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Abstract: Near surface air temperature (NSAT) is a primary descriptor of terrestrial environmental
conditions. In recent decades, many efforts have been made to develop various methods for obtaining
spatially continuous NSAT from gauge or station observations. This study compared three spatial
interpolation (i.e., Kriging, Spline, and Inversion Distance Weighting (IDW)) and two regression
analysis (i.e., Multiple Linear Regression (MLR) and Geographically Weighted Regression (GWR))
models for predicting monthly minimum, mean, and maximum NSAT in China, a domain with
a large area, complex topography, and highly variable station density. This was conducted for
a period of 12 months of 2010. The accuracy of the GWR model is better than the MLR model with
an improvement of about 3 ◦C in the Root Mean Squared Error (RMSE), which indicates that the
GWR model is more suitable for predicting monthly NSAT than the MLR model over a large scale.
For three spatial interpolation models, the RMSEs of the predicted monthly NSAT are greater in the
warmer months, and the mean RMSEs of the predicted monthly mean NSAT for 12 months in 2010
are 1.56 ◦C for the Kriging model, 1.74 ◦C for the IDW model, and 2.39 ◦C for the Spline model,
respectively. The GWR model is better than the Kriging model in the warmer months, while the
Kriging model is superior to the GWR model in the colder months. The total precision of the GWR
model is slightly higher than the Kriging model. The assessment result indicated that the higher
standard deviation and the lower mean of NSAT from sample data would be associated with a better
performance of predicting monthly NSAT using spatial interpolation models.

Keywords: near surface air temperature; multiple linear regression; spatial interpolation; geographically
weighted regression

1. Introduction

Near surface air temperature (NSAT) is a key factor in energy and water exchanges between
the land surface and atmosphere [1]. NSAT is the most important component of global climate
change and is sensitive to local anthropogenic disturbance [2]. Thus, the availability of NSAT with
a high spatial resolution is deemed necessary for several applications such as hydrology, meteorology,
and ecology [3–5]. Near surface air temperature is commonly measured at a standard meteorological
shelter height (2.0 m height above the ground) through meteorology observing stations with a high
accuracy and temporal resolution [6,7]. For decades, many efforts have been made to obtain spatial
distributions of various NSAT variables based on the point station measurements, including annual
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maximum/minimum/mean NSAT [8], monthly maximum/minimum/mean NSAT [9–13], daily
maximum/minimum/mean NSAT [14–19], and instantaneous NSAT [20,21]. These NSAT retrieval
methods can be divided into three groups: (1) spatial interpolation method [22], (2) physical-based
method [20,23], and (3) regression analysis method [8].

Considering the high spatial autocorrelation of NSAT, several spatial interpolation methods have
been employed to generate spatially continuous NSAT from point station measurements, including
inverse distance weighting (IDW), Spline, Kriging, and even more sophisticated methods, such as
co-Kriging and elevation-de-trended Kriging techniques [24–26]. The performance of interpolation
methods is highly dependent on the spatial density and distribution of weather stations [27]. Satellite
remote sensing provides the ability to extract spatially continuous information of land surface
characteristics such as land surface temperature (LST) and the vegetation index (VI), which are closely
relative to NSAT. Sun et al. proposed a physically-based model for NSAT estimations from satellite
data based on thermodynamics, which requires LST, net radiation, aerodynamic resistance, and crop
water stress as the input [20]. The physically-based model was performed to retrieve instantaneous
NSAT from MODIS data for the North China Plain, and the result showed an accuracy which was
better than 3 ◦C for 80% of the experimental data [20]. Stisen et al. presented a semi-empirical
model of the temperature vegetation index (TVX) under the assumption that NSAT is more close
to LST with increasing of the Normalized Difference Vegetation Index (NDVI) for land surface,
and NSAT was assumed to be equal to LST corresponding to the effective full vegetation cover [28].
Nieto et al. introduced the improved maximum NDVI estimation in TVX method to retrieve NSAT
from MSG-SEVIR data for the Iberian Peninsula in 2005, and they achieved an accuracy of between 3 ◦C
and 5 ◦C [29].

The regression analysis methods for estimating NSAT take advantage of the correlations between
NSAT and other environmental variables. Kawashima et al. [30], Cheng et al. [31], Fu et al. [6],
and Zhu et al. [3] tried to predict NSAT based on the simple correlation between the NSAT and LST.
Multiple linear regression (MLR) analysis using both remote sensing and geographical variables,
including LST, VI, latitude, altitude, and so on, as predictors was performed to model NSAT [7–9,18].
However, a global regression analysis may miss local details that can be significant if the relationship is
spatially non-stationary. Geographically weighted regression (GWR) is a local modelling technique for
analyzing spatial analysis, and allows the regression model parameters to vary in space [32,33].
The GWR model was employed by Chen et al. for estimating monthly and eight-days NSAT
in China [12].

Many researches have made contributions to assess the performance of various predicting NSAT
models in different regions. Peng et al. interpolated the monthly and annual NSAT in the Jiangsu
province, China, using the IDW, Spline, Kriging, and Co-Kriging models, and the result proved
that the Kriging model has a much higher precision than the IDW and Spline models, and that the
Co-Kriging model is slightly better than the Kriging model [34]. GLASS et al.’s study showed that
interpolation models (i.e., the Kriging model), regardless of whether or not satellite data are included,
are consistently superior to MLR models, and the Kriging model without satellite data performed
similarly to that with satellite data under more general conditions [22]. Zhao et al. estimated the
NSAT in the southern Qilian mountains, China, in which the weather stations are sparse, and the
result indicated that the accuracy of the MLR model is higher than that of spatial interpolation models,
and the Spline model shows the worst result [35]. Most of the studies are performed by comparative
analysis in a relatively small region at one or a few time points. In addition, less work has been
conducted comparing the GWR model with other methods.

The interpolation models are based on the autocorrelation of NSAT, while the regression analysis
models are based on the correlation of NSAT with other factors. Two kinds of models exhibit a different
performance of predicting NSAT under varied climatic, geographical, and environmental conditions.
The objective of this study is to evaluate the performance of three spatial interpolation (i.e., IDW,
Spline, and Kriging) and two regression analysis (i.e., MLR and GWR) methods for predicting monthly
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NSAT considering the large region, significant seasonal differences, and the variable weather station
density. China continent was selected as the study area, and 12 months of 2010 was considered as the
study period. This paper is organized as follows: Section 2 describes the study area and materials.
Section 3 presents the methods for predicting NSAT, including three spatial interpolation and two
regression analysis models. Section 4 gives the assessment results of predicting monthly NSAT using
various methods. Finally, the study is discussed and concluded in Sections 5 and 6.

2. Study Area and Materials

2.1. Study Area

China is located in the east and middle of Asia and on the west shore of the Pacific Ocean, with
a land area of approximately 9.6 million km2, across 50 degrees of latitude (see Figure 1). The terrain of
China is high in the west but low in the east, showing a ladder-like distribution. Mountains, plateaus,
and hills cover about 67% of the land area, while basins and plains cover about 33%. Because of the wide
range of latitudes and complex topography, China has a varied climate. Based on temperature zones,
China can be divided into tropical, subtropical, warm temperate, moderate temperate, cold temperate,
and Tibetan Plateau zones.

Figure 1. The study area and the spatial distribution of meteorological stations.

China has a marked continental monsoonal climate characterized by great variety. In January,
there is a 0 ◦C isotherm through the Qinling Mountains to the Huaihe River and then the southeast
boundary of the Tibetan plateau. NSAT north of the line is below 0 ◦C and is lower than −30 ◦C
in Mohe County, Helongjiang province, while NSAT south of the line is above 0 ◦C, and is higher
than 20 ◦C in Hainan province. There is a big NSAT difference between the north and south of China in
winter. In July, NSAT in most regions of China is greater than 20 ◦C, except for the high terrain regions,
such as the Tibetan Plateau and Tianshan Mountains. In summer, high temperatures are prevalent,
with a small NSAT difference between the north and south of China.
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2.2. Satellite Data

The MODIS VI products (MOD13) provide consistent spatial and temporal time series
comparisons of global vegetation conditions, including standard NDVI and Enhance Vegetation
Index values. MODIS VIs are calculated using the VI algorithm equations from MODIS land surface
reflectances corrected for molecular scattering, ozone absorption, and aerosols. In this study, NDVI was
employed to predict the monthly NSAT. The MOD13A3 is the monthly VI product at a 1 km spatial
resolution produced by averaging one month of daily VI product.

The MODIS LST products are generated using the generalized split-window LST algorithm from
MODIS bands 31 and 32 (MOD11_L2) [36,37] and using the day/night LST algorithm from pairs of
daytime and nighttime observations in seven MODIS TIR bands (MOD11B1) [38]. MOD11A2 is a tile
of the eight-day LST product at a resolution of 1 km produced by averaging eight days of the daily LST
product. In this study, the daytime LST from MOD11A2 data was employed to predict monthly NSAT.

The MOD13A3 and MOD11A2 products covering China territory in 2010 were collected [39].
The MODIS products were preprocessed, including projection, mosaicking, and clipping, using MRT
software. In addition, monthly LST data were generated by averaging four MOD11A2 data sets for
each calendar month of 2010.

2.3. Station Data

Daily NSAT (i.e., minimum, maximum, and mean NSAT) data in 2010 were provided by the
China Meteorological Data Service Center [40]. These data were collected from 2132 meteorological
stations in China. As shown in Figure 1, the stations are not uniformly distributed over the entire
country and the station density decreases from the southeast to the northwest. These stations were
roughly divided into two groups based on the green line in Figure 1. The densities of northwest and
southeast groups are about 0.41 and 4.16 per ten thousand km2, respectively. To predict monthly
NSAT, the daily NSAT were aggregated to monthly NSAT. The station data are organized based on
geographical areas, i.e., the spatially adjacent weather stations were listed together. In this study,
the stations were selected as validation stations at five station intervals from a station list and the
remaining stations were considered as prediction stations (see Figure 1). Separating the prediction and
evaluation sets in this way is conducted to ensure that the stations for prediction and evaluation are
scattered over the whole study area.

2.4. Elevation Data

The global digital elevation model (DEM) at the spatial resolution of 90 m that was produced by
the NASA Shuttle Radar Topographic Mission (SRTM) was collected [41]. In this study, the SRTM
DEM data were resampled from 90 m to 1 km to render them consistent with the MODIS product
(see Figure 1).

3. Methods

3.1. Spatial Interpolation Models

Three interpolation models integrated in ArcGIS software were employed to predict monthly
NSAT, including Kriging, IDW, and Spline models. The IDW interpolation method estimates point
values by averaging the values of nearby sample data points with distance-based functions as weight.
The Spline estimates values using a mathematical function that minimizes overall surface curvature,
resulting in a smooth surface that passes exactly through the input points. The Kriging is an advanced
geostatistical procedure that generates an estimated surface from a scattered set of points with z-values.
The detail of these three interpolation models can be found in ArcGIS Desktop Help [42].

In order to employ the spatial interpolation model, many configuration parameters need to be
set. For the IDW model, the power which is used to control the significance of the surrounding points
on the interpolated value was set to 2. For the Kriging model, the ordinary Kriging method and the
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spherical semivariogram model were selected. As for the Spline model, the regularized type was
employed. The number of points was set to 30 for all the three spatial interpolation models. The search
radius for the IDW and Kriging models was set as ‘Variable’.

3.2. Standard Multiple Linear Regression Model

Cristóbal et al. [8] presented a method for predicting NSAT using standard MLR by means of
remotely sensed and geographic variables, which can be expressed as:

Y = β0 +
p

∑
i=1

βiXi + ε (1)

where Y represents the dependent variable (i.e., NSAT); Xi represents the explanatory variable; β0 and
βi are the intercept and the slope of the relationship between the dependent and explanatory variables,
respectively; and ε is the regression residual. To perform MLR analysis, geographic and remotely
sensed variables are considered as explanatory variables. The geographic variable includes altitude
and latitude, and the remotely sensed variable includes LST and NDVI. According to the coordinates
of the weather station, the LST and NDVI values for the weather station were extracted from the LST
and NDVI data, respectively.

The basic assumption of this method is that altitude, latitude, LST, and NDVI have a significant
correlation with NSAT. However, the values of altitude and NDVI are usually constant over regions
covered by snow and lakes, which contradicts this assumption, so the pixels of water body and snow
are removed from further analysis. The MOD10CM snow cover product was used to mask snow cover.

3.3. Geographically Weighted Regression Model

The standard MLR model is based implicitly upon the assumption of spatial stationarity in
the relationship between the dependent variable Y and explanatory variables Xi (i = 1, 2, . . . p),
and the estimated parameters are assumed to be constant over space. In contrast, the GWR is
a regional regression method that can be used to investigate the non-stationary relationship between
the dependent and explanatory variables. The GWR expands the MLR method for use with spatial
data. With geographically weighted regression, the relationship between the dependent variable Y
and explanatory variables Xi can be expressed as:

Yj = β0
(
uj, vj

)
+

p

∑
i=1

βi
(
uj, vj

)
Xij + ε j (2)

where β0
(
uj, vj

)
and βi

(
uj, vj

)
are the intercept and the slope estimated at the jth point, respectively;

ε j is the regression residual at the jth point; and
(
uj, vj

)
are the coordinates of the jth point. Unlike

a global regression method, the coefficients in Equation (2) are estimated by the observations around
the jth point, and the contribution of an observation site to the coefficients estimate for the jth point is
weighted using a distance decay function based on the assumption that the observations near to the jth
point would have more influence on the estimate than those further away. Therefore, the coefficients
can be obtained from:

β̂
(
uj, vj

)
=
(

XT(W(uj, vj
))

X
)−1

XTW
(
uj, vj

)
Y (3)

where β̂
(
uj, vj

)
represents the local coefficients to be estimated at location

(
uj, vj

)
; X and Y are the

vectors of the explanatory and the dependent variables, respectively; and W
(
uj, vj

)
is the weight

matrix. Gaussian and bi-square kernel functions are two common kernel types for the GWR model.
The Gaussian kernel weights gradually decrease from the center of the kernel, but never reach zero.
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The bi-square kernel function has a clear-cut range where the weighting is non-zero [12]. In this study,
the adaptive bi-square function is used to derive the weight matrix:

wij =
[
1 −

(
dij/b

)2
]2

when dij ≤ b

wij = 0 when dij > b

(4)

where dij is the Euclidean distance between the jth point and neighboring observation i and b is the
kernel bandwidth. Golden section search is used to determine the optimal bandwidth. Because the
GWR is a regional model, the effect of latitude on NSAT can be assumed to be constant and is excluded
in the GWR model. So, only altitude, LST, and NDVI are employed in the GWR model.

3.4. Validation

Ground observations from 20% of weather stations (as mentioned in Section 2.3) are used to assess
the performance of the predicted monthly NSAT. Two metrics, including the Root Mean Squared Error
(RMSE) and coefficients of determination (R2), are calculated by Equations (5) and (6), respectively:

RMSE =

√
n

∑
k=1

(Yk − Ok)
2/n (5)

R2 =

{
n
∑

k=1

[(
Yk − Y

)(
Ok − O

)]}
n
∑

k=1

[(
Yk − Y

)2
] n

∑
k=1

[(
Ok − O

)2
] (6)

where n represents the number of validation data, Yk represents the in-situ NSAT in validation site k,
Ok represents the predicted NSAT in validation site k, Y represents the mean value of in-situ NAST for
all validation sites, and O represents the mean value of the predicted NSAT for all validation sites.

4. Results

4.1. Comparison between Multiple Linear Regression and Geographically Weighted Regression Models

Figure 2 compares the RMSE and R2 of the predicted monthly NSAT using the MLR and GWR
models in China in 12 months of 2010. As shown in Figure 2, the RMSEs for the GWR model are
less than 2 ◦C, and the mean RMSEs for 12 months are 1.62 ◦C for monthly minimum NSAT, 1.52 ◦C
for monthly mean NSAT, and 1.62 ◦C for monthly maximum NSAT, respectively. The RMSEs for
the MLR model are between 2.4 ◦C and 10.2 ◦C, and the mean RMSEs for 12 months are 5.6 ◦C for
monthly minimum NSAT, 5.0 ◦C for monthly mean NSAT, and 4.92 ◦C for monthly maximum NSAT,
respectively. The RMSEs of the predicted monthly minimum, mean, and maximum NSAT using
the GWR model are similar. As for the MLR model, the RMSEs decrease in the order from monthly
minimum to mean then maximum NSAT. The R2 values for the GWR model are between 0.72 and
0.99, and the mean R2 values for 12 months are 0.94 for monthly minimum NSAT, 0.92 for monthly
mean NSAT, and 0.88 for monthly maximum NSAT, respectively. The R2 values for the MLR model are
between 0.13 and 0.86, and the mean R2 values for 12 months are 0.51 for monthly minimum NSAT,
0.51 for monthly mean NSAT, and 0.45 for monthly maximum NSAT, respectively. The GWR model
has much lower RMSE and higher R2 values than the MLR model for predicting monthly minimum,
mean, and maximum NSAT in all months, which indicates the superiority of the GWR model for
predicting monthly NSAT at a large scale compared to the MLR model.
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Figure 2. RMSE and R2 of the predicted monthly near surface air temperature (NSAT) using the
multiple linear regression (MLR) and geographical weighted regression (GWR) in China in 12 months
of 2010. Min-MLR represents predicting monthly minimum NSAT using the MLR model, Mean-MLR
represents predicting monthly mean NSAT using the MLR model, Max-MLR represents predicting
monthly maximum NSAT using the MLR model, Min-GWR represents predicting monthly minimum
NSAT using the GWR model, Mean-GWR represents predicting monthly mean NSAT using the GWR
model, and Max-GWR represents predicting monthly maximum NSAT using the GWR model.

4.2. Comparison between Geographically Weighted Regression and Various Interpolation Models

Figure 3 represents the results of the predicted NSAT using the Kriging and GWR models in
June, 2010. The NSAT map derived using the GWR model has more spatial detail than that of the
Kriging model. More so, the NSAT map derived using the GWR model includes some ‘Nodata’ due to
the missing data (e.g., snow cover and water body), while The NSAT map of the Kriging model includes
some ‘Nodata’ which are beyond the spatial scope of the sample data. Figure 4 represents the RMSE
and R2 of the predicted monthly mean NSAT using the GWR model and three spatial interpolation
models in China in 12 months of 2010. As shown in Figure 4, among the three interpolation methods,
the RMSEs increase and the R2 values decrease in an order from the Kriging model, to the IDW model,
to the Spline model, indicating that the Kriging model has the best performance of predicating NAST,
followed by the IDW model, and then the Spline model. The RMSEs for three interpolation models
increase first and then decrease as the month continues; the R2 shows an opposite trend. The RMSEs
for the GWR model are stable as the month changes. The R2 for the GWR model shows a similar trend
as the interpolation methods, but the R2 change range for the GWR model is smaller than the three
interpolation methods. The RMSEs for the GWR model are higher than those of the Kriging model
from January to March and from October to December (indicating the colder months); while they
are lower than those of the Kriging model from April to September (indicating the warmer months).
During June, July, and August, the RMSE for the GWR model is around 0.5 ◦C less than that of the
Kriging model. The mean RMSEs for 12 months are 1.52 ◦C for the GWR model, 1.56 ◦C for the Kriging
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model, 1.74 ◦C for the IDW model, and 2.39 ◦C for the Spline model, respectively. The mean R2 values
for 12 months are 0.92 for the GWR model, 0.90 for the Kriging model, 0.88 for the IDW model, and 0.80
for the Spline model, respectively.

Figure 3. (a) The regression residual derived from GWR model in June 2010, (b) NSAT map derived
using the GWR model in June 2010, (c) NSAT map derived using the Kriging model in June 2010.
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Figure 4. RMSE and R2 of the predicted monthly mean near surface air temperature using
geographically weighted regression and three interpolation methods in China in 12 months of 2010.

4.3. Comparison between Different Near Surface Air Temperature Variables

Figure 5 represents the RMSE and R2 of the predicted monthly minimum, mean, and maximum
NSAT using the GWR model in China in 12 months of 2010. In the colder months (i.e., from January to
March and from October to December), the RMESs of the predicted monthly mean NSAT using the
GWR model are lower than those of the monthly maximum NSAT, and the RMSEs of the predicted
monthly maximum NSAT are lower than those of the predicted monthly minimum NSAT. In the
warmer months (i.e., from April to September), the RMSEs of the predicted monthly mean and
minimum NSAT are similar, and both of them are lower than those of the predicted monthly maximum
NSAT. The mean RMSEs for 12 months using the GWR model are 1.52 ◦C for monthly mean NSAT,
1.62 ◦C for monthly minimum NSAT, and 1.62 ◦C for monthly maximum NSAT, respectively. The R2

for monthly minimum, mean, and maximum NSAT are similar in the colder months. The R2 decrease
in the order from monthly minimum, to mean, to maximum NSAT in the warmer months. Figure 6
represents the RMSE and R2 of the predicted monthly minimum, mean, and maximum NSAT using
the Kriging model in China in 12 months of 2010. The RMSEs for the Kriging model decrease in an
order from monthly maximum, to mean, to minimum NSAT in the warmer months. The mean RMSEs
for 12 months using the Kriging model are 1.54 ◦C for monthly minimum NSAT, 1.57 ◦C for monthly
mean NSAT, and 1.72 ◦C for monthly maximum NSAT, respectively. The R2 for the Kriging model
shows a similar trend to the GWR model, but the values are lower than those of the GWR model.

Figure 5. RMSE and R2 of the predicted monthly minimum, mean, and maximum near surface air
temperature using the geographically weighted regression model in China in 12 months of 2010.
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Figure 6. RMSE and R2 of the predicted monthly minimum, mean, and maximum near surface air
temperature using the Kriging model in China in 12 months of 2010.

4.4. Comparison between Varied Weather Station Densities

Figure 7 represents the RMSE and R2 of the predicted monthly mean NSAT using the GWR and
Kriging models in China in 12 months of 2010 considering weather station density. As shown in
Figure 7, the RMSE in the region with a high station density is lower than that in the region with a low
station density for both GWR and Kriging models in all months. In the region with a high station
density, the RMSEs for the GWR and Kriging models are similar in the colder months, while the RMSEs
for the GWR model are lower than those of the Kriging model in the warmer months. The mean
RMSEs for 12 months are 1.19 ◦C for the GWR model and 1.29 ◦C for the Kriging model, respectively.
For the region with a low station density, the RMSEs for the GWR model are higher than those of the
Kriging model in the colder months, whereas the RMSEs for the GWR model are lower than those of
the Kriging model in the warmer model. The mean RMSEs for 12 months are 3.13 ◦C for the GWR
model and 2.92 ◦C for the Kriging model, respectively. The R2 values for all cases decrease firstly
and then increase as the month continues. The mean R2 values for 12 months are 0.92 for the GWR
model in the region of high station density, 0.89 for the Kriging model in the region of high station
density, 0.73 for the GWR model in the region of low station density, and 0.75 for the Kriging model
in the region of low station density, respectively. The accuracy difference of the predicted monthly
NSAT between the regions with the high (i.e., 4.16 per ten thousand km2) and low (i.e., 0.41 per ten
thousand km2) station densities can reach 2 ◦C.

Figure 7. RMSE and R2 of the predicted monthly mean near surface air temperature (NSAT) using
geographically weighted regression (GWR) and Kriging models in China in 12 months of 2010
considering the station density. High-Kriging represents predicting monthly mean NSAT using the
Kriging model in the region with high station density; High-GWR represents predicting monthly
mean NSAT using the GWR model in the region with high station density; Low-Kriging represents
predicting monthly mean NSAT using the Kriging model in the region with low station density;
Low-GWR represents predicting monthly mean NSAT using the GWR model in the region with low
station density.
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4.5. Comparison between Different Terrain Types

Figure 8 represents the RMSE and R2 of the predicted monthly mean NSAT using GWR and
Kriging models for varied terrain types in China in 12 months of 2010. As shown in Figure 8b,
the RMSEs using the Kriging model for the plateau and plains increase first and then decrease as the
month continues. The RMSEs using the Kriging model for hills show little change, while the RMSEs for
basins are variable, with month change. The mean RMSEs of 12 months using the Kriging model are
1.99 ◦C for plateaus, 1.40 ◦C for basins, 1.18 ◦C for plains, and 1.01 ◦C for hills, respectively. As shown
in Figure 8c, with month change, the RMSEs using the GWR model for plateaus, hills, and plains
are stable, while the RMSEs for basins are variable. The mean RMSEs of 12 months using the GWR
model are 2.09 ◦C for plateaus, 1.41 ◦C for basins, 0.48 ◦C for plains, and 1.13 ◦C for hills, respectively.
The mean RMSE for plateaus and basins is higher than that of hills and plains. One possible reason for
this is that the weather station density of hills and plains is greater than that of plateaus and basins
(please compare Figures 1 and 8a). The mean RMSE of the GWR model is similar to that of the Kriging
model for plateaus, basins, and hills. The mean RMSE of the GWR model is significantly lower than
that of the Kriging model for plains. Figure 8d,e show that the R2 values of both GWR and Kriging
models decrease first and then increase as the month progresses for all terrain types. The mean R2

values of 12 months using the Kriging model are 0.85 for plateaus, 0.91 for basins, 0.81 for plains,
and 0.95 for hills, respectively. The mean R2 values of 12 months using the GWR model are 0.85 for
plateaus, 0.87 for basins, 0.94 for plains, and 0.94 for hills, respectively.

Figure 8. Cont.
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Figure 8. (a) The distribution of terrain in China; (b,d) RMSE and R2 of the predicted monthly mean
near surface air temperature (NSAT) using the Kriging model for varied terrain types in China in
12 months of 2010; (c,e) RMSE and R2 of the predicted monthly mean NSAT using the geographically
weighted regression model for varied terrain types in China in 12 months of 2010.

5. Discussion

Both MLR and GWR models are based on regression analysis, in which the relationship between
NSAT and correlative variables was modeled and employed to predict the NSAT. The assessment
result of predicting monthly NSAT in China in 2010 shows that the accuracy of the GWR model is
better than the MLR model with an improvement of 3 ◦C in RMSE. Many studies reported that the
MLR model achieved an accuracy of below 2 ◦C for estimating NSAT from a single scene remotely
sensed image [8,9]. In the extent of a single scene image, the relationship between NSAT, and LST,
VI, latitude, and elevation can be assumed to be stable. However, at a large scale, these relationships
are inconsistent in space due to differences in terrain and climate characteristics. The GWR is a local
regression model, in which a certain number of observing points around the point to be calculated
were employed to fit the model, and the distance between the observing point and the point to be
calculated was used as the weight. It can be concluded that the GWR model is more suitable for
predicting the NSAT than the MLR model in a large region.

The interpolation methods (i.e., Kriging, Spline, and IDW) for predicting NSAT are based on the
spatial autocorrelation of NSAT. The RMSEs for three interpolation models increase first and then
decrease as the month progresses (see Figure 4). In addition, the RMSEs for monthly maximum NSAT
are larger than those of monthly mean NSAT, and the RMSEs for monthly mean NSAT are larger than
those of monthly minimum NSAT from April to September (see Figure 6). The possible reason for this
is that the standard deviation (SD) and the mean of NSAT of sample points have an impact on the
performance of predicting NSAT using the interpolation methods. As shown in Figure 9, as the month
progresses, the SD values of monthly NSAT of 2132 weather stations decrease first and then increase,
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and the mean values of monthly NSAT of 2132 weather stations increase first and then decrease.
The SD values of monthly NSAT decrease and the mean values of monthly NSAT increase in the
order from monthly minimum, to mean, to maximum NSAT. Therefore, it may be concluded that the
higher SD and the lower mean of NSAT of sample points are associated with the better performance of
predicting monthly NSAT using interpolation methods. Compared to interpolation methods, the GWR
model is insensitive to the SD and mean of NSAT from sample points (see Figure 5).

Figure 9. Standard deviation and mean of the monthly mean, maximum, and minimum NSAT at
2132 weather stations in 12 months of 2010.

In order to perform regression analysis models, the daily LST and NDVI data were aggregated
to monthly LST and NDVI data by averaging them. The monthly LST and NDVI have a higher
correlation with monthly mean NSAT than that with monthly minimum and maximum NSAT.
The regression analysis model for predicting NSAT is based on the correlations between NSAT and
related variables. Thus, the higher correlations between NSAT and related variables can contribute to
a better performance of predicting NSAT. As shown in Figure 5, the accuracy of the predicted monthly
mean NSAT using the GWR model is better than that of monthly minimum and maximum NSAT.
As for the Kriging model, the predicting monthly minimum NSAT is better than that of monthly mean
and maximum NSAT because the monthly minimum NSAT has the biggest SD and the smallest mean
of NSAT from sample data.

The interpolation models only need NSAT data as the input and do not depend on the external
assisted data, while the regression analysis models require NSAT data and the related data as the input.
The interpolation model is easier to perform and more practical compared with the regression analysis
model. The parameter configuration of the spatial interpolation and regression analysis models has
a great influence on the accuracy of predicted NSAT, for example, the Kriging type, Spline type,
and kernel types for the GWR model, and so on. Investigating the optimized parameter configurations
for the interpolation models can make a contribution to improve the precision. Some scholars attempted
to perform the composition model for improving NSAT retrieval. Zheng et al. proposed a hybrid
methodology by combining the MLR model with spatial interpolation models, proving that the hybrid
model is better than MLR model [43]. Chen et al.’s study combined the GWR model with the Kriging
model, and showed that the residuals derived using the GWR model are spatially independent, and it
is unnecessary to adjust them using the Kriging model [12]. This study only focused on employing the
original models and analyzed their characteristics, and so more investigations are needed to develop
the comprehensive model taking full advantage of NSAT autocorrelation and correlation with other
factors for improving NSAT retrieval.
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6. Conclusions

In this study, we investigated and evaluated the performance and robustness of two regression
analysis and three spatial interpolation methods for predicting monthly NSAT in China in 2010.
Based on the assessment results, some conclusions can be drawn: (1) the GWR model is more suitable
for predicting monthly NSAT than the MLR model at a large scale; (2) among the three interpolation
methods, the Kriging one has the best performance, followed by IDW, and the Spline shows the poorest
results; (3) the GWR model is better than the Kriging model in warmer months, while the Kriging
model is superior to the GWR model in colder months; (4) the GWR model is obviously better than the
Kriging model for the plains area; and (5) the higher SD and the lower mean of NSAT from sample
data would be associated with a better performance of predicting monthly NSAT using interpolation
methods. These conclusions are useful to choose the optimal model for predicting NSAT according to
different environmental conditions.
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