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Abstract: Because of the use of outdated terrestrial datasets, regional climate models (RCMs)
have a limited ability to accurately simulate weather and climate conditions over heterogeneous
oasis-desert systems, especially near large mountains. Using actual terrestrial datasets from satellite
products for RCMs is the only possible solution to the limitation; however, it is impractical for
long-period simulations due to the limited satellite products available before 2000 and the extremely
time- and labor-consuming processes involved. In this study, we used the Weather Research and
Forecasting (WRF) model with observed estimates of land use (LU), albedo, Leaf Area Index (LAI),
and green Vegetation Fraction (VF) datasets from satellite products to examine which terrestrial
datasets have a great impact on simulating water and heat conditions over heterogeneous oasis-desert
systems in the northern Tianshan Mountains. Five simulations were conducted for 1–31 July in both
2010 and 2012. The decrease in the root mean squared error and increase in the coefficient of
determination for the 2 m temperature (T2), humidity (RH), latent heat flux (LE), and wind speed
(WS) suggest that these datasets improve the performance of WRF in both years; in particular, oasis
effects are more realistically simulated. Using actual satellite-derived fractional vegetation coverage
data has a much greater effect on the simulation of T2, RH, and LE than the other parameters,
resulting in mean error correction values of 62%, 87%, and 92%, respectively. LU data is the primary
parameter because it strongly influences other secondary land surface parameters, such as LAI and
albedo. We conclude that actual LU and VF data should be used in the WRF for both weather and
climate simulations.

Keywords: MODIS; Weather Research and Forecasting model; oasis-desert system; oasis effects;
Northern Tianshan Mountains; Central Asia

1. Introduction

The arid region of Central Asia (CA), which includes Kazakhstan, Kyrgyzstan, Tajikistan,
Turkmenistan, Uzbekistan, and the Xinjiang Province of China [1,2], is located deep inside the continent
and has unique geomorphological characteristics, including mountain–basin systems. In this area,
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elevations can increase dramatically, from a few hundred metres above sea level in the basin areas to
over 5000 m above sea level in the mountainous areas, over a horizontal distance of less than 200 km;
thus, there is high heterogeneity in land cover types [3]. Water is scarce and is valuable for both human
livelihoods and ecosystems in CA [4]; water resources are largely derived from the mountainous
areas, whose rivers are fed by hydrologic processes of snow and glacial melt and precipitation [5].
These rivers flow into artificial lakes and then disappear into the desert areas in the basin [6]. Given the
limited amount of runoff [7] and unrestricted groundwater exploitation in the area [8], oases form
at the foothills of large mountains [6,9–12]. The geographical and ecological characteristics differ
significantly between these oases and the surrounding deserts, causing significant differences in energy
budgets, the exchange rate of momentum, and water vapor levels. These differences produce typical
oasis effects [13] such as the “cold–wet” island effects of oases (an oasis is a wet, cold island capped by
warm–dry air), and the thermal differences between oases and the surrounding deserts result in oasis
breeze circulation (OBC). Such oasis effects increase in complexity both in and near mountain ranges.
Although oases account for only a small proportion of the land surface (e.g., a proportion of 4–5% in
Xinjiang, a typical region of the hinterland of the CA), more than 90% of the population and 95% of
the socioeconomic wealth are concentrated there [14]. Therefore, CA, because of its large elevation
differences and the importance of oases, can be divided into mountainous region, oases, and desert
areas, often named the Mountain–Oasis–Desert System (MODS).

The northern Tianshan Mountains (NTM), the core section of the Silk Road, is a typical geomorphological
part of CA; it is also sensitive to climate change [15]. Recent studies have indicated that annual
mean air temperature in the NTM has been increasing at an average rate of 0.8 ◦C decade−1 [16],
which is greater than the average rate in CA (0.39 ◦C decade−1 from 1979 to 2011) and the global
land surface (0.27–0.31 ◦C decade−1 from 1979 to 2005) [1]. Precipitation and the frequency of
extreme precipitation show a rate of 11.3% in the NTM [16] amid a longer-term drying trend [17,18].
Other areas in CA generally show a slight decrease in average annual precipitation [4,19]. Additionally,
the region has been experiencing distinct intense oases expansion since the 1950s [20–22]. Oases have
expanded more than 400% in the past 60 years (from 121.0 × 104 ha in 1949 to 512.5 × 104 ha in
2010). A series of ecological problems have appeared as a result, including soil salinization, oasis
degradation, and desertification [23–26]. Horton [27–29] found that regional climate change was
largely independent or potentially related to land cover change processes. The abnormal regional
temperature and precipitation changes in the NTM may be due to the rapid oases expansion. Therefore,
understanding the mechanisms of oasis effects and quantitatively investigating the climate effects
of oases expansion on the regional climate are important for ensuring the sustainable development
and ecological stability of oases, and will also provide useful information for regional climate change
assessments [30].

Numerical simulation using regional climate models (RCMs) is the most effective method to
explore both oasis effects and climatic effects of the oases expansion in the complex mountain–basin
systems of CA because RCMs can account for climatic mechanisms not included in field
measurements [31,32] and Global Circulation Models (GCMs) [33,34]. GCMs are unable to adequately
resolve many important meso-microscale processes, like wind patterns and precipitation due to
orographic effects based on large-scale convective parameterization schemes, and simpler land surface
processes [35]. The Weather Research and Forecasting model (WRF) is an RCM that has been widely
used to simulate regional climatic patterns, particularly over the past 10 years [36,37]. Because the
default terrestrial datasets in RCMs are generally derived from Advanced Very High Resolution
Radiometer (AVHRR) data from 1992–1993, the ability of RCMs to accurately simulate weather and
climate conditions is limited by the use of these outdated terrestrial datasets [38,39]. Integrating
actual terrestrial datasets from satellite products or observation in the model simulations is a novel
way to overcome these limitations. Many numerical simulations have used MODerate resolution
Imaging Spectroradiometer (MODIS) products, including land use (LU), albedo, leaf area index (LAI),
and green vegetation fraction (VF), to improve the boundary layer meteorology simulation and to
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explore the climatic effects of land use cover change (LUCC) [14,37,40–43]. The results from the
simulations using actual albedo, LAI, and VF indicated that LUCC led to local cooling of 1 ◦C in the
summer and local warming exceeding 0.8 ◦C in the winter. By contrast, simulations using default
terrestrial datasets showed random changes in temperature. However, these actual datasets mainly
came online in the early 2000s; most numerical simulations, especially long-period simulations (many
years, even hundreds of years) [40] and downscaled GCM runs, have to be performed using [44]
default terrestrial datasets provided by RCMs. This choice is motivated by the fact that terrestrial
datasets from satellite products are scarce and field measurements are temporally and spatially limited,
especially in complex terrain. In addition, simulations using real-time, even monthly, actual various
satellite terrestrial datasets in RCMs are very time- and labor-consuming processes. The question
remains as to whether simulations using RCMs that update several key observed datasets can meet
expected results in various applications, especially for land surface modelling or climate modelling,
while reducing the time and labor cost, and also partly overcome the limitation of scarce observations
and satellite products in such a complex region.

Therefore, this study aims both to quantitatively examine which actual terrestrial datasets
(including LU, albedo, LAI, and VF) have a great impact on WRF performance, and to improve
the simulation of weather and climate conditions over complex and heterogeneous oasis–desert
systems near to large mountains. Our specific research objectives are as follows: (1) to compare
the differences between the actual LU, albedo, LAI, and VF datasets and the corresponding default
terrestrial datasets over MODS; (2) to quantitatively examine the impacts of using each actual terrestrial
dataset on WRF performance and to determine which is key for the WRF simulations with a complex
underlying surface; and (3) to comprehensively assess oasis effects including temperature, humidity,
energy flux, and circulation patterns.

2. Materials and Methods

2.1. Study Area

CA is characterized by typical mountain–basin systems. Due to its unique topography, runoff
generated from snow- and glacier-melt and precipitation processes [7] in mountainous areas flows into
the basin and, by the time these surface waters reach oasis and desert areas, has completely evaporated
in the basin. CA is influenced by the westerly circulation at the middle–high latitudes and the polar
air masses [7], and experiences an arid continental climate with scarce and concentrated rainfall
(less than 250 mm in the basin regions and 900 mm in the mountains). The NTM is representative
of the microcosm of the terrain and climate of CA and it includes the southern part of the Tianshan
Mountains and the northern part of the Gurban Tonggut Desert (Figure 1). The oasis area is in the
groundwater overflow zone and the surrounding deserts in the basin. Two nested grid systems are
used in this study (Figure 1). The coarse outer domain (D01) covers the entire area of the NTM and
spans a total area of 890 km × 975 km with a grid spacing of 18 km in both horizontal directions.
The inner domain (D02), our main region of interest, covers a total area of 530 km × 465 km with a grid
spacing of 6 km (Figure 1).
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Figure 1. Location of the northern Tianshan Mountains (NTM) in Central Asia, including land surface
elevations, meteorological sites, and simulation domain over the NTM (the blue dashed line is the
analysis range).

2.2. Datasets

2.2.1. Forcing Data and In Situ Measurements

The latest global atmospheric reanalysis product, ERA-Interim, provided by the European Centre
for Medium-Range Weather Forecasting Reanalysis [45], was used for the initial and lateral boundary
conditions for WRF simulations in this study; it was chosen because it matches well with most of
the local climate records, especially in the low-lying plain areas [1]. We used geopotential, relative
humidity, temperature, and U and V wind component data at 30 pressure levels and surface forcing
datasets including 10 m U wind, 10 m V wind, 2 m dewpoint temperature, 2 m temperature, mean sea
level pressure, sea surface temperature, sea-ice cover, skin temperature, snow density, snow depth,
4-layer soil temperature, and soil water. The dataset has a spatial resolution of 0.75◦ × 0.75◦ and is
based on 6 h intervals.

Six meteorological stations were used to validate the simulation results (Table 1). These are
distributed across the oasis and the surrounding desert areas (Figure 1). Qualified T2, RH at 2 m, wind
speed (WS) and wind direction (WD) at 10 m, and precipitation on an hourly scale were retrieved.
In addition, we validated simulations of latent heat flux (LE) over the oases using observations from
one eddy covariance system installed at station S2 (no effective observations of sensible heat flux
were available because the radiation sensor was damaged). Because no surface energy observations
were available for the desert areas, we only validated temperature and relative humidity over the
desert areas.

Table 1. Meteorological stations’ names, locations, elevations, and available elements.

ID Longitude/◦E Latitude/◦N Altitude/m LU Measurements Time

S1 86.20 44.32 473.10 Crop/Urban T2, P, RH, WS, WD 2012
S2 85.82 44.28 469.30 Crop T2, RH, SW, LW, LE 2010, 2012
S3 85.25 44.85 338.10 Crop T2, P, RH, WS, WD 2012
S4 86.10 45.02 347.80 Crop T2, P, RH, WS, WD 2012
S5 87.93 44.29 476 Desert T2, RH 2010, 2012
S6 87.92 44.48 448 Desert T2, RH, 2010, 2012

Note: LU represents land use; T2 represents 2 m air temperature; RH represents 2 m relative humidity; LE represents
latent heat flux; WS and WD represent the wind speed and direction at 10 m, respectively; SW and LW represent the
downward shortwave and longwave radiation, respectively.
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2.2.2. LU

The default LU data included in WRF model are originally from the U.S. Geological Survey (USGS),
which classifies LU into 24 categories (Table S2) [42]. A high-resolution LU image was produced for
2012 (2012LU) using visual interpretations based on Landsat images and a 1:1,000,000 scale topographic
map. This image was generated by the Xinjiang Institute of Ecology and Geography, Chinese Academy
of Sciences [46]. The 2012LU has a spatial resolution of 30 m and adopts a hierarchical classification
system with a spatial resolution of 30 m, including 6 categories and 25 subcategories (Table S1).
We converted it into the USGS classification system according to the relationships shown in Table S2
(please see the Supplementary Materials).

2.2.3. Albedo Product (MCD43A4)

The MODIS Bidirectional Distribution Reflectance Model (BRDF) 16 Day surface albedo standard
products have been validated by comparison to in situ measurements [47,48]. The high-quality primary
algorithm for the MODIS standard albedo product (MCD43) has also been shown to produce consistent
global quantities over a variety of land surface types and snow-covered conditions [49]. We used the
nadir BRDF-adjusted reflectance MCD43A4 (MODIS Terra + Aqua Nadir BRDF-Adjusted Reflectance
16 Day L3 Global 500 m SIN Grid V005), which is computed for each MODIS spectral band (1–7) at the
mean solar zenith angle. MCD43A4 images, with the strip numbers h23v04 and h24v04 for 3 July 2010
and the same day in 2012, were downloaded from the MODIS website. We reprocessed them using the
same coordinate systems and resolutions via numerical simulations.

2.2.4. LAI Product (MYD15A2)

The MODIS global LAI product has been validated into stage 2 by the Committee on Earth
Observation Satellites (CEOS) [50,51], and has been determined to have high continuity and consistency
for all biome types. On global and regional scales, earth observation (EO)-based estimates of LAI serve
as valuable inputs for climate and hydrologic modelling [52]. In this study, the level 4 MODIS global
LAI MYD15A2 (MODIS/Terra + Aqua LAI/FPAR 8 Day L3 Global 1 km SIN Grid V005) was used.
The data were downloaded from the website listed in Section 2.2.3 and reprocessed using the same
coordinate system and resolution as in the numerical simulation.

2.2.5. VF Data from MODIS Vegetation Indices (VI) (MOD13A2)

Currently, validation to stage 3 has been achieved for MODIS VI data (MOD13), and analyses
produced by various airborne and field validation campaigns demonstrate that, over most biomes,
MODIS near-nadir satellite VI shows strong agreement with top-of-canopy nadir VI and land surface
biophysical properties [53,54]. Using this qualified MODIS Normalized Difference Vegetation Index
(NDVI), the VF can be calculated as follows [33,41,55]:

VF =
NDVI − NDVIS

NDVIV − NDVIS
(1)

where NDVI denotes the NDVI value for each pixel from the MODIS NDVI; NDVIS is the NDVI value
for a sparsely vegetated or barren vegetation area; and NDVIV is the NDVI value corresponding to
a full vegetation cover type. Both NDVIV and NDVIS are constant, allowing the pixel-level VF to
reach theoretical values of 0.0 to 1.0 for any LU. Previous studies [56–59] have empirically determined
NDVIS and NDVIV values of 0.05 and 0.87, respectively. These two parameters serve as global bounds
to ensure that the derived VFs vary from 0.0 to 1.0 (i.e., VF = 1.0 when NDVI > 0.87 and VF = 0.0 when
NDVI < 0.05 in Equation (1)). The MOD13A2 [60] Version 6 product (MODIS/Terra VI 16 Day L3
Global 1 km Grid SIN V006) was downloaded from the MODIS website [60].
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2.3. Model Configuration and Experimental Design

WRF is an advanced mesoscale numerical weather prediction system designed for both
atmospheric research and operational forecasting needs. It is jointly administered by the National
Center for Atmospheric Research and the National Centers for Environmental Prediction. In this study,
simulations used WRF version 3.6 coupled with the Noah land surface model.

WRF was configured for fine-scale simulation with two nested domains (D01 and D02 in Figure 1).
In the vertical direction, 35 unevenly spaced full eta levels were defined, and the model top was
fixed at 50 hPa. The WRF model was forced by ERA-Interim reanalysis data and was updated every
6 h. Qiu et al. [44] performed a series of analyses examining the model’s sensitivity to different
parameterizations of the physical atmospheric processes operating over the study region. In this study,
we used the optimal WRF configuration. Planetary boundary layer processes were resolved with
the Yonsei University (YSU) scheme [61], microphysics were elucidated via WRF Single Moment-3
(WSM3) [62], cumulus clouds were simulated using the Kain–Fritsch Scheme [63], and the Community
Atmospheric Model (CAM) scheme was used to calculate longwave and shortwave radiation [64].

We designed five sets of numerical experiments to investigate using the impact of each of actual
LU, albedo, LAI, and VF on model results for 2010 and 2012. The experiments were as follows: the def
simulation used default LU, albedo, LAI, and VF provided by the WRF itself; the LU simulation using
only actual 2012LU [46]; the Alb simulation used actual LU and albedo datasets; the LAI simulation
used actual LU, albedo, and LAI datasets; and the VF simulation used all of actual LU, albedo, LAI,
and VF data. The model simulation was initialized from 00:00 UTC on 1 July to 18:00 UTC on 31 July
in each year. During this period, the interaction of water and energy between oases and deserts are
often the strongest, and oasis crops are at their growth peak. The simulation results were stored hourly
with a 60 s time step for integration. Generally, in the absence of accurate, gridded initial soil moisture
conditions, a spin-up period is needed to allow the soil moisture within Noah to approach equilibrium
within the hydrological cycle [36]. The optimal spin-up period for any particular application is
uncertain and may require years to reach equilibrium [65]. In this study, the soil moisture values
of oasis and desert areas were initialized via interpolation from observed soil moisture data from
similar oasis and desert regions referenced in a previous paper [42] (Table 2). In addition, following
previous simulations that were similar for mesoscale water, surface energy, and circulation [14,66,67],
the simulation results for the first 21 days were discarded as spin-up, and only simulations for 19:00
UTC on 22 July to 18:00 UTC on 31 July were used for the analysis. According to observation and
simulations, 22–31 July were with anticyclonic and clear-sky conditions (Figure S1); thus, the effects of
cloud distribution on results were excluded.

Table 2. Soil moisture values for the oasis and desert areas in the four Noah soil layers [42].

Land Use Type Noah Soil Layer Soil Moisture (cm3 cm−3)

Oasis

0–10 cm 0.38 (at 5 cm)
10–40 cm 0.47 (at 25 cm)

40–100 cm 0.33 (at 70 cm)
100–200 cm 0.26 (at 150 cm)

Desert

0–10 cm 0.07 (at 5 cm)
10–40 cm 0.10 (at 25 cm)

40–100 cm 0.05 (at 70 cm)
100–200 cm 0.06 (at 150 cm)

3. Results

3.1. Differences between Actual Terrestrial Datasets and the Default Datasets

We first examined the differences between the actual LU, albedo, LAI, and VF data and the
corresponding default datasets one by one. Both the defaults and the actual satellite images showed
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generally correct land surface information for MODS. However, there were significant differences,
especially in oasis and desert areas, that were strongly impacted by human activities.

Large areas of cropland and barren desert in oases and north-eastern desert areas are apparent in
the actual LU data (Figure 2a), while the default data show grassland and shrubland in these oases
and desert areas. The default LU data in WRF is based on AVHRR satellite data for 1992–1993 [42],
which represents the original oasis and desert land cover. There has been a large expansion in
urban areas and irrigated cropland in the NTM at the expense of sparse shrubland during the last
20 years [68]. In addition, the default LU data shows a large area of forest in the Ili River basin and
did not indicate that ice was found on the mountaintops. These areas are misclassified, because dense
grassland and cultivated lands have accounted for the largest areal proportion in this river basin over
the past 40 years [69], and glaciers are common at the mountaintops in CA. The spatial consistency
was only 38.42% between the actual and default LU data using a rough pixel-by-pixel comparison
(Figure 2i) [70].

Figure 2. Comparison between actual LU (a), albedo (b), leaf area index (LAI) (c), and green vegetation
fraction (VF) data (d) and the corresponding default data (e–h), with differences shown in (i–l). The red
line indicates the border of the key oasis areas, and the black rectangle indicates the region strongly
influenced by human activities in oases and desert areas over the past 20 years.

The default albedo, LAI, and VF are based on inter-annual averages of monthly climatology
for 1986–1991 [71]. Figure 2b,f,j respectively show the spatial distributions of the actual and default
albedo data and the difference between the two. The actual albedo level is overall higher than the
default data, ranging from 0.05–0.25 (Figure 2j); the difference between the two datasets mainly occurs
in the oasis areas and the northern desert areas (Figure 2b, black rectangle). There is also a slight
difference in the values of approximately 0.10 occurring at mountaintops. It is difficult to explain
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why albedo would be greater in the actual image than in the default dataset; we would expect albedo
to decrease with an increase in crop cover. Albedo is influenced by multiple factors, including LU,
VF, dynamic roughness lengths, solar elevation angle, soil color, and humidity [72]. The difference
in albedo in the oasis area could be related to the severe salinization caused by irrigation [73,74] as
well as the expansion of plastic-mulched areas [75] over the past 20 years. The greater albedo in the
northern desert area (black rectangle) in Figure 2j can be attributed to the degradation of the desert flora
following drawdown of groundwater levels in the oasis–desert transition zone [23,24], which implies
that land reclamation and groundwater extraction have led to serious ecological problems in CA oases.
In addition, the albedo over crops in the actual image is higher than over the surrounding northern
desert area (black rectangle in Figure 2b), but this is not the case for the default data. This indirectly
confirms our speculation that oasis salinization and larger areas with plastic mulching could increase
the actual albedo levels. The possible reason for slight differences at the mountaintops between the
actual and default albedo is that the surface reflectance estimation from different satellite images
has large uncertainties over rugged terrain [42,76–80]. The spatial distributions of the actual versus
default LAI and VF data, as well as the differences between them, are shown in Figure 2c,d,g,h,k,l,
respectively. The differences between actual LAI and VF data and the corresponding default data range
from 0 to 3 and from 0 to 85%, respectively. Major differences are evident across the basin, especially
near the Ili River basin and the northern oasis border (black rectangle in Figure 2k,l), consistent with
the expanded oasis region. There are few differences in the desert and mountainous areas between
the actual and default LAI data. In contrast, there are noticeable differences between the actual and
default VF data in the desert area, indicating that the default data do not realistically represent VF
conditions in this region. Field verification shows that there are sparse desert plants (e.g., Haloxylon and
Tamarix ramosissima) with a coverage of approximately 20%. The differences between the actual and
default terrestrial datasets confirm that the default datasets are outdated and are less representative of
land surface information.

3.2. Validation and Impacts of Actual LU, Albedo, LAI, and VF Data on Atmospheric Modelling

The validation of simulated results is one focus of this paper. We use several statistical measures,
including the mean bias error (MBE), root mean squared error (RMSE) and coefficient of determination
(R2), to comprehensively evaluate the simulation results [81]. These measures describe the direction of
the error bias, and indicate the average error magnitude. We also assess spatial patterns of temperature,
humidity, energy, and circulation and determine the difference in their daytime and night-time values
by averaging daytime simulations from 19:00 to 2:00 UTC and nocturnal simulations from 08:00 to
14:00 UTC.

3.2.1. Radiation and Surface Energy Fluxes

Figure 3 shows the WRF performance in simulating LE from five simulations over cropland at S2
in 2010 and 2012. The daily average LE from five simulations correctly reproduces the overall shape
of the observations (Figure 3a,c), and a strong linear relationship is obtained from all of simulations
with coefficients of determination (R2) larger than 0.73 (p < 0.05) (Figure 3b,d). The difference
between the five simulations and observations mainly occurs during daytime from 17:00 to 6:00 UTC.
The observed daily average maximum value in LE is 244.67 W/m2 in 2010, while the peak values of
LE from the def, LU, Alb, LAI, and VF simulations are 158.78 W/m2, 161.81 W/m2, 150.63 W/m2,
176.70 W/m2, and 355.06 W/m2, respectively (Figure 3a). In 2012, the daily average maximum value
of LE from observation and the def, LU, Alb, LAI, and VF simulations are 371.50 W/m2, 192.50 W/m2,
191.51 W/m2, 182.74 W/m2, 211.46 W/m2, and 427.27 W/m2, respectively (Figure 3c). The VF
simulation slightly overestimates LE and the other four simulations underestimate LE during the
daytime in both of the two years. However, the RMSE value of the simulations decreases and R2

increases in the following order: def, LU, Alb, LAI, and VF simulations. The R2 increased from
0.73 to 0.74 in 2010 (Figure 3b) and from 0.92 to 0.94 in 2012 (Figure 3d). The RMSE reduced from
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75.81 to 69.05 W/m2 in 2010 (Figure 3b) and from 87.64 to 53.52 W/m2 in 2012 (Figure 3d). These results
indicate that the performance of WRF is improved in simulating the surface energy budget by the
inclusion of actual LU, albedo, LAI, and VF data in the model. The VF simulation in particular
shows considerable improvements in both years; the daily maximum LE value has a much closer
resemblance to observations after approximately 1:00 UTC. The VF simulation may have overestimated
LE because plastic mulching resulted in lower evaporation [82,83]. This process is not considered in
the simulations [14,42].

Figure 3. Comparisons of hourly averaged latent heat flux (LE) between observations and five
simulations, and corresponding scatter diagram at the S2 site in (a,b) 2010 and (c,d) 2012. The five
simulations are as follows: def (using default LU, albedo, LAI, and VF data); LU (using actual LU data),
Alb (using actual LU and albedo data), LAI (using actual LU, albedo, and LAI), and VF (using all of
actual LU, albedo, LAI, and VF data).

Using the actual LU, albedo, LAI, and VF datasets during the night-time results in similar spatial
patterns of average sensible heat (H) flux. Thus, Figures 4 and 5 only show the daytime spatial
patterns of average H and LE from the def, LU, Alb, LAI, and VF simulations and the differences of H
and LE resulting from using each of the actual LU, albedo, LAI, and VF datasets. The VF simulation
(Figures 4 and 5e) indicates an obvious difference in spatial patterns of H and LE in the basin, compared
with that from the other four simulations (Figures 4 and 5a–d). Since evident differences with values of
0–85% are across the Ili River basin and the oases areas between the actual and default VF (Figure 2l),
the VF simulation considerably decreases simulation of H by a value of approximately 50–150 W/m2

(Figure 4i) and considerably increases LE by approximately 90–270 W/m2 (Figure 5i) over these areas.
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Although the def, LU, Alb, and LAI simulations present relatively similar overall spatial patterns of H
and LE, some detailed differences have to be noted. Since there is no urban representation in the default
LU (Figure 2e), the value of H (LE) is obviously underestimated (overestimated) by approximately
100–150 W/m2 (Figures 4 and 5f) over corresponding grids in the def simulation. Since the default LU
data includes a large area of shrubland over the oasis region, and forest in the Ili River valley rather
than cropland in the actual LU data, the misclassification results in the def simulation overestimating
(underestimating) LE (H) by approximately 50 W/m2 over the corresponding grids (Figures 4 and 5f).
In addition, since there is no ice found in the default LU compared with the actual LU, the def
simulation overestimates (underestimates) H (LE) in the corresponding areas. These results indicate
that the outdated default LU results in an incorrect energy response, especially over the oasis area,
the Ili River valley basin, and the glacier region. Realistic representation of LU is important for
energy budget simulation, since it determines secondary parameters such as LAI, albedo, emissivity,
and surface roughness length. Given that the actual albedo values are slightly greater than the default
values, ranging from 0.05–0.25 (Figure 2j), this decreases H and LE in the Alb simulation compared
with the LU simulation (Figures 4 and 5c), especially in mountainous areas. Slight differences in H and
LE result from using the actual LAI data, with the most obvious differences in the Ili River basin and
the northern oasis border (black rectangle in Figure 2k,l).

3.2.2. Air Temperature, Humidity at 2 m

Figures 6 and 7 show aspects of the WRF performance in simulating T2 and RH, respectively,
from the five simulations. All of the def, LU, Alb, LAI, and VF simulations reproduce the shape
and peak of T2 and RH, and produce a strong linear relationship of T2 and a relatively moderate
relationship of RH with the observations at six stations in the two years. The R2 of T2 ranges between
0.71 and 0.95 (p < 0.05), and that of RH ranges between 0.44 and 0.75 (p < 0.05) obtained from all of the
five simulations. Although the T2 (RH) from all of the simulations, compared with the observations,
is overestimated (underestimated) over both cropland sites (S1, S2, S3, and S4) and over desert sites
(S5 and S6) throughout all times of the day, a stronger relationship (increasing R2 progressively) and
similar magnitudes of T2 and RH (decreasing RMSE progressively) are observed when each of actual
LU, albedo, LAI, and VF datasets was used in the simulations. In particular, at S2, S3, and S4, the bias
of temperature was corrected by up to 0.35–2.25 ◦C and that of relative humidity was corrected by up
to 8.85%. Thus, using actual terrestrial datasets improves the WRF performance.

Note that the improvements are relatively smaller at station S1 compared with those at stations
S2, S3, and S4. This can be attributed to the fact that the S1 station is located in an urban area, so using
actual vegetation parameters such as the LAI or VF does not affect the performance of the WRF
model in these areas. The overestimations of T2 and underestimations of RH over oasis areas could
be attributed to the cooling or wetting effects of soil evaporation from irrigation; these cannot be
simulated by lake irrigation schemes in WRF. All five simulations (the def, LU, Alb, LAI, and VF)
captured the rain event that occurred on 28 July 2012 at S1, S3, and S4 (not shown). However, it is
difficult to determine whether the use of actual LU, albedo, LAI, and VF data improved the simulation
of precipitation due to the limited statistics.
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Figure 4. Daytime spatial patterns of sensible heat flux (H) from the (a) def, (b) LU, (c) Alb, (d) LAI and
(e) VF simulations, and their differences (f) b–a, (g) c–b, (h) d–c and (i) e–d (these difference pixels are
statistically significant at p < 0.05). The def simulation used default LU, albedo, LAI, and VF provided
by WRF itself; the LU simulation used only actual LU data; the Alb simulation used only actual LU
and albedo data; the LAI simulation used actual LU, albedo, and LAI data, and the VF simulation used
all of the actual terrestrial datasets. The red line represents the border of the key oasis area.
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Figure 5. Daytime spatial patterns of latent heat flux (LE) from the (a) def, (b) LU, (c) Alb, (d) LAI and
(e) VF simulations, and their differences (f) b–a, (g) c–b, (h) d–c and (i) e–d (these difference pixels are
statistically significant at p < 0.05). The def simulation used default LU, albedo, LAI, and VF provided
by WRF itself; the LU simulation used only actual LU data; the Alb simulation used only actual LU
and albedo data; the LAI simulation used actual LU, albedo, and LAI data, and the VF simulation used
all of the actual terrestrial datasets. The red line represents the border of the key oasis area.
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Figure 6. Comparisons of hourly averaged 2 m air temperature (T2) between observations and five
simulations (a,c,e,g,i,k), and corresponding scatter diagram (b,d,f,h,j,l) at six stations (S1–S6) in 2010
and 2012. The five simulations are as follows: def (using default LU, albedo, LAI, and VF data);
LU (using actual LU data), Alb (using actual LU and albedo data), LAI (using actual LU, albedo,
and LAI), and VF (using all of actual LU, albedo, LAI, and VF data).

Figure 7. Cont.
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Figure 7. Comparisons of hourly averaged 2 m relative humidity (RH) between observations and
five simulations (a,c,e,g,i,k), and corresponding scatter diagram (b,d,f,h,j,l) at six stations (S1–S6) in
2010 and 2012. The five simulations are as follows: def (using default LU, albedo, LAI, and VF data);
LU (using actual LU data), Alb (using actual LU and albedo data), LAI (using actual LU, albedo,
and LAI), and VF (using all of actual LU, albedo, LAI, and VF data).

Figures 8 and 9 present spatial patterns of T2 and Q2 from the def, LU, Alb, LAI, and VF
simulations, and their differences (the differences of pixels are statistically significant at p < 0.05) using
each of actual LU, albedo, LAI, and VF data, respectively. Overall, all of the simulations (the def,
LU, Alb, LAI, and VF) generally suggest continuous stripelike T2 increases from the mountainous
areas to the basin due to the lapse rate of temperature resulting from the elevation gradient difference.
In addition, the simulations show lower Q2 in the mountainous regions as compared to basin areas
due to the large difference of temperature in each. Focusing on the difference between oases and desert
regions, in accordance with spatial patterns of H and LE, the spatial patterns of T2 and Q2 from the
def (Figures 8 and 9a,a1) and VF (Figures 8 and 9e,e1) simulations differ from the LU, Alb, and LAI
simulations during the daytime (Figures 8 and 9b–d) and night-time (Figures 8 and 9b1–d1).

Specifically, as indicated by the difference of T2 and Q2 between the LU and def simulations
(Figures 8 and 9f,f1), the averaged T2 differences over the oasis area and Ili River valley from the LU
simulation decrease up to approximately −0.5 ◦C in the daytime (Figure 8f) and −1.2 ◦C at night-time
(Figure 8f1), and the averaged Q2 over these areas increases (decreases) 0.25 g kg−1 during the daytime
(in night-time) when actual LU data is used in the WRF model (Figure 9f,f1). The differences most
likely result from the fact that the default LU over these areas includes sparse shrubland and forest,
while the actual LU data show cropland. Since the default LU data do not include urban areas or ice
(Figure 2b), there are also large differences in T2 and Q2 over these grids. In addition, there are also
obvious differences in T2 and Q2 in the northeast desert when actual LU data was used. Although the
LU, Alb, and LAI simulations can simulate the cold–wet island effects of the area during the daytime,
this effect is more intense in the VF simulation than in the other three simulations. Using actual VF data
results in a significant decrease in T2 of −0.5 to −1.5 ◦C during the day (Figure 8i) and −0.5 to −4.5 ◦C
(Figure 8i1) at night; similarly, there is a large increase in Q2 by 0.5–2.5 g kg−1 during the day (Figure 9i)
and a decrease of 1.0 g kg−1 at night (Figure 9i1) over the oasis area and Ili River Valley. Using actual
albedo data results in a slight decrease in T2 of approximately −0.45 ◦C (Figure 8g1) and a decrease
in Q2 of approximately 0.5 g kg−1 (Figure 9g1) over the north-eastern desert at night, as shown by
the difference between the Alb and LU simulations. Using actual LAI data results in a slight decrease
in T2 by approximately −0.15 ◦C (Figure 8h,h1), and an increase in Q2 by approximately 0.25 g kg−1

over the oasis region for the whole day (Figure 9h,h1). Overall, actual LU and VF data strongly
influence the simulations of T2 and Q2 patterns in the oasis–desert system, while albedo and LAI have
a lesser impact.
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Figure 8. Daytime spatial patterns of 2 m air temperature (T2) from the (a) def, (b) LU, (c) Alb, (d) LAI
and (e) VF simulations, and their differences (f) b–a, (g) c–b, (h) d–c and (i) e–d (these difference pixels
are statistically significant at p < 0.05). And corresponding patterns during the night-time, which are
labelled with the corresponding daytime label and the number 1. The def simulation used default LU,
albedo, LAI, and VF provided by WRF itself; the LU simulation used only actual LU data; the Alb
simulation used only actual LU and albedo data; the LAI simulation used actual LU, albedo, and LAI
data, and the VF simulation used all of the actual terrestrial datasets. The red line represents the border
of the key oasis area.

Figure 9. Cont.
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Figure 9. Daytime spatial patterns of 2 m specific humidity patterns (Q2, g kg−1) from the (a) def,
(b) LU, (c) Alb, (d) LAI and (e) VF simulations, and their differences (f) b–a, (g) c–b, (h) d–c and (i) e–d
(these difference pixels are statistically significant at p < 0.05). And corresponding patterns during
the night-time, which are labelled with the corresponding daytime label and the number 1. The def
simulation used default LU, albedo, LAI, and VF provided by WRF itself; the LU simulation used
only actual LU data; the Alb simulation used only actual LU and albedo data; the LAI simulation
used actual LU, albedo, and LAI data, and the VF simulation used all of the actual terrestrial datasets.
The red line represents the border of the key oasis area.

3.2.3. Surface Circulation

Figure 10 shows comparisons of the simulated 10 m horizontal WS and WD from the def, LU, Alb,
LAI, and VF simulations with observations at three meteorological stations over cropland. Station S1
is located in the upper part of the oasis, near its southern border, and stations S3 and S4 are located
in the lower part of the oasis, near its northern border. Although the RMSE (R2) of the WS decreases
slightly (increases) as actual data are added in the def, LU, Alb, LAI, and VF simulations, most of
the simulated WS values are higher than the observed values by approximately 2 m/s; 60% of the
simulated WS range from 2–6 m/s, whereas the observed values range from 2–4 m/s. The reason for
this bias in WS is that the uncertainty of randomized turbulence processes results in difficulties in
the accurate simulation of wind patterns [84]. The trends in WD are consistent with the observations.
The dominant WD is WNW or NW during the daytime and WSW or SW during the night-time for
all stations; these directions are observed in all simulations and in the observations, and reflect the
circulation characteristics in a mountain–valley region.
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Figure 10. Comparisons of hourly 10 m (a,c,e) wind speed (WS) and (b,d,f) wind direction (WD)
between observations and five simulations at three stations (S1, S3, S4)

Figure 11. Daytime spatial patterns of 10 m wind speed (WS) and wind direction (WD) from the (a) def,
(b) LU, (c) Alb, (d) LAI and (e) VF simulations, and their differences (f) b–a, (g) c–b, (h) d–c and (i) e–d
(these difference pixels are statistically significant at p < 0.05). And corresponding patterns during
the night-time, which are labelled with the corresponding daytime label and the number 1. The def
simulation used default LU, albedo, LAI, and VF provided by WRF itself; the LU simulation used
only actual LU data; the Alb simulation used only actual LU and albedo data; the LAI simulation
used actual LU, albedo, and LAI data, and the VF simulation used all of the actual terrestrial datasets.
The red line represents the border of the key oasis area.
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Figure 11 shows the WS and WD patterns from the def, LU, Alb, LAI, and VF simulations
and the differences caused by using each of the actual LU, albedo, LAI, and VF datasets. Overall,
the simulations (def, LU, Alb, LAI, and VF) reflect the characteristics of mountain–valley winds,
which have WDs to the WNW or NW during the day and to the WSW or SW at night. Using actual LU,
albedo, and LAI data has very little impact on the spatial patterns of WD (Figure 11f–h1), but using
actual VF data causes slight differences in the oasis center and the surrounding desert (Figure 11i,i1).
These results suggest that using actual VF data increases the intensity of oasis effects (cold–wet island
effects, and OBC).

3.2.4. Impacts of Using Actual Datasets on Atmospheric Modelling

To quantitatively discern which terrestrial datasets have the strongest influence on the meteorological
elements simulated in this region, the bias percentage was calculated as the general regional influence
index, following the approach in [85]. After land surface parameters are replaced, the equation is
as follows:

BPi =

1
n ∑n

i=1

(
Ysim(j) − Ysim(j−1)

)
1
n ∑n

i=1 Yobs
. (2)

In the current study, n is the number of stations, Ysim(j) is the simulated meteorological variables
(e.g., temperature) with updated actual land surface parameters from experiment j, and Yobs is the
observed value at each station. Four modelled predictors (T2, RH, WS, and LE) are analyzed.

Figure 12 presents the bias percentage of the simulated T2, RH, WS, and LE due to using each
actual dataset. The y axis shows the mean bias percentage for 2010 and 2012, which represents the
impact of using each actual dataset on atmospheric simulations. Using actual LAI and VF data mainly
affects the LE (Figure 12g,h), while using actual LU and albedo data affects the WS (Figure 12c,f).
T2 (RH) decreases (increases) by a total of −3.5% (10.2%) from using actual LU, albedo, LAI, and VF
data. In total, −2.26% (8.85%) of the change in T2 (RH) is contributed by using actual VF data, and the
remainder comes from using actual data for albedo and the other two parameters (Figure 12a,b).
The WS decreases by −13.31% when actual LU, albedo, LAI, and VF data are used; of that total,
LU and albedo contribute −5.51% and −4.47%, respectively—far more than the other two parameters
(Figure 12c). The LE first decreases due to the use of actual LU and albedo data and then increases
with the addition of actual LAI and VF data; the total change is 58.19%, of which VF contributes
54.94%, which is far more than the other three parameters (Figure 12d). In general, using actual land
surface parameters alters the near-surface meteorology simulation in the lower atmospheric layer
(Figure 12e–h). Using actual VF data has a large influence on the simulation of T2, RH, and LE in
the oasis–desert system, which contributes to error correction values of 62%, 87%, and 92%. Thus,
using actual VF data is very important for simulating near-surface meteorology. Using actual LU is
the principal parameter for near-surface water and heat simulation, since it determines the value of
secondary parameters such as LAI, albedo, emissivity, and surface roughness length.



Remote Sens. 2017, 9, 1273 19 of 24

Figure 12. Average bias percentages of simulated meteorological variables at six stations due to using
each actual terrestrial dataset: (a) T2, (b) RH, (c) WS, (d) LE, (e) biases due to using actual LU data,
(f) biases due to using actual albedo data, (g) biases using actual LAI data, and (h) biases due to using
actual VF data.

4. Discussion

Outdated default terrestrial datasets in WRF, including LU, albedo, LAI, and VF, limit this model’s
ability to accurately simulate the meteorological characteristics of the complex oasis–desert system
in NTM. In this study, we examined the impact of using actual LU, albedo, LAI, and VF data from
satellite products in WRF on the model performance. Five simulations were conducted with the same
meteorological forcing data and model schemes: def (using default LU, albedo, LAI, and VF data),
LU (using actual LU data only), Alb (using actual LU and albedo data only), LAI (using actual LU,
albedo, and LAI), and VF (using all of actual LU, albedo, LAI, and VF together).

WRF simulations of temperature, humidity, energy, and WS are improved by the incorporation
of actual LU, albedo, LAI, and VF into the model, as evidenced by the decrease in RMSE values
and increase in R2 in both 2010 and 2012. Using actual VF data greatly affects the simulation of
T2, RH, and LE in the oasis–desert system, contributing to error correction values of 62%, 87%,
and 92%, respectively. LU data is a primary parameter and it determines the values of many secondary
parameters. Although all of the simulations conducted in this study produce the characteristic of
the “wet–cold” island effect over the oasis area, as reported previously [7,14,71,72], WRF can more
accurately reflect the intensity of the oasis cold–wet effects when using all actual LU, albedo, LAI,
and VF data. The results of this study contribute to a greater knowledge of the impacts of land surface
parameters on the performance of WRF [42], which is beneficial for various applications, especially
for land surface and climate modelling. Our results are also critical to accurately understanding the
intensity of cold–wet effects of oases and the OBC.
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We note that our simulations have several limitations. For example, overall, we found that the
simulations overestimated (underestimated) T2 (RH), and the VF simulation overestimates the LE
relative to the observations. These errors can be attributed to the fact that soil evaporation resulting
from irrigation and plastic mulching effects are not considered in the simulations of WRF [14,42].
Adding irrigation and plastic mulching schemes may help to correct these errors.

5. Conclusions

The current study used WRF with actual LU, albedo, LAI, and VF data derived from satellite
products to improve the simulation of weather and climate conditions in the oasis–desert system of the
NTM in 2010 and 2012. Model evaluations for temperature, humidity, and energy demonstrated that
our simulations, which were performed using actual terrestrial datasets, improved the performance of
WRF, as evidenced by the decrease in RMSE and the increase in R2. All of the simulations exhibit the
“wet–cold” island effects of the oases. However, the intensity of the wet–cold effect varies depending
on the use of actual LU, albedo, LAI, and VF data. Using actual VF data results in error correction
values of 62%, 87%, and 92%, respectively, for simulated T2, RH, and LE in the oasis–desert system.
Using actual LU data is crucial for near-surface water and heat simulation, since it determines the
values of additional secondary parameters. We conclude that it is important to use, at least, actual LU
and VF data for weather and climate simulations in WRF.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/12/1273/s1,
Table S1: Shows LU types and codes of for the 2012LU; Table S2: Land use type and its categories for WRF and
the 2012LU.
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