI2,
with Rs = 0.88. In agreement with previous studies, we found that a new independent variable Fcover,
a nonlinear combination of LAI and MTA, is the key driver of variation in the commonly used VIs.
Hence, all the VIs studied here can be efficiently used to predict this structural parameter. The slightly
better performance of EVI2 and MTVI2 can be attributed to the capability of the Spearman’s R to ignore
the nonlinearity with Fcover. When the more traditional Pearson’s R is used (despite the non-normality
of the data), the index most strongly correlated with Fcover is OSAVI (R = 0.85) with a marginal
difference to EVI2 and MTVI2 (R = 0.83). Similarly to this study, however, some nonlinearity and
dependence on illumination conditions is expected [56] under varying conditions.

The results corroborate earlier findings, especially those by Liu et al. [33] and Gitelson [55].
As we have demonstrated empirically, even for homogeneous crop canopies, NDVI or its more
sophisticated counterparts, EVI or EVI2, depend not only on LAI, but also on the second structural
parameter, MTA. Furthermore, the dependence of the most widely used VIs on MTA can be stronger
than on LAI with the actual effects of the two canopy parameters depending on their actual range
of variation. Therefore, in order to map LAI from multispectral data, effective methods need to be
developed to remotely measure leaf angles. This can be achieved, for example, using canopy reflectance
in the red edge [22]. Although Earth observation data in this spectral region is scarce, it is covered by
some systems, most notably Sentinel 2. We hope that future investigations into the application of this
sensor into MTA estimations will improve the mapping of MTA, and thus also LAI.

5. Conclusions

The results of this study reveal that the test six common multispectral vegetation indices showed
strong correlations with MTA, especially for EVI, EVI2 and MTVI2, with Rs < −0.75 for both PROSAIL
simulations and field-measured data. All studied VIs were proxies for the fractional canopy cover
determined by two key elementary canopy parameters (leaf area index and leaf mean tilt angle).
For the studied crops, EVI2 and MTVI2 were the best indicator for Fcover with Rs = 0.88 for measured
data and Rs = 0.93 for model simulations.
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