
remote sensing

Article

Research on the Parallelization of the DBSCAN
Clustering Algorithm for Spatial Data Mining
Based on the Spark Platform

Fang Huang 1,2,* ID , Qiang Zhu 1, Ji Zhou 1 ID , Jian Tao 3, Xiaocheng Zhou 4, Du Jin 1,
Xicheng Tan 5 ID and Lizhe Wang 6,7,*

1 School of Resources & Environment, University of Electronic Science and Technology of China,
2006 Xiyuan Ave., West Hi-Tech Zone, Chengdu 611731, China; jangzhu@163.com (Q.Z.);
jzhou233@uestc.edu.cn (J.Z.); ikingdonblue@gmail.com (D.J.)

2 Institute of Remote Sensing Big Data, Big Data Research Center, University of Electronic Science and
Technology of China, 2006 Xiyuan Road, West Hi-Tech Zone, Chengdu 611731, China

3 Texas A&M Engineering Experiment Station and High Performance Research Computing,
Texas A&M University, College Station, TX 77843, USA; jtao@tamu.edu

4 Key Laboratory of Spatial Data Mining & Information Sharing of Ministry of Education, Fuzhou University,
No. 2 Xueyuan Road, Fuzhou University New District, Fuzhou 350116, China; zhouxc@fzu.edu.cn

5 International School of Software, Wuhan University, 129 Luoyu Road, Wuhan 430079, China;
xctan@whu.edu.cn

6 School of Computer Science, China University of Geosciences, Wuhan 430074, China
7 Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 10094, China
* Correspondence: fang.percy.huang@gmail.com (F.H.); lizhewang@icloud.com (L.W.)

Received: 27 October 2017; Accepted: 8 December 2017; Published: 12 December 2017

Abstract: Density-based spatial clustering of applications with noise (DBSCAN) is a density-based
clustering algorithm that has the characteristics of being able to discover clusters of any shape,
effectively distinguishing noise points and naturally supporting spatial databases. DBSCAN has
been widely used in the field of spatial data mining. This paper studies the parallelization design
and realization of the DBSCAN algorithm based on the Spark platform, and solves the following
problems that arise when computing macro data: the requirement of a great deal of calculation
using the single-node algorithm; the low level of resource-utilization with the multi-node algorithm;
the large time consumption; and the lack of instantaneity. The experimental results indicate that the
proposed parallel algorithm design is able to achieve more stable speedup at an increased involved
spatial data scale.

Keywords: spatial data mining; DBSCAN algorithm; parallel computing; spark platform;
traffic congestion area discovery

1. Introduction

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is an algorithm proposed
by Ester et al. for clustering analyses based on the density method in 1996 [1]. It has features
like the abilities to find clusters of any shape, identify noisy points effectively, and support spatial
databases. It has been widely used in the field of data mining. However, in some large-scale spatial
data mining studies [2], as the scale of data computation increases, the processing time of DBSCAN
rises exponentially. Thus, the performance of this serial algorithm is unable to meet the needs of
real-time application development.

To speed up the performance of serial DBSCAN processing, on one hand, some researchers began
to improve and optimize the serial algorithm; on the other hand, the DBSCAN clustering algorithm

Remote Sens. 2017, 9, 1301; doi:10.3390/rs9121301 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-5051-3061
https://orcid.org/0000-0001-9926-7693
https://orcid.org/0000-0002-8431-1441
http://dx.doi.org/10.3390/rs9121301
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2017, 9, 1301 2 of 33

has also been parallelized on computer clusters, graphics-processing units (GPUs), and the Hadoop
platform to improve its efficiency. However, these approaches have the following disadvantages:

(1) The traditional parallel-processing platform is expensive and has inferior scalability and
fault-tolerance properties, which result in bottlenecks in data transfer.

(2) When dealing with a multi-iterative clustering algorithm such as DBSCAN, Hadoop needs to
read and write data frequently from/to the distributed file system. The efficiency of the system
decreases as the amount of data increases.

To resolve the problem of long processing times associated with large-scale data processed using
the serial DBSCAN algorithm, in this paper, the big data processing platform Spark was introduced to
design and implement a parallel DBSCAN clustering algorithm. Spark, as a new generation of fast
general-purpose engine for large-scale data processing, provides resilient distributed dataset (RDD)
abstraction for data storage that eliminates the need for intermediate results to be sent to the distributed
file systems, and hence it improves real-time data processing. Spark has features such as a large degree
of scalability and high fault tolerance, which overcome the problems of the aforementioned parallel
platforms. Based on the Spark platform, which was designed and optimized for memory usage and
iterative processes, this paper studies parallelization strategies for the DBSCAN algorithm. Historically,
the DBSCAN algorithm was designed and optimized on the single-node Spark platform and the Spark
cluster platform based on different resource managers. Therefore, the research presented in this paper
helps to improve the efficiency of the DBSCAN algorithm and generate new ideas for the parallelization
of other types of spatial clustering algorithms, and to a certain extent, promotes the organic integration
of the Spark platform with traditional spatial data mining technologies.

In addition, we utilized the parallel DBSCAN algorithm based on the Spark platform in a traffic
congestion area discovery application. Compared with traditional processing methods, this approach
can dramatically improve the efficiency of city congestion discovery. These experiments verify the
high efficiency and practicability of the parallel algorithm proposed in this paper.

The paper is organized as follows. Section 2 presents related works, and conducts a systematic
analysis. Section 3 gives a brief introduction to the DBSCAN algorithm, including its mathematical
principles, and the implementation of serial DBSCAN algorithm. Section 4 concentrates on the
implementation of the parallel DBSCAN algorithm and its optimization methods. The subsequent
section focuses on the test results of the parallel algorithm on both the single node platform and the
Spark cluster with different resource managers. The experimental results are systematically analyzed
thereafter. Section 6 discusses the application of the parallel algorithm for congested area discovery in
urban traffic. Finally, Section 7 draws some conclusions and discusses future research directions.

2. Related Works

To shorten the elapsed time taken for the serial DBSCAN processing, researchers began to improve
and optimize some selected serial algorithms. Based on DBSCAN, Ankerst et al. proposed the ordering
points to identify the clustering structure (OPTICS) algorithm to solve the problem of parameter
selection that affects the algorithm. However, the OPTICS algorithm is complicated, and requires
additional I/O operations. As a result, its performance is lower than that of DBSCAN [3]. Chen et al.
designed the spatial access algorithm to improve DBSCAN, where the complexity of the algorithm was
reduced from O

(
n2) to O(nlgn), which to a certain extent improved the efficiency of the algorithm [4].

Kryszkiewicz et al. proposed a method that uses the triangle inequality to reduce the neighboring
search space. The search time was thus reduced, and the efficiency of the algorithm was improved [5].

Although optimization of the serial DBSCAN algorithm itself can improve its efficiency to some
extent, with the geometric growth of the amount of data processed, this serial algorithm cannot meet
real-world requirements. In recent years, due to its powerful computing capabilities, GPU-based
computing, and the technology of cloud computing, etc. have enabled major breakthroughs in
parallel computing performance [6,7]. GPU-based computing has advantages in processing intensive

Remote Sens. 2017, 9, 1301 3 of 33

matrix operations, and it has been widely used in some compute-intensive applications [8–16].
Cloud computing has performance advantages in data processing, and the MapReduce model
has been used widely on cloud computing platforms in many data-intensive applications [17–20].
In order to obtain more efficient processing capabilities, researchers also began to parallelize the
clustering algorithms to improve the performance. The parallelization of clustering algorithms at
home and abroad are mainly based on high-performance computing cluster platforms, GPU platforms,
and Hadoop platforms. Relevant details include:

(1) Parallelization on high-performance cluster platforms. Xu et al. proposed a network-based
fast parallel-DBSCAN (PDBSCAN) algorithm for use on cluster systems with master-slave
architectures. First, the entire data area is divided into N disjointed data blocks, where each
data block is processed by each computing node. After a given data block has been processed,
the results are merged on the master node. This parallel algorithm requires extra communication
time, where the inefficiencies related to combine the data with the main node data reduce
the overall processing efficiency of the algorithm [21]. Based on the data-partition DBSCAN
algorithm, Erdem & Gündem used high-performance clusters to improve the efficiency of the
algorithm [22]. In these studies, parallel platforms based on high-performance clusters can help
to improve the algorithm, but the conventional cluster platform has issues such as poor scalability,
bad fault tolerance, etc. The shared architecture is also likely to cause bottlenecks in data transfer.

(2) Parallelization on GPU platforms. Böhm et al. proposed a GPU-based CUDA-DClust parallel
algorithm that calculates the distance from the central point to surrounding points using the
multi-thread programming model to efficiently query the neighboring data. The results show that
the parallel algorithm enhances the overall efficiency with the help of the GPU [23]. However,
CUDA-DClust needs to calculate the distance between many unnecessary objects and store them
on the device memory. Andrade et al. used the compute unified device architecture (CUDA)
on the GPU to accelerate the parallel algorithm [24]. Compared with the serial algorithm, the
performance was greatly improved.

(3) Parallelization on Cloud-computing platforms. Dean et al. proposed to take advantage of
MapReduce, a large-scale data processing programming model, to enhance the processing
efficiency [25]. Böse et al. designed data-mining algorithms based on the MapReduce
programming framework, and they demonstrated the feasibility of adopting the MapReduce
programming model in data mining [26]. He et al. implemented the MR-DBSCAN algorithm
with MapReduce, and achieved good scalability and speedup [27]. Dai et al. divided the data by
reducing the number of boundary points, and they used KD-Tree spatial indices to parallelize
DBSCAN on Hadoop to improve the performance of the algorithm [28]. Fu et al. studied the
parallel DBSCAN clustering algorithm based on Hadoop. The experimental results demonstrated
that the proposed algorithm could efficiently process large datasets on commodity hardware and
have good scalability [29]. In addition, some researchers studied the parallel implementation of
K-Means algorithm on Hadoop to improve the efficiency [30,31]. In these studies, the efficiency
of the parallel algorithms were improved on Hadoop, but the results were less than ideal when
processing massive spatial datasets [30–32]. The reasons for this were: (1) the startup time in
MapReduce increased the overall run time of the jobs; (2) the frequent I/O carried out by the
Hadoop distributed file system (HDFS) for the intermediate results, due to its fault-tolerance
mechanism; and (3) with an increase in the data size, the processing efficiency was significantly
decreased [33].

As the Hadoop platform cannot meet the needs of some specific real-time massive data processing,
the AMPlab team at the University of California developed the Spark platform, which is a distributed
computing framework based on the Hadoop MapReduce framework [34]. One of the major features of
Spark is that it inherits the merits of Hadoop MapReduce while using a global cache mechanism so that
intermediate results are stored in memory, requiring less frequent data I/O and effectively improving

Remote Sens. 2017, 9, 1301 4 of 33

the processing speed [35]. Lawson used Spark to develop financial data processing applications
and implemented the parallel alternating direction method of the multipliers algorithm in Spark.
The experimental results show that the parallel algorithm was able to process millions of rows of data
in only 520.1 s, which was a significant improvement in efficiency [36]. Lipka implemented a strategic
iteration algorithm on Hadoop and Spark. The results showed that the processing speed with Spark
was 71% higher than that with Hadoop. The more computing nodes Spark used, the less execution
time the algorithm took [37]. Wang et al. studied the parallelization of the K-means algorithm on
the Spark platform. By comparing the performance of the parallel and serial algorithms on the Spark
platform, they presented their parallel algorithm run on the Spark platform for massive data processing
and demonstrated improved performance [38]. Jiang et al. studied the parallel FP-Like algorithm
in Spark. The parallel algorithm achieved better scalability and acceleration results, and helped to
demonstrate the advantages of Spark vs. Hadoop compared with the parallel Apriori algorithm [39].
Jin et al. used Spark in the field of land-use analysis. Compared to the traditional superposition
method, their method significantly improved the efficiency of the analysis [40]. Xie et al. studied
different data index methods based on Spark. Their implementation effectively improved the index
query, while supporting spatial data management [41]. To date, there have not been many studies on
the parallelization of the DBSCAN spatial clustering algorithm in data mining with Spark.

In summary, the advent of the Big Data era [42] has resulted in a large amount of noisy spatial
data. Traditional standalone systems, distributed cluster platforms, and Hadoop-distributed platforms
cannot meet the development requirements of spatial data mining. Therefore, based on Spark,
this paper studies parallelization strategies for the DBSCAN algorithm. Furthermore, the DBSCAN
algorithm can be applied in many fields, including urban planning [43], hotspot clustering [44],
anomaly detection [45], etc. In particular, there are many applications in the transportation area that
use the DBSCAN algorithm. For instance, Silva et al. used the DBSCAN algorithm to process the real
traffic data of Fortaleza to find the congested areas of the city [46]. Through a large amount of taxi
trajectory data, one can quickly understand the dynamical distribution of vehicles and find congested
areas in urban traffic. For example, Adiba et al. proposed an approach using the DBSCAN clustering
method to identify the traffic congestion regions and their spatio-temporal distribution with the taxi
trajectory data [47]. Wang et al. used their improved C-DBSCAN algorithm to deal with GPS trajectory
data to discover the candidate locations for bus stops near the Capital International Airport in Beijing
in 2012 [48]. Liu et al. divided the taxi trajectory data into time slices, finding the traffic-jam areas in
some parts of Wuhan after using the DBSCAN algorithm to process the corresponding data [49].

3. DBSCAN Algorithm

In order to parallelize an algorithm, it is crucial to understand the working principles and
implementation of the original serial algorithm, and carry out detailed analyses and tests first.
After that, one can take different approaches to parallelize it and then adopt the parallel algorithm
in applications.

3.1. Mathematical Principles of the DBSCAN Algorithm

Let the dataset to be processed be denoted as D, the algorithm’s clustering radius, Eps, and the
minimum number of objects in the neighborhood, MinPts. Then, the following are some basic concepts
of the algorithm [1]:

(1) Eps neighboring area: let p be the center of a sphere in the dataset D. For data within
the radius Eps of the object’s area, a collection of points contained in the sphere is
NEps(p) = {q ∈ D | dist(p, q) ≤ Eps}. A definition diagram is shown in Figure 1.

(2) Density: at the position of data point p in the dataset D, the number of points, Num, contained in
the neighborhood Eps is its density.

Remote Sens. 2017, 9, 1301 5 of 33

(3) Core point: at the position of data point p in the dataset D, if the density (Num) in the
neighborhood Eps satisfies Num ≥ MinPts, it is called a core point.

(4) Border point: at the position of data point p in the dataset D, if the density in the neighborhood
Eps satisfies Num ≤ MinPts but it is inside the sphere, it is called a border point.

(5) Noise point: all the objects other than the core and border points in D.
(6) Direct density-reachable: given objects p, q ∈ D, where there is a core point and this is inside the

Eps neighborhood of q, it is said that from p to q is direct density-reachable, i.e., q ∈ NEps(p) ,∣∣NEps(p)
∣∣≥ MinPts , as shown in Figure 2.

(7) Density-reachable: given objects p1, p2, p3, p4, pn ∈ D, where p1 = q, pn = q, if pi+1
is directdensity-reachable from pi, then p is density-reachable from q. The definition is
shown in Figure 3.

(8) Density-connected: given objects p, q ∈ D, if there is a point o ∈ D that is density-reachable from
p and q, then p and q are density-connected. The definition is shown in Figure 4.

Remote Sens. 2017, 9, 1301 5 of 32

(2) Density: at the position of data point p in the dataset D , the number of points, Num,
contained in the neighborhood Eps is its density.

(3) Core point: at the position of data point p in the dataset D , if the density (Num) in the
neighborhood Eps satisfies ≥Num MinPts , it is called a core point.

(4) Border point: at the position of data point p in the dataset D , if the density in the
neighborhood Eps satisfies ≤Num MinPts but it is inside the sphere, it is called a border point.

(5) Noise point: all the objects other than the core and border points in D .
(6) Direct density-reachable: given objects , D∈p q , where there is a core point and this is inside

the Eps neighborhood of q , it is said that from p to q is direct density-reachable, i.e.,

() ∈ Epsq N p , ()| |≥EpsN Mp inPts , as shown in Figure 2.

(7) Density-reachable: given objects 1 2 3 4, , , ,.... np p p p p D∈ , where 1p q= , np q= , if 1ip + is
directdensity-reachable from ip , then p is density-reachable from q . The definition is
shown in Figure 3.

(8) Density-connected: given objects , Dp q∈ , if there is a point Do∈ that is density-reachable
from p and q , then p and q are density-connected. The definition is shown in Figure 4.

p

Figure 1. Neighborhood definition.

p

q

Figure 2. Definition of direct density-reachable.

p

q

o

Figure 3. Definition of density-reachable.

Figure 1. Neighborhood definition.

Remote Sens. 2017, 9, 1301 5 of 32

(2) Density: at the position of data point p in the dataset D , the number of points, Num,
contained in the neighborhood Eps is its density.

(3) Core point: at the position of data point p in the dataset D , if the density (Num) in the
neighborhood Eps satisfies ≥Num MinPts , it is called a core point.

(4) Border point: at the position of data point p in the dataset D , if the density in the
neighborhood Eps satisfies ≤Num MinPts but it is inside the sphere, it is called a border point.

(5) Noise point: all the objects other than the core and border points in D .
(6) Direct density-reachable: given objects , D∈p q , where there is a core point and this is inside

the Eps neighborhood of q , it is said that from p to q is direct density-reachable, i.e.,

() ∈ Epsq N p , ()| |≥EpsN Mp inPts , as shown in Figure 2.

(7) Density-reachable: given objects 1 2 3 4, , , ,.... np p p p p D∈ , where 1p q= , np q= , if 1ip + is
directdensity-reachable from ip , then p is density-reachable from q . The definition is
shown in Figure 3.

(8) Density-connected: given objects , Dp q∈ , if there is a point Do∈ that is density-reachable
from p and q , then p and q are density-connected. The definition is shown in Figure 4.

p

Figure 1. Neighborhood definition.

p

q

Figure 2. Definition of direct density-reachable.

p

q

o

Figure 3. Definition of density-reachable.

Figure 2. Definition of direct density-reachable.

Remote Sens. 2017, 9, 1301 5 of 32

(2) Density: at the position of data point p in the dataset D , the number of points, Num,
contained in the neighborhood Eps is its density.

(3) Core point: at the position of data point p in the dataset D , if the density (Num) in the
neighborhood Eps satisfies ≥Num MinPts , it is called a core point.

(4) Border point: at the position of data point p in the dataset D , if the density in the
neighborhood Eps satisfies ≤Num MinPts but it is inside the sphere, it is called a border point.

(5) Noise point: all the objects other than the core and border points in D .
(6) Direct density-reachable: given objects , D∈p q , where there is a core point and this is inside

the Eps neighborhood of q , it is said that from p to q is direct density-reachable, i.e.,

() ∈ Epsq N p , ()| |≥EpsN Mp inPts , as shown in Figure 2.

(7) Density-reachable: given objects 1 2 3 4, , , ,.... np p p p p D∈ , where 1p q= , np q= , if 1ip + is
directdensity-reachable from ip , then p is density-reachable from q . The definition is
shown in Figure 3.

(8) Density-connected: given objects , Dp q∈ , if there is a point Do∈ that is density-reachable
from p and q , then p and q are density-connected. The definition is shown in Figure 4.

p

Figure 1. Neighborhood definition.

p

q

Figure 2. Definition of direct density-reachable.

p

q

o

Figure 3. Definition of density-reachable. Figure 3. Definition of density-reachable.

Remote Sens. 2017, 9, 1301 6 of 33
Remote Sens. 2017, 9, 1301 6 of 32

p

q

o

Figure 4. Definition of density-connected.

Based on the aforementioned definitions, the idea of the DBSCAN algorithm is as follows. The
search can start from the neighboring Eps area of any interested data point. Given enough data
points in the neighborhood (MinPts≥) the cluster will expand. Otherwise, a data point is temporarily
marked as noise. This point can later be found in other Eps neighborhoods and marked as part of a
cluster. If a data object in a cluster is marked as a core, its Eps neighborhood is also part of the
cluster. Thus, all the points found in the neighborhood, as well as the core neighborhood, are added
to the cluster. This process is repeated until density-connected clusters are completely found. Finally,
new and untreated points are retrieved and processed to find deeper clusters or noise. After all the
objects in dataset D are checked, the algorithm ends.

3.2. Processing Procedure of the DBSCAN Algorithm

Based on the previous description of the basic concepts and ideas of the DBSCAN algorithm, its
processing flow can be summarized in the following steps. Here, supposing the spatial dataset D ,
given clustering radius Eps , the minimum number of neighboring objects MinPts, and the current
collection of objects as 1N .

(1) All the data objects in dataset D are marked as unchecked. Starting from any unchecked data
point p , mark it as ‘checked’, then check its Eps neighborhood and calculate the number of
objects in the neighborhood m. If m satisfies m MinPts≥ , then create a new cluster 1C , and
add p to 1C , meanwhile add all the points in the neighborhood to the collection of objects 1N

.
(2) For the collection of objects, 1N , if object q therein has not been checked, then mark q as

‘checked’, and then check its Eps neighborhood and calculate the number of objects in the
neighborhood n. If n satisfies n MinPts≥ , then these objects are added to the object collection. If
q does not belong to any cluster, then add q to 1C .

(3) Repeat step (2), and continue to check object set 1N until it is empty.
(4) Repeat steps (1) to (3). When all the data objects are marked as ‘checked’, the algorithm ends.

The detailed implementation steps can be summarized in Algorithm 1.

Figure 4. Definition of density-connected.

Based on the aforementioned definitions, the idea of the DBSCAN algorithm is as follows.
The search can start from the neighboring Eps area of any interested data point. Given enough data
points in the neighborhood (≥MinPts) the cluster will expand. Otherwise, a data point is temporarily
marked as noise. This point can later be found in other Eps neighborhoods and marked as part of
a cluster. If a data object in a cluster is marked as a core, its Eps neighborhood is also part of the
cluster. Thus, all the points found in the neighborhood, as well as the core neighborhood, are added to
the cluster. This process is repeated until density-connected clusters are completely found. Finally,
new and untreated points are retrieved and processed to find deeper clusters or noise. After all the
objects in dataset D are checked, the algorithm ends.

3.2. Processing Procedure of the DBSCAN Algorithm

Based on the previous description of the basic concepts and ideas of the DBSCAN algorithm,
its processing flow can be summarized in the following steps. Here, supposing the spatial dataset
D, given clustering radius Eps, the minimum number of neighboring objects MinPts, and the current
collection of objects as N1.

(1) All the data objects in dataset D are marked as unchecked. Starting from any unchecked data
point p, mark it as ‘checked’, then check its Eps neighborhood and calculate the number of objects
in the neighborhood m. If m satisfies m ≥ MinPts, then create a new cluster C1, and add p to C1,
meanwhile add all the points in the neighborhood to the collection of objects N1.

(2) For the collection of objects, N1, if object q therein has not been checked, then mark q as ‘checked’,
and then check its Eps neighborhood and calculate the number of objects in the neighborhood n.
If n satisfies n ≥ MinPts, then these objects are added to the object collection. If q does not belong
to any cluster, then add q to C1.

(3) Repeat step (2), and continue to check object set N1 until it is empty.
(4) Repeat steps (1) to (3). When all the data objects are marked as ‘checked’, the algorithm ends.

The detailed implementation steps can be summarized in Algorithm 1.

Remote Sens. 2017, 9, 1301 7 of 33

Algorithm 1. DBSCAN algorithm implementation steps.

Input Data: Data Set D to be processed
Output Data: Cluster that satisfies the Clustering requirements
Parameters: Clustering Radius Eps, Minimal number of neighboring points MinPts

Main function of the algorithm:
DensityCluster(D, Eps, MinPts)
{

ClusterNum = 0 // Initialize cluster
for each unchecked point M in D // Traverse all the unchecked points

set M as checked // Mark it checked
NeighbourResult = NeighbourSearching(M, Eps) // Search the neighborhood of M
if sizeof(NeighbourResult) ≥MinPts // Mark it as a core and create a cluster

ClusterNum = UpdateClusterNum // Expand the cluster
expandNeighbourPart(M, NeighbourResult, ClusterNum, Eps, MinPts)

else // If it is not a core
set M as NOISE // Mark it as noise

}

Sub function:
expandNeighbourPart(M, NeighbourResult, ClusterNum, Eps, MinPts)

//cluster expansion function
NeighbourSearching(M, Eps) // Neighbor searching
.

4. Design and Implementation of the DBSCAN Algorithm on the Spark Platform

4.1. Analyzing the Sequential DBSCAN Algorithm

Before designing the parallel algorithm, it is necessary to use some professional performance-
analysis tools to determine any hotspots of the algorithm. In this paper, the Intel® VTune™ profiling
tool was used to perform hotspot analysis on the serial algorithm. In the test, it was found that the
scale of the dataset was closely related to the performance of the DBSCAN algorithm. For this reason,
the dataset scale was changed to carry out the test. The test results are shown in Table 1.

Table 1. Hotspots analysis test on the serial DBSCAN algorithm.

Dada Scale Neighborhood Query
Time (T1/s)

Data Reading and
Writing Time (T2/s)

Total Running Time
(Ts/s) T1/Ts

10 K 32.97 3.66 36.63 90.01%
20 K 128.66 13.44 142.10 90.54%
40 K 518.15 52.25 570.40 90.84%

From Table 1, it can be seen that the serial algorithm has a hotspot that occupied the most
time-consuming part of the algorithm, regardless of the changing scale of the datasets. The hotspot
mainly arose due to the neighborhood query function (FindArrivalPoints ()), which occupied more
than 90% of the whole time consumption.

4.2. Parallel Design of the DBSCAN Algorithm

In this paper, the mesh and the secondary extended partition strategy was adopted [27] to
parallelize the DBSCAN algorithm. After data partitioning using this strategy, the data was divided
into local and border areas, and the data points were marked. All points in the boundary area were
included in multiple local areas, thus providing the conditions for the later cluster-merging procedure.

Remote Sens. 2017, 9, 1301 8 of 33

Additionally, this strategy solved the problem whereby the same point is divided into different
clustering classes during the clustering procedure.

The principle of the parallel algorithm adopted this strategy is described as follows (Figure 5):
(1) The formatted dataset from the HDFS is read and cached into the memory. (2) Based on the
computation of the RDD, Spark’s memory capabilities, and the properties of directed acyclical graphs
(DAG), the dataset is divided into computing nodes in order to perform local partition-clustering
operations according to the above-mentioned strategy. (3) Each partition performs local clustering
operations in parallel. (4) After the local data-clustering is complete, the clustering results are merged.
(5) Finally, the merged results are re-marked, and then the global clusters are generated. A flowchart of
these procedures is shown in Figure 5, where it is found that the parallel algorithm has four important
stages: (1) data partitioning; (2) local clustering; (3) data merging; and (4) global clustering generation.

Remote Sens. 2017, 9, 1301 8 of 32

The principle of the parallel algorithm adopted this strategy is described as follows (Figure 5):
(1) The formatted dataset from the HDFS is read and cached into the memory. (2) Based on the
computation of the RDD, Spark’s memory capabilities, and the properties of directed acyclical graphs
(DAG), the dataset is divided into computing nodes in order to perform local partition-clustering
operations according to the above-mentioned strategy. (3) Each partition performs local clustering
operations in parallel. (4) After the local data-clustering is complete, the clustering results are merged.
(5) Finally, the merged results are re-marked, and then the global clusters are generated. A flowchart
of these procedures is shown in Figure 5, where it is found that the parallel algorithm has four
important stages: (1) data partitioning; (2) local clustering; (3) data merging; and (4) global clustering
generation.

HDFS

Start

Read and
format the

dataset

Configuration and
initialization

Cache to memory

Grid data segmentation and use the
secondary extension strategy to

allocate data to the compute nodes

Local
DBSCAN
clustering

Clustering results
merging

Remark the results
and generate the

global clustering class

End

Local
DBSCAN
clustering

Local
DBSCAN
clustering

Spark Platform

RDD
Memory

calculation
DAG

Parallel Computing
End

Figure 5. Flow chart of the parallel DBSCAN algorithm.

4.2.1. Data Partitioning Stage

In this stage, the method of data partition is very important for the implementation of the parallel
algorithm. Figure 6 demonstrates the procedure of performing the data partitioning. The data are
divided into several data slices with a given length and width according to the data range. Normally,
3Eps is a suitable number to be used in the division, and has been demonstrated to give the best
performance, based on experience. In Figure 6, all the points (x, y) that fall into a given rectangle
(3Eps , 3Eps) belong to one data slice (e.g., S1), and points within this slice are assigned to the same
node processed by the executor.

Figure 5. Flow chart of the parallel DBSCAN algorithm.

4.2.1. Data Partitioning Stage

In this stage, the method of data partition is very important for the implementation of the parallel
algorithm. Figure 6 demonstrates the procedure of performing the data partitioning. The data are
divided into several data slices with a given length and width according to the data range. Normally,
3Eps is a suitable number to be used in the division, and has been demonstrated to give the best
performance, based on experience. In Figure 6, all the points (x, y) that fall into a given rectangle
(3Eps, 3Eps) belong to one data slice (e.g., S1), and points within this slice are assigned to the same
node processed by the executor.

Remote Sens. 2017, 9, 1301 9 of 33
Remote Sens. 2017, 9, 1301 9 of 32

x, y

S1

Boundary Point S2

S3

Figure 6. The first phase of data partitioning.

In Figure 6, i.e., the data partitioning procedure, allocating points that belong to the same cluster
to different nodes is unavoidable; that is, the attribution problem of the boundary points resulting
from the data division appears. However, these boundary points are essential to the following
cluster-merging process. Therefore, the secondary slice expansion technique was adapted with the
first data-partitioning operation.

In Figure 7, data slices 1 and 2 are taken as an example to explain the mechanism of the secondary
slice extension method. Slices 1 and 2 have a common boundary point. In order to include the
boundary point in its cluster, it is necessary to expand the boundary of both slices. Here, the border
of each of the new slices is extended outwards by 0.1Eps . Then, the new slices both contain the
boundary point, which is beneficial for the subsequent clustering process.

x, y

S1

Boundary point

S2

S3

S2'

S1'

Figure 7. The second phase of data partitioning.

Figure 6. The first phase of data partitioning.

In Figure 6, i.e., the data partitioning procedure, allocating points that belong to the same
cluster to different nodes is unavoidable; that is, the attribution problem of the boundary points
resulting from the data division appears. However, these boundary points are essential to the following
cluster-merging process. Therefore, the secondary slice expansion technique was adapted with the
first data-partitioning operation.

In Figure 7, data slices 1 and 2 are taken as an example to explain the mechanism of the secondary
slice extension method. Slices 1 and 2 have a common boundary point. In order to include the boundary
point in its cluster, it is necessary to expand the boundary of both slices. Here, the border of each of
the new slices is extended outwards by 0.1Eps. Then, the new slices both contain the boundary point,
which is beneficial for the subsequent clustering process.

Remote Sens. 2017, 9, 1301 9 of 32

x, y

S1

Boundary Point S2

S3

Figure 6. The first phase of data partitioning.

In Figure 6, i.e., the data partitioning procedure, allocating points that belong to the same cluster
to different nodes is unavoidable; that is, the attribution problem of the boundary points resulting
from the data division appears. However, these boundary points are essential to the following
cluster-merging process. Therefore, the secondary slice expansion technique was adapted with the
first data-partitioning operation.

In Figure 7, data slices 1 and 2 are taken as an example to explain the mechanism of the secondary
slice extension method. Slices 1 and 2 have a common boundary point. In order to include the
boundary point in its cluster, it is necessary to expand the boundary of both slices. Here, the border
of each of the new slices is extended outwards by 0.1Eps . Then, the new slices both contain the
boundary point, which is beneficial for the subsequent clustering process.

x, y

S1

Boundary point

S2

S3

S2'

S1'

Figure 7. The second phase of data partitioning.

Figure 7. The second phase of data partitioning.

An RDD conversion flowchart of the data partitioning stage is shown in Figure 8.

Remote Sens. 2017, 9, 1301 10 of 33

Remote Sens. 2017, 9, 1301 10 of 32

An RDD conversion flowchart of the data partitioning stage is shown in Figure 8.

Figure 8. RDD conversion flowchart of the data partitioning stage.

From Figure 8, the text file to be processed is taken out from HDFS and loaded into a RDD. The
P in Figure 8 represents a point (i.e., the point’s location information). Subsequently, the data to be
processed is transformed into a key/value pair by the map operator (where, 0 represents the initial
cluster class ID), then is stored by the cache operator to the memory. Finally, the text file is partitioned
by the mapPartition operator, where each RDD is treated as a partition.4.2.2. Local Clustering Stage

At this stage, any data slices that have been segmented in the final step of the first stage are then
distributed to the executor via the task scheduler for local DBSCAN clustering calculations. The
process is demonstrated in Figure 9.

Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6 Slice 7 Slice 8 Slice n……

Executor

Executor

Executor

Executor

Executor

Executor

Executor Executor Executor

Figure 9. Local clustering calculation stage.

After clustering, the format of the obtained intermediate result is a Key/Value. The values that
the Key/Value can take are longitude, latitude, ClusterId, IsLocalRegion, and IsCorePoint. longitude and
latitude represent the coordinate position of the current data point, while ClusterId gives the cluster
number of the current data point (the default value is 0). IsLocalRegion specifies whether the current

Figure 8. RDD conversion flowchart of the data partitioning stage.

From Figure 8, the text file to be processed is taken out from HDFS and loaded into a RDD.
The P in Figure 8 represents a point (i.e., the point’s location information). Subsequently, the data to be
processed is transformed into a key/value pair by the map operator (where, 0 represents the initial
cluster class ID), then is stored by the cache operator to the memory. Finally, the text file is partitioned
by the mapPartition operator, where each RDD is treated as a partition.

4.2.2. Local Clustering Stage

At this stage, any data slices that have been segmented in the final step of the first stage are then
distributed to the executor via the task scheduler for local DBSCAN clustering calculations. The process
is demonstrated in Figure 9.

Remote Sens. 2017, 9, 1301 10 of 32

An RDD conversion flowchart of the data partitioning stage is shown in Figure 8.

Figure 8. RDD conversion flowchart of the data partitioning stage.

From Figure 8, the text file to be processed is taken out from HDFS and loaded into a RDD. The
P in Figure 8 represents a point (i.e., the point’s location information). Subsequently, the data to be
processed is transformed into a key/value pair by the map operator (where, 0 represents the initial
cluster class ID), then is stored by the cache operator to the memory. Finally, the text file is partitioned
by the mapPartition operator, where each RDD is treated as a partition.4.2.2. Local Clustering Stage

At this stage, any data slices that have been segmented in the final step of the first stage are then
distributed to the executor via the task scheduler for local DBSCAN clustering calculations. The
process is demonstrated in Figure 9.

Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6 Slice 7 Slice 8 Slice n……

Executor

Executor

Executor

Executor

Executor

Executor

Executor Executor Executor

Figure 9. Local clustering calculation stage.

After clustering, the format of the obtained intermediate result is a Key/Value. The values that
the Key/Value can take are longitude, latitude, ClusterId, IsLocalRegion, and IsCorePoint. longitude and
latitude represent the coordinate position of the current data point, while ClusterId gives the cluster
number of the current data point (the default value is 0). IsLocalRegion specifies whether the current

Figure 9. Local clustering calculation stage.

Remote Sens. 2017, 9, 1301 11 of 33

After clustering, the format of the obtained intermediate result is a Key/Value. The values that
the Key/Value can take are longitude, latitude, ClusterId, IsLocalRegion, and IsCorePoint. longitude and
latitude represent the coordinate position of the current data point, while ClusterId gives the cluster
number of the current data point (the default value is 0). IsLocalRegion specifies whether the current
data point is located in the area (True) or in the boundary area (False), and IsCorePoint indicates whether
the current data is a core object (True) or a border object (False). An RDD conversion flow chart of the
local DBSCAN clustering is shown in Figure 10.

Remote Sens. 2017, 9, 1301 11 of 32

data point is located in the area (True) or in the boundary area (False), and IsCorePoint indicates
whether the current data is a core object (True) or a border object (False). An RDD conversion flow
chart of the local DBSCAN clustering is shown in Figure 10.

RDD6

...

RDD7

...

...

RDD8

...

...

RDD3

...

RDD4

...

...

RDD5

...

...

P1, 0
P2, 0

Pm, 0
Pm+1, 0

Pn-1, 0

Pn, 0

P1, C1

P2, C2

Pm, C1

Pm+1, C2

Pn-1, C1

Pn, C2

mapPartion map
Figure 10. RDD conversion flowchart in the local clustering stage.

From Figure 10, via the mapPartion operator, the data are segmented into different data slices.
Then, these data slices are assigned to compute nodes. The local DBSCAN clustering operation is
performed on each slice by the executor called by the map operator. At this stage, the points on each
slice are classified into their respective cluster classes.

4.2.3. Data Merger Stage

After each computing node finishes its data slice(s) calculation, the results are passed to the
master node. The master node then processes each object according to the received key/value pairs.
If IsLocalRegion is True, the object can output its ClusterId directly. For a data object with a cluster
number of 0, it is necessary to determine the value of its IsLocalRegion parameter. If it is not in the
boundary area, it is treated directly as a noise point. If it is in the boundary region, it is necessary to
determine whether it is included in the field of other core points. For any data points with multiple
cluster labels and which are also core points, it is necessary to indicate whether these clusters can be
merged and renamed in the next stage.

As shown in Figure 11, after the clustering operation, cluster 1 and cluster 2 have been generated.
P is a core point, i.e., it is a boundary point belonging to both clusters. Therefore, this means that
these clusters are actually the same cluster, and can thus be merged into a single cluster.

Figure 10. RDD conversion flowchart in the local clustering stage.

From Figure 10, via the mapPartion operator, the data are segmented into different data slices.
Then, these data slices are assigned to compute nodes. The local DBSCAN clustering operation is
performed on each slice by the executor called by the map operator. At this stage, the points on each
slice are classified into their respective cluster classes.

4.2.3. Data Merger Stage

After each computing node finishes its data slice(s) calculation, the results are passed to the
master node. The master node then processes each object according to the received key/value pairs.
If IsLocalRegion is True, the object can output its ClusterId directly. For a data object with a cluster
number of 0, it is necessary to determine the value of its IsLocalRegion parameter. If it is not in the
boundary area, it is treated directly as a noise point. If it is in the boundary region, it is necessary to
determine whether it is included in the field of other core points. For any data points with multiple
cluster labels and which are also core points, it is necessary to indicate whether these clusters can be
merged and renamed in the next stage.

As shown in Figure 11, after the clustering operation, cluster 1 and cluster 2 have been generated.
P is a core point, i.e., it is a boundary point belonging to both clusters. Therefore, this means that these
clusters are actually the same cluster, and can thus be merged into a single cluster.

Remote Sens. 2017, 9, 1301 12 of 33

Remote Sens. 2017, 9, 1301 12 of 32

x, y

Boundry point

S1'

S2'

Cluster1 Cluster2

P

x, y

Boundary point

S1'

S2'

Cluster1
Cluster2

P

Figure 11. Data merging stage.

4.2.4. Global Cluster Generation Stage

In this stage, the resulting clusters are renamed, i.e., each cluster will have only one global cluster
number. Thus, the final clustering results are generated, as shown in Figure 12, and a flowchart of
the RDD conversion operations for generating the global cluster is shown in Figure 13.

As can be seen in Figure 13, the clustering results distributed to each RDD cluster are merged
into one RDD and are re-marked and re-named. As a result, each cluster has only one global cluster
class number, and generates the final clustering result. Finally, the result is dumped to a text file and
stored in HDFS.

Figure 11. Data merging stage.

4.2.4. Global Cluster Generation Stage

In this stage, the resulting clusters are renamed, i.e., each cluster will have only one global cluster
number. Thus, the final clustering results are generated, as shown in Figure 12, and a flowchart of the
RDD conversion operations for generating the global cluster is shown in Figure 13.

As can be seen in Figure 13, the clustering results distributed to each RDD cluster are merged into
one RDD and are re-marked and re-named. As a result, each cluster has only one global cluster class
number, and generates the final clustering result. Finally, the result is dumped to a text file and stored
in HDFS.

Remote Sens. 2017, 9, 1301 13 of 33
Remote Sens. 2017, 9, 1301 13 of 32

x, y

Boundry point

S1'

S2'

Final cluster

x, y

Boundary point

S1'

S2'

Final cluster

Figure 12. A global cluster generation stage.

Figure 13. Flowchart of the RDD conversion of the global cluster generation.

Figure 12. A global cluster generation stage.

Remote Sens. 2017, 9, 1301 13 of 32

x, y

Boundry point

S1'

S2'

Final cluster

x, y

Boundary point

S1'

S2'

Final cluster

Figure 12. A global cluster generation stage.

Figure 13. Flowchart of the RDD conversion of the global cluster generation.

Figure 13. Flowchart of the RDD conversion of the global cluster generation.

Remote Sens. 2017, 9, 1301 14 of 33

4.3. Optimizing the Parallel DBSCAN Algorithm on the Single-Node Spark Platform

To implement the parallel algorithm on the Spark platform, it is necessary to select suitable
optimization methods according to the algorithm’s characteristics, data size, and cluster resources.
Reasonable tuning methods can give full play to the computing capability of the Spark platform.
The initial parallel DBSCAN algorithm was designed and implemented based only on the algorithm’s
characteristics, and it did not consider other optimization aspects. In the existing single-node parallel
DBSCAN algorithm based on the Spark platform, there is a large amount of data transmissions,
RDD object storage, and inter-node communication, which increases the running time of the algorithm
to a certain extent. Considering these aspects, this section will optimize the parallel algorithm in
terms of the aspects of data transmission, serialization, and resource parameter tuning based on
the single-node parallel algorithm, whereby (1) the data transmission optimization method can
improve the data transmission speed, and hence reduce the data transmission time; (2) the serialization
optimization method can reduce the storage cost of the data and also reduce the overhead of the
metadata; and (3) the resource parameter tuning can make full use of the platform computing resources
to further improve the efficiency of the parallel algorithm.

4.3.1. Optimization Method 1: Optimization of Data Transmission

Spark uses the broadcast variable (Broadcast) to transmit a large amount of pre-processed data.
Optimizing data transmission is needed to improve its overall speed. The introduction of Broadcast
variables, i.e., read-only variables, are shared by multiple tasks in the Spark calculation process.
Only one copy of the Broadcast variable needs to be saved on each node, and it does not need to carry
out variable transferring for every task. This thereby reduces the transmission time, and improves
the efficiency of the calculation. The data transmission of Broadcast in each iteration will be stored
in the worker memory of the slave nodes. Generally, the memory will not be released in advance,
except when the calculation node memory is insufficient. Therefore, when the memory size of each
calculation task is greater than 20 kB, it is recommended that Broadcast be used to optimize algorithm
performance on the Spark platform. The method for generating a Broadcast variable by calling the
SparkContext method is as follows. Let us take the bordering area object variable (borderPoint) as
an example, where borderPoint was reused several times in the program. Table 2 shows which variable
used the pseudo codes in the program before the data transmission optimization, while the pseudo
codes after the optimization are shown in Table 3.

Meanwhile, in the process of implementing the Spark-based parallel algorithm, when the
collected data used by the collect operator is too large, the data is stored in the distributed file
system. This optimization method can effectively reduce the data I/O overheads and relieve the
storage pressure on the Driver. If the amount of collected data is small, the adjustment parameter
spark.akka.frameSize alleviates the problem of AKKA buffer overflow caused by large-task distribution,
because Spark finishes task distribution by passing messages between the Actor models in the
AKKA library.

Table 2. Optimization Method One—the pseudo codes before data transmission optimization.

val data = sc.textFile(src)
val parsedData = data.map(s => Vectors

.dense(s.split(' ')

.map(_.toDouble)))

.cache() //RDD conversion is performed by various operators
. . .

//The reused boundary area object variables in the clustering process
val borderPoint = partitions.map(lambda (key, value): ((key, 0), value))
. . .

Remote Sens. 2017, 9, 1301 15 of 33

Table 3. Optimization Method One—the pseudo codes after the data transmission optimization.

val data = sc.textFile(src)
val parsedData = data.map(s => Vectors
.dense(s.split(' ')
.map(_.toDouble)))
.cache() // RDD conversion is performed by various operators
. . .
//The reused boundary area object variables in the clustering process
val borderPoint = partitions.map(lambda (key, value): ((key, 0), value))
//Introduce the broadcast variables
val borderShare = vectors.context.broadcast(borderPoint)
. . .

Based on the Scala functional programming language, Spark uses the closure method to transmit
data by referencing the function variables. Therefore, using the task to distribute the data will reduce
the overall execution efficiency. Setting the parameters of Spark.akka.frameSize can fix the maximum
capacity of the Actor communication message (such as the output of the task) in AKKA used by the
Spark platform, whose value defaults to 10 MB. When dealing with large-scale data, the output of the
task may be greater than this value. Generally, it needs to be set to a higher value according to the size
of the data.

4.3.2. Optimization Method 2: Serialization Optimizing

Serialization plays important roles in the development of distributed computing platforms. In the
serializing approach, chained object data turns into data objects stored in a continuous space via a byte
array; thus, the serialized object will be stored in a distributed file system with a continuous space
form, and transmitted in the form of a data stream. This approach reduces the overheads related to
metadata information both of the object itself and the basic data types; therefore, it can effectively
reduce the data storage space, and reduce the overhead and stress of the garbage collection (GC).

Those data formats require a lot of time to serialize, and any objects occupying the object’s space
will slow down the entire application’s efficiency. The serialization method is one of the most important
performance-tuning methods in Spark, because the RDD object storage and data transfer between
nodes is necessary for carrying out the serialization process.

The Spark platform includes both Kyro and Java serialization libraries. Compared with the Java
serialization library, the Kyro serialization library allows for serialization to be completed quickly
and compactly. Also, users can define customized serialization methods that have good scalability.
To implement the parallel DBSCAN algorithm on the Spark platform, which has higher network
transmission requirements, better performance can be achieved with the Kyro serialization library.
This serialization method is also recommended for network transmission-intensive computing in
the official Spark documentation. Therefore, the Kyro serialization library was used to optimize the
parallel algorithm.

Spark automatically introduces Kyro serialization support for many of the commonly used Scala
core classes, all of which are supported by Spark using the Twitter chill library. Based on the foregoing
analysis, the optimized program codes adopting Kyro serialization are shown in Table 4.

Remote Sens. 2017, 9, 1301 16 of 33

Table 4. The pseudo codes for Optimization Method 2.

// Import the Serialization classes
import com.esotericsoftware.kryo.Kryo
import org.apache.spark.serializer.KryoRegistrator
// Customized serialization classes
class MyRegistrator extends KryoRegistrator{
override def registerClasses(kyro: Kyro){

kryo.register(classOf[MyClass1])
kryo.register(classOf[MyClass2])
}

}
// Codes of the main function
object DBSCANApp{
val log = LoggerFactory.getLogger(DBSCANApp.getClass)
def main(args: Array[String]) {
// Initialize the spark configuration information
val conf = new SparkConf().setAppName(s"DBSCANApp(eps=$eps, minPts=$minPts)

-> $Output")
// Set the serialization class
conf.set(“spark.serializer”,” org.apache.spark.serializer.KryoSerializer”)
// Introduce the customized serialization classes
conf.set(“spark.kryo.registrator”, ”DBSCAN.MyRegistrator ”)
val sc = new SparkContext(conf)
. . .
}
}

4.3.3. Optimization Method 3: Optimization of Resource Parameters

In a distributed computing environment like the Spark platform, reasonable configuration of
resource parameters can make full use of the platform’s computing resources and promote its parallel
computing capabilities, thereby enhancing its performance. Table 5 gives the main resource parameters
and their specific action descriptions in Spark. One thing to note is that each of the parameters
corresponds to a part of the operating principle of the job execution.

Table 5. Resource parameter tuning.

Tuning Parameters Function

num-executors Set the specified number of Executor processes to execute the Spark job
executor-memory Set the memory for each Executor process

executor-cores Set the number of CPU cores for each Executor process
driver-memory Set the memory of driver process

spark.default.parallelism Set the number of default tasks
spark.storage.memoryFraction Configure the amount of space used for caching in RDD, which defaults to 0.67
spark.shuffle.memoryFraction Configure Executor memory scale in shuffle process, which defaults to 0.2

When the parameter of “num-executors” is set to 50–100, one should set “executor-memory”
to 4 G–8 G, “executor-cores” to 2–4, the “driver-memory” generally to 1 G, and 500–1000 is
recommended for “Spark.default.parallelism”, so that the job requirements can be met. When Spark
operations have more RDD persistence operations, the parameter “spark.storage.memoryFraction”
can be increased. When shuffle class operations become relatively large, the parameter
“spark.storage.memoryFraction” should be appropriately reduced. It is also recommended that the
parameter “spark.shuffle.memoryFraction” be reduced when the Spark job RDD persistence operation
is less and the Shuffle operation is more.

Remote Sens. 2017, 9, 1301 17 of 33

4.4. Implementation of the Parallel DBSCAN Algorithm on a Virtual Spark Cluster

When the user does not have enough physical machines to establish a Spark cluster at the
beginning of the experiment, virtualization technology can offer an inexpensive way to construct
a cluster to deploy enough virtual nodes for testing and rapid program deployment. Thus, it can
manage the applications and facilitate interactive user applications quickly. Virtualization technology
is a management technology that simulates real-world computing environments, including virtual
computer hardware platforms, virtual storage devices, and virtual network resources. As a lightweight
container of virtualization technology in recent years, Docker has the advantages of traditional
virtualization, meanwhile, it also has characteristics such as file system isolation, resource isolation,
network isolation, copy-on-write, and logging recodes.

In order to test the efficiency of the parallel DBSCAN algorithm in the Spark cluster environment,
this study used Docker virtualization technology to build a virtualized Spark cluster platform,
and tested the parallel DBSCAN algorithm based on this. The principle of the parallel DBSCAN
algorithm based on a virtual Spark cluster is as follows. (1) Based on a high-performance physical
Linux server, when using the Docker virtualization technology and the existing Spark platform
mirrored on Docker Hub, one can dynamically extend the number of the constructed virtual Spark
cluster nodes; (2) Then, the parallel DBSCAN algorithm can be tested with different nodes on the virtual
Spark cluster; (3) Finally, the impact of the number of nodes with the parallel algorithm’s acceleration
ratio can be determined. A schematic diagram of the entire procedure is shown in Figure 14.

Remote Sens. 2017, 9, 1301 17 of 32

4.4. Implementation of the Parallel DBSCAN Algorithm on a Virtual Spark Cluster

When the user does not have enough physical machines to establish a Spark cluster at the
beginning of the experiment, virtualization technology can offer an inexpensive way to construct a
cluster to deploy enough virtual nodes for testing and rapid program deployment. Thus, it can
manage the applications and facilitate interactive user applications quickly. Virtualization
technology is a management technology that simulates real-world computing environments,
including virtual computer hardware platforms, virtual storage devices, and virtual network
resources. As a lightweight container of virtualization technology in recent years, Docker has the
advantages of traditional virtualization, meanwhile, it also has characteristics such as file system
isolation, resource isolation, network isolation, copy-on-write, and logging recodes.

In order to test the efficiency of the parallel DBSCAN algorithm in the Spark cluster
environment, this study used Docker virtualization technology to build a virtualized Spark cluster
platform, and tested the parallel DBSCAN algorithm based on this. The principle of the parallel
DBSCAN algorithm based on a virtual Spark cluster is as follows. (1) Based on a high-performance
physical Linux server, when using the Docker virtualization technology and the existing Spark
platform mirrored on Docker Hub, one can dynamically extend the number of the constructed virtual
Spark cluster nodes. (2) Then, the parallel DBSCAN algorithm can be tested with different nodes on
the virtual Spark cluster. (3) Finally, the impact of the number of nodes with the parallel algorithm’s
acceleration ratio can be determined. A schematic diagram of the entire procedure is shown in Figure
14.

Client

Host side

Mirror
registration side

Spark platform
image

Spark platform
image

Image warehouse

Linux Server

Container 1 Container 2 Container n...

Parallel DBSCAN program

Virtual Spark
cluster

...

Docker hub

Figure 14. Parallel DBSCAN algorithm based on a Docker-based virtual Spark cluster.

4.5. Implementation of the Parallel DBSCAN Algorithm on the Spark Cluster with Yarn

This part migrates the parallel DBSACN algorithm from the virtual cluster to a physical Spark
cluster, and introduces the Yarn resource manager to deploy the algorithm. When deploying the
Spark platform with Yarn, which only supports coarse-grained mode, the container starts on the Yarn
resource manager, the system resources cannot be dynamically expanded, and the resources used are
fixed.

To implement the parallel DBSCAN algorithm with the Yarn resource manager, Yarn will
replace the cluster manager in the Spark cluster. The execution process of the parallel algorithm with
Yarn is described as follows:

Figure 14. Parallel DBSCAN algorithm based on a Docker-based virtual Spark cluster.

4.5. Implementation of the Parallel DBSCAN Algorithm on the Spark Cluster with Yarn

This part migrates the parallel DBSACN algorithm from the virtual cluster to a physical Spark
cluster, and introduces the Yarn resource manager to deploy the algorithm. When deploying the
Spark platform with Yarn, which only supports coarse-grained mode, the container starts on the Yarn
resource manager, the system resources cannot be dynamically expanded, and the resources used
are fixed.

To implement the parallel DBSCAN algorithm with the Yarn resource manager, Yarn will replace
the cluster manager in the Spark cluster. The execution process of the parallel algorithm with Yarn is
described as follows:

Remote Sens. 2017, 9, 1301 18 of 33

(1) The Yarn client uploads the DBSCAN application packages to HDFS, and requests a job commit
to the Resource Manager to run this task.

(2) Resource Manager responds to the job and requests the Node Manager to create a Spark Application
Master and then starts it.

(3) Spark Application Master finds the resource files (the Jar packages, etc.) from the HDFS, and starts
DAGscheduler and YARN cluster scheduler to process the initialization operations. Then, the Spark
application master will apply the resources from the Resource Manager, and start the respective
container through the Node Manager.

(4) Each container contains multiple executors to perform the corresponding tasks simultaneously,
and report their state to the Spark Application Master.

The executing process of the parallel algorithm implemented with this mode is shown in Figure 15.

Remote Sens. 2017, 9, 1301 18 of 32

(1) The Yarn client uploads the DBSCAN application packages to HDFS, and requests a job commit
to the Resource Manager to run this task.

(2) Resource Manager responds to the job and requests the Node Manager to create a Spark Application
Master and then starts it.

(3) Spark Application Master finds the resource files (the Jar packages, etc.) from the HDFS, and starts
DAGscheduler and YARN cluster scheduler to process the initialization operations. Then, the Spark
application master will apply the resources from the Resource Manager, and start the respective
container through the Node Manager.

(4) Each container contains multiple executors to perform the corresponding tasks simultaneously,
and report their state to the Spark Application Master.

The executing process of the parallel algorithm implemented with this mode is shown in Figure 15.

Spark Yarn
Client

Resource
Manager

Node
Manager

Spark
Application Master

DAGScheduler

YarnClusterScheduler

HDFS

Spark Worker
Node

Manager

Start
App Master

Start container

Read data from HDFS

Start
scheduler

Assign tasks to
Workers

Parallel
DBSCAN
program

ContainerExecutor Executor

DBSCAN
local

clustering

DBSCAN
local

clustering

DBSCAN
local

clustering

DBSCAN
local

clustering

Figure 15. Parallel DBSCAN algorithm based on Yarn resource manager.

In this mode, the specified executor can be assigned to the parallel DBSCAN application via the
parameter “-num-executors”, and then each executor can be controlled by the parameters “-executor-
memory” and “-executor-cores” to set the size of the assigned memory and the number of occupied
CPU cores. This mechanism is conducive for controlling the system resources that the user-submitted
applications take up; thus, it can fully share the cluster resources, and improve the throughput of the
Yarn manager.

4.6. Implementation of the Parallel DBSCAN Algorithm on a Spark Cluster with Mesos

This part introduces the Mesos resource manager to deploy the Spark platform. Unlike the Yarn
resource manager, which adopts a process with an isolation mechanism, the Mesos resource manager
uses a Linux container to isolate resources such as memory and CPU. Mesos implements resource
sharing in a fine-grained manner, which is aimed at improving cluster utilization, and is highly
suitable for the unified management and scheduling of the resources at the data center scale.
However, Yarn is more convenient and effective for the management and scheduling of big data jobs.

Figure 15. Parallel DBSCAN algorithm based on Yarn resource manager.

In this mode, the specified executor can be assigned to the parallel DBSCAN application
via the parameter “-num-executors”, and then each executor can be controlled by the parameters
“-executor-memory” and “-executor-cores” to set the size of the assigned memory and the number
of occupied CPU cores. This mechanism is conducive for controlling the system resources that the
user-submitted applications take up; thus, it can fully share the cluster resources, and improve the
throughput of the Yarn manager.

4.6. Implementation of the Parallel DBSCAN Algorithm on a Spark Cluster with Mesos

This part introduces the Mesos resource manager to deploy the Spark platform. Unlike the Yarn
resource manager, which adopts a process with an isolation mechanism, the Mesos resource manager
uses a Linux container to isolate resources such as memory and CPU. Mesos implements resource
sharing in a fine-grained manner, which is aimed at improving cluster utilization, and is highly
suitable for the unified management and scheduling of the resources at the data center scale. However,
Yarn is more convenient and effective for the management and scheduling of big data jobs. Based on

Remote Sens. 2017, 9, 1301 19 of 33

Mesos deployment, a Spark cluster needs to implement two classes to perform a calculation through
the Mesos resource manager. One class is SparkScheduler, which is derived from the system class
MesosScheduler. The other class is SparkExecutor, which comes from the base system class of executor.

To implement the parallel DBSCAN algorithm based on the Mesos resource manager, the Mesos
master node will replace the cluster manager in the Spark cluster. The process of executing the parallel
algorithm with the Mesos resource manager is described as follows:

(1) After submitting a DBSCAN processing request through the client side, Spark will generate RDD
and Map/Reduce functions, and then transform and generate the corresponding job information.
Each job contains multiple tasks, and the job is submitted to the SparkScheduler.

(2) The job sets are sent to the Mesos master node by the SparkScheduler. The Mesos master node
performs the corresponding task scheduling to the Mesos slave nodes as the manager, these slave
nodes execute the corresponding task in parallel with multiple executors and then return the
results. The process of executing the parallel algorithm is shown in Figure 16.

Remote Sens. 2017, 9, 1301 19 of 32

Based on Mesos deployment, a Spark cluster needs to implement two classes to perform a calculation
through the Mesos resource manager. One class is SparkScheduler, which is derived from the system
class MesosScheduler. The other class is SparkExecutor, which comes from the base system class of
executor.

To implement the parallel DBSCAN algorithm based on the Mesos resource manager, the Mesos
master node will replace the cluster manager in the Spark cluster. The process of executing the
parallel algorithm with the Mesos resource manager is described as follows:

(1) After submitting a DBSCAN processing request through the client side, Spark will generate RDD
and Map/Reduce functions, and then transform and generate the corresponding job information.
Each job contains multiple tasks, and the job is submitted to the SparkScheduler.

(2) The job sets are sent to the Mesos master node by the SparkScheduler. The Mesos master node
performs the corresponding task scheduling to the Mesos slave nodes as the manager, these
slave nodes execute the corresponding task in parallel with multiple executors and then return
the results. The process of executing the parallel algorithm is shown in Figure 16.

SparkScheduler

Mesos Master

Job

Tasks

RDD

Map or Reduce

Parallel
DBSCAN
program

Task

Spark Executor

Mesos Slave

Task

Spark Executor

Mesos Slave

Task

Spark Executor

DBSCAN
local

clustering

Conversion

DBSCAN
local

clustering

DBSCAN
local

clustering

DBSCAN
local

clustering

DBSCAN
local

clustering

DBSCAN
local

clustering

Figure 16. Parallel DBSCAN algorithm based on Mesos resource manager.

There are two supported modes, i.e., the coarse-grained and the fine-grained mode, which are
used to deploy the parallel algorithm on Spark with Mesos resource management. With Mesos,
spark.mesos.coarse is set to True to configure the coarse-grained scheduling mode statically. The feature
of this mode is that the DBSCAN application has a separate and fixed memory allocation; thus, these
free CPU resources can be used to prompt the resource utilization when the application occupying
the machine cannot run a task.

5. Test and Analysis of the Proposed Parallel DBSCAN Algorithm

In this section, the serial and the corresponding parallel DBSCAN algorithms are used to process
different GPS trajectory datasets on different computing platforms to evaluate the parallel
algorithms’ performance.

5.1. Configurations of the Experimental Platforms

In this paper, there are three types of experimental platform, i.e., a single-node platform, a virtual
Spark cluster, and a physical Spark cluster. The hardware configuration and details of the equipped
software are shown in Table 6.

Figure 16. Parallel DBSCAN algorithm based on Mesos resource manager.

There are two supported modes, i.e., the coarse-grained and the fine-grained mode, which are
used to deploy the parallel algorithm on Spark with Mesos resource management. With Mesos,
spark.mesos.coarse is set to True to configure the coarse-grained scheduling mode statically. The feature of
this mode is that the DBSCAN application has a separate and fixed memory allocation; thus, these free
CPU resources can be used to prompt the resource utilization when the application occupying the
machine cannot run a task.

5. Test and Analysis of the Proposed Parallel DBSCAN Algorithm

In this section, the serial and the corresponding parallel DBSCAN algorithms are used to
process different GPS trajectory datasets on different computing platforms to evaluate the parallel
algorithms’ performance.

5.1. Configurations of the Experimental Platforms

In this paper, there are three types of experimental platform, i.e., a single-node platform, a virtual
Spark cluster, and a physical Spark cluster. The hardware configuration and details of the equipped
software are shown in Table 6.

Remote Sens. 2017, 9, 1301 20 of 33

Table 6. Experimental platforms’ configuration information.

Platform Name Hardware Configuration Installed Software Computing Nodes

Single-node
platform

Processors: Intel(R) Xeon(R) E5-2650 v2 @2.60GHz CentOS 7.0

1
Cores: 8 Spark 1.6.0

Memory size: 64G Java 1.8.0
Cache size: 20480KB Scala 2.10.4

Virtual Spark
cluster

Processors: Intel(R) Xeon(R) E5-2650 v2 @ 2.60GHz
CentOS 7.0

4 virtual node from 1
physical node with
Docker software

Spark 1.6.0
Cores: 8 Docker 1.8.0

Memory size: 64G Scala 2.10.4
Cache size: 20480KB Java 1.8.0

Physical Spark
Cluster

Processors: Intel(R) Xeon(R) E5-2650 v2 @2.60GHz
CentOS 7.0

4
Spark 1.6.0

Cores: 8 Hadoop 2.6.0
Memory size: 64G Java 1.8.0

Cache size: 20480KB Scala 2.10.4

5.2. Experimental Data

In this paper, all experimental data were obtained from the GPS trajectory datasets of Shenzhen
in April 2011. The data sets are entirely in ASCII format, and contain vehicle license plate number,
latitude and longitude information, vehicle status, speed, and direction of traffic. Before processing,
we need to extract the latitude and longitude information from the existing data and form a new
spatial dataset with different scales (in this study, different numbers of vehicle records) of 10 K, 20 K,
40 K, 80 K and 100 K. The hotspot detection processing step is rather time-consuming when the data
scale reaches or exceeds 40 K. For real-world applications, the data scale needs to be further increased.
The experimental data format and a description are shown in Figure 17.

Remote Sens. 2017, 9, 1301 20 of 32

Table 6. Experimental platforms’ configuration information.

Platform Name Hardware Configuration Installed Software Computing Nodes

Single-node
platform

Processors: Intel(R) Xeon(R) E5-2650 v2 @2.60GHz CentOS 7.0

1
Cores: 8 Spark 1.6.0

Memory size: 64G Java 1.8.0
Cache size: 20480KB Scala 2.10.4

Virtual Spark
cluster

Processors: Intel(R) Xeon(R) E5-2650 v2 @ 2.60GHz
CentOS 7.0

4 virtual node from 1
physical node with
Docker software

Spark 1.6.0
Cores: 8 Docker 1.8.0

Memory size: 64G Scala 2.10.4
Cache size: 20480KB Java 1.8.0

Physical Spark
Cluster

Processors: Intel(R) Xeon(R) E5-2650 v2 @2.60GHz
CentOS 7.0

4
Spark 1.6.0

Cores: 8 Hadoop 2.6.0
Memory size: 64G Java 1.8.0

Cache size: 20480KB Scala 2.10.4

5.2. Experimental Data

In this paper, all experimental data were obtained from the GPS trajectory datasets of Shenzhen
in April 2011. The data sets are entirely in ASCII format, and contain vehicle license plate number,
latitude and longitude information, vehicle status, speed, and direction of traffic. Before processing,
we need to extract the latitude and longitude information from the existing data and form a new
spatial dataset with different scales (in this study, different numbers of vehicle records) of 10 K, 20 K,
40 K, 80 K and 100 K. The hotspot detection processing step is rather time-consuming when the data
scale reaches or exceeds 40 K. For real-world applications, the data scale needs to be further increased.
The experimental data format and a description are shown in Figure 17.

Figure 17. Description and data format of the GPS trajectory data.

Figure 17. Description and data format of the GPS trajectory data.

Remote Sens. 2017, 9, 1301 21 of 33

5.3. Parallel Algorithm Evaluation Index

In this paper, two factors—speedup scalability is used to evaluate the parallel algorithms’
performance. Among them, speedup is an important evaluation index, which can directly reflect the
level of parallel efficiency [50]. The definition of speedup is as shown in Equation (1):

Sp =
Tl
Tp

(1)

where Sp means speedup, Tl indicates the processing time of the serial algorithm, and Tp represents the
processing time of the parallel algorithm. When Sp is larger, the performance of the parallel algorithm
is higher.

5.4. Experiment Design

Based on five selected datasets with different data scales, the performance of the parallel DBSCAN
algorithms was tested and compared with a serial algorithm with the fixed clustering parameters
(Eps, MinPts) set to (15, 90). To obtain the accurate running time of the serial and parallel algorithm,
functions such as time.h, clock () and currentTimeMillis () etc. were used for the time statistics. In order
to reduce experimental error, all running time values are expressed as the statistical average time
over several experiments. The entire experiment consisted of the following five tests on the parallel
DBSCAN algorithm:

(1) Test the performance of the parallel DBSCAN algorithm based on a single-node Spark platform.
(2) Test the performance of the optimized parallel algorithm based on a single-node Spark platform.
(3) Test the performance of the parallel algorithm based on a virtual Spark cluster.
(4) Obtain the performance of the parallel algorithm based on a physical Spark cluster. The tests

were conducted employing both the Mesos and Yarn resources managing modes in turn.

5.5. Experimental Results and Analysis

5.5.1. Testing the Parallel Algorithm on a Single-Node Spark Platform

For a single-node Spark platform, the running time of the serial and parallel DBSCAN algorithms
for the five different data scales are shown in Table 7. For the five datasets, the processing performance
of the parallel algorithm based on the single-node Spark platform is significantly higher than that of
the serial algorithm. The speedup values of the parallel algorithm are shown in Figure 18.

Table 7. Running time of serial and parallel DBSCAN algorithm based on a single-node Spark platform.

Data Scales Clustering Parameters Sequential Elapsed
Time (s)

Parallel Elapsed Time on Single
Node Spark Platform (s)

10 K (15, 90) 36.63 12.98
20 K (15, 90) 144.10 29.89
40 K (15, 90) 570.40 78.68
80 K (15, 90) 2281.87 273.93
100 K (15, 90) 3815.95 453.74

From Figure 18, generally, it can be seen that the speedup of the parallel algorithm based on the
single-node Spark platform accelerates gradually as the data scale increases. When the data scale is
small, the execution time is shorter, and the acceleration ratio is not ideal. This phenomenon is also
influenced by factors related to the Spark platform’s internal data transmission and communication
processes. When the data scale reaches 40 K, the acceleration ratio tends to be stable. Due to the
limitation of CPU core number in the single-node Spark platform, the parallel algorithm can only start

Remote Sens. 2017, 9, 1301 22 of 33

a small number of executors. When the spatial data scale reaches the 100 K scale, the obtained speedup
reaches 8.41.

The aforementioned test results show that it is feasible to parallelize the DBSCAN algorithm on
the Spark platform, which can improve its processing efficiency to some extent.Remote Sens. 2017, 9, 1301 22 of 32

Figure 18. Speedup of the parallel DBSCAN algorithm based on a single-node Spark platform.

From Figure 18, generally, it can be seen that the speedup of the parallel algorithm based on the
single-node Spark platform accelerates gradually as the data scale increases. When the data scale is
small, the execution time is shorter, and the acceleration ratio is not ideal. This phenomenon is also
influenced by factors related to the Spark platform’s internal data transmission and communication
processes. When the data scale reaches 40 K, the acceleration ratio tends to be stable. Due to the
limitation of CPU core number in the single-node Spark platform, the parallel algorithm can only
start a small number of executors. When the spatial data scale reaches the 100 K scale, the obtained
speedup reaches 8.41.

The aforementioned test results show that it is feasible to parallelize the DBSCAN algorithm on
the Spark platform, which can improve its processing efficiency to some extent.

5.5.2. Testing the Optimized Parallel Algorithm on a Single-Node Spark Platform

The optimized parallel algorithm adopts three measures to improve its performance. The
comparison of the parallel algorithm based on the same single-node Spark platform before and after
the optimization are demonstrated in Table 8.

Table 8. Comparison of the elapsed time of the parallel algorithm and its optimized algorithm.

Data
Scales

Elapsed Time of the
Serial Processing (s)

Elapsed Time of the Parallel
Algorithm before Optimization (s)

Elapsed Time of the Parallel
Algorithm after Optimization (s)

10 K 36.63 12.98 7.55
20 K 144.10 29.89 15.92
40 K 570.40 78.68 43.12
80 K 2281.87 273.93 166.56
100 K 3815.95 453.74 274.53

From Table 8, it can be seen that the optimized parallel algorithm is more efficient than the
original parallel algorithm. The acceleration ratios of five different data scales are shown in Figure
19, from which it can be seen that the obtained speedup values increase from 2.82, 4.82, 7.25, 8.33, and
8.41 to 4.85, 9.05, 13.23, 13.70 and 13.90, respectively, for the different data scales. The performance
improvement ratio of the optimized parallel algorithm is improved by 71.99%, 87.76%, 82.48%,
64.47%, 65.28% based on the single-node Spark platform. The test results show that the performance
of the optimized algorithm is further accelerated, which verifies the effectiveness of the three
optimization methods described.

2.82

4.82

7.25

8.33 8.41

0
1
2
3
4
5
6
7
8
9

10K 20K 40K 80K 100K

S
pe

ed
up

Data scale

Figure 18. Speedup of the parallel DBSCAN algorithm based on a single-node Spark platform.

5.5.2. Testing the Optimized Parallel Algorithm on a Single-Node Spark Platform

The optimized parallel algorithm adopts three measures to improve its performance.
The comparison of the parallel algorithm based on the same single-node Spark platform before
and after the optimization are demonstrated in Table 8.

Table 8. Comparison of the elapsed time of the parallel algorithm and its optimized algorithm.

Data Scales Elapsed Time of the
Serial Processing (s)

Elapsed Time of the Parallel
Algorithm before Optimization (s)

Elapsed Time of the Parallel
Algorithm after Optimization (s)

10 K 36.63 12.98 7.55
20 K 144.10 29.89 15.92
40 K 570.40 78.68 43.12
80 K 2281.87 273.93 166.56

100 K 3815.95 453.74 274.53

From Table 8, it can be seen that the optimized parallel algorithm is more efficient than the
original parallel algorithm. The acceleration ratios of five different data scales are shown in Figure 19,
from which it can be seen that the obtained speedup values increase from 2.82, 4.82, 7.25, 8.33, and
8.41 to 4.85, 9.05, 13.23, 13.70 and 13.90, respectively, for the different data scales. The performance
improvement ratio of the optimized parallel algorithm is improved by 71.99%, 87.76%, 82.48%, 64.47%,
65.28% based on the single-node Spark platform. The test results show that the performance of the
optimized algorithm is further accelerated, which verifies the effectiveness of the three optimization
methods described.

Remote Sens. 2017, 9, 1301 23 of 33
Remote Sens. 2017, 9, 1301 23 of 32

Figure 19. Comparison of achieved Speedup before and after the optimization.

5.5.3. Testing the Parallel Algorithm on a Virtual Spark Cluster Platform

In this section, Docker container virtualization technology is used to build a specified number
of Spark virtual clusters dynamically based on a Linux server, and to test the efficiency of the parallel
algorithm based on a virtualized Spark cluster. The elapsed time of the algorithm is shown in Table
9, from which it can be seen that the processing time of the parallel algorithm is not reduced with the
number of virtual cluster nodes on the single-node Spark platform. The scalability of the parallel
algorithm on a virtual cluster is unsatisfactory, because the acceleration ratio of the parallel algorithm
does not linearly increase with the number of cluster nodes.

Combined with the Spark platform and Docker container’s technical characteristics, the above
results arise for the following reasons:

(1) The parallel algorithm has intensive I/O operations, so it requires a higher network-transmission
state; however, the virtual cluster built with a single-node server encounters transmission
pressure.

(2) The performance of the virtual Spark cluster cannot achieve the same desired effects as a
physical Spark cluster.

Although the performance of the parallel algorithm on the Docker-based virtual Spark cluster is
poor, it presents a simulation of the Spark cluster environment that is able to test the implementation
of parallel programs in cluster mode for the user. In the next section, a physical Spark cluster is used
to test the parallel algorithm, replacing the virtual Docker Spark cluster.

Table 9. Running time of serial and parallel DBSCAN algorithms based on Docker Spark platform (s).

Virtual Nodes
Data Scales 1 2 3 4

10 K 7.55 15.38 16.22 17.87
20 K 15.92 24.73 24.85 25.25
40 K 43.12 61.46 59.27 58.00
80 K 166.56 190.28 188.52 186.32

100 K 274.53 360.24 358.24 366.48

5.5.4. Testing the Parallel Algorithm on a Spark Cluster with the Yarn Resources Manager

In this section, a physical Spark cluster and the Yarn resource manager are used to deploy and
test the performance of the parallel DBSCAN algorithm. The speedup changes in relation to different
data scales in this mode are recoded and compared, as shown in Figure 20.

2.82

4.82

7.25
8.33 8.41

4.85

9.05

13.23 13.7 13.9

0

2

4

6

8

10

12

14

16

10K 20K 40K 80K 100K

S
pe

ed
up

Data scale

Before optimization After optimization

Figure 19. Comparison of achieved Speedup before and after the optimization.

5.5.3. Testing the Parallel Algorithm on a Virtual Spark Cluster Platform

In this section, Docker container virtualization technology is used to build a specified number of
Spark virtual clusters dynamically based on a Linux server, and to test the efficiency of the parallel
algorithm based on a virtualized Spark cluster. The elapsed time of the algorithm is shown in Table 9,
from which it can be seen that the processing time of the parallel algorithm is not reduced with the
number of virtual cluster nodes on the single-node Spark platform. The scalability of the parallel
algorithm on a virtual cluster is unsatisfactory, because the acceleration ratio of the parallel algorithm
does not linearly increase with the number of cluster nodes.

Combined with the Spark platform and Docker container’s technical characteristics, the above
results arise for the following reasons:

(1) The parallel algorithm has intensive I/O operations, so it requires a higher network-transmission
state; however, the virtual cluster built with a single-node server encounters transmission pressure.

(2) The performance of the virtual Spark cluster cannot achieve the same desired effects as a physical
Spark cluster.

Although the performance of the parallel algorithm on the Docker-based virtual Spark cluster is
poor, it presents a simulation of the Spark cluster environment that is able to test the implementation
of parallel programs in cluster mode for the user. In the next section, a physical Spark cluster is used
to test the parallel algorithm, replacing the virtual Docker Spark cluster.

Table 9. Running time of serial and parallel DBSCAN algorithms based on Docker Spark platform (s).

Data Scales
Virtual Nodes 1 2 3 4

10 K 7.55 15.38 16.22 17.87
20 K 15.92 24.73 24.85 25.25
40 K 43.12 61.46 59.27 58.00
80 K 166.56 190.28 188.52 186.32
100 K 274.53 360.24 358.24 366.48

Remote Sens. 2017, 9, 1301 24 of 33

5.5.4. Testing the Parallel Algorithm on a Spark Cluster with the Yarn Resources Manager

In this section, a physical Spark cluster and the Yarn resource manager are used to deploy and
test the performance of the parallel DBSCAN algorithm. The speedup changes in relation to different
data scales in this mode are recoded and compared, as shown in Figure 20.Remote Sens. 2017, 9, 1301 24 of 32

Figure 20. Achieved speedup of the parallel algorithm with different data scales with the Yarn
resources manger.

As can be seen from Figure 20, the acceleration curves for the obtained speedup for data scales
of 10 K and 40 K in this mode tend to be gentle as the number of computing nodes increases. This is
mainly because the data scale is relatively small, and hence their processing times are relatively short.
With an increase in computing nodes, the expenses of data transmission, resource scheduling,
heartbeat detection, etc. reduce the execution efficiency of the algorithm. It can be seen that the
acceleration ratio achieved is basically consistent with a linear increase with processing data scales of
80 K and 100 K. However, a single-node cluster cannot process such large amounts data, which
indicates that the parallel DBSCAN algorithm based on the Spark in Yarn mode is effective when the
data amount is sufficiently large. This method can solve the performance bottleneck that arises when
using the serial algorithm, and thus dramatically improves processing efficiency.

5.5.5. Testing the Parallel Algorithm on a Spark Cluster with the Mesos Resources Manager

In this part, the same physical Spark cluster using the Mesos resource manager to deploy and
test the parallel DBSCAN algorithm was tested. Meanwhile, the performance results achieved under
these two modes were tested. The speedup changes for different data scales in this mode are recoded
and compared in Figure 21.

4.85
5.02 4.21 3.54

9.05
10.25 9.83

8.4213.23

15.01 15.03 14.99
13.7

17.22

20.31
22.62

13.9

20.35

24.88

28.51

0

5

10

15

20

25

30

1 2 3 4

S
pe

ed
up

Nodes

10K Scale 20K Scale 40K Scale 80K Scale 100K Scale

4.85 4.32 4.12 3.21

9.05 9.71 8.92 8.04

13.23
14.32 13.58 14.0313.70
16.41

19.25
20.98

13.90
19.22

23.56

26.90

0

5

10

15

20

25

30

1 2 3 4

S
pe

ed
up

Nodes

10K Scale 20K Scale 40K Scale
80K Scale 100K Scale

Figure 20. Achieved speedup of the parallel algorithm with different data scales with the Yarn
resources manger.

As can be seen from Figure 20, the acceleration curves for the obtained speedup for data scales
of 10 K and 40 K in this mode tend to be gentle as the number of computing nodes increases. This is
mainly because the data scale is relatively small, and hence their processing times are relatively short.
With an increase in computing nodes, the expenses of data transmission, resource scheduling, heartbeat
detection, etc. reduce the execution efficiency of the algorithm. It can be seen that the acceleration
ratio achieved is basically consistent with a linear increase with processing data scales of 80 K and
100 K. However, a single-node cluster cannot process such large amounts data, which indicates that
the parallel DBSCAN algorithm based on the Spark in Yarn mode is effective when the data amount is
sufficiently large. This method can solve the performance bottleneck that arises when using the serial
algorithm, and thus dramatically improves processing efficiency.

5.5.5. Testing the Parallel Algorithm on a Spark Cluster with the Mesos Resources Manager

In this part, the same physical Spark cluster using the Mesos resource manager to deploy and test
the parallel DBSCAN algorithm was tested. Meanwhile, the performance results achieved under these
two modes were tested. The speedup changes for different data scales in this mode are recoded and
compared in Figure 21.

In Figure 21, we find the same phenomenon as with the Yarn mode. For example, the acceleration
curve tends to be flat with the data scales of between 10 K and 40 K, while better acceleration ratios are
achieved as the data scale becomes larger.

To determine the performance difference of these two resources managers, experiments were
performed using a data scale of 100 K for both of these modes. A comparison chart of their acceleration
performance is shown in Figure 22.

From Figure 22, it can be seen that Yarn shows better performance, and is more suitable than
Mesos for applications with more iterations. The reason for this is that the Yarn resource manager is
able to deal with the dynamic distribution of resources according to the application requirements when

Remote Sens. 2017, 9, 1301 25 of 33

dealing with algorithms with multiple iterations. As a result, Yarn can make full use of the computing
capability of the Spark cluster platform.

Remote Sens. 2017, 9, 1301 24 of 32

Figure 20. Achieved speedup of the parallel algorithm with different data scales with the Yarn
resources manger.

As can be seen from Figure 20, the acceleration curves for the obtained speedup for data scales
of 10 K and 40 K in this mode tend to be gentle as the number of computing nodes increases. This is
mainly because the data scale is relatively small, and hence their processing times are relatively short.
With an increase in computing nodes, the expenses of data transmission, resource scheduling,
heartbeat detection, etc. reduce the execution efficiency of the algorithm. It can be seen that the
acceleration ratio achieved is basically consistent with a linear increase with processing data scales of
80 K and 100 K. However, a single-node cluster cannot process such large amounts data, which
indicates that the parallel DBSCAN algorithm based on the Spark in Yarn mode is effective when the
data amount is sufficiently large. This method can solve the performance bottleneck that arises when
using the serial algorithm, and thus dramatically improves processing efficiency.

5.5.5. Testing the Parallel Algorithm on a Spark Cluster with the Mesos Resources Manager

In this part, the same physical Spark cluster using the Mesos resource manager to deploy and
test the parallel DBSCAN algorithm was tested. Meanwhile, the performance results achieved under
these two modes were tested. The speedup changes for different data scales in this mode are recoded
and compared in Figure 21.

4.85
5.02 4.21 3.54

9.05
10.25 9.83

8.4213.23

15.01 15.03 14.99
13.7

17.22

20.31
22.62

13.9

20.35

24.88

28.51

0

5

10

15

20

25

30

1 2 3 4

S
pe

ed
up

Nodes

10K Scale 20K Scale 40K Scale 80K Scale 100K Scale

4.85 4.32 4.12 3.21

9.05 9.71 8.92 8.04

13.23
14.32 13.58 14.0313.70
16.41

19.25
20.98

13.90
19.22

23.56

26.90

0

5

10

15

20

25

30

1 2 3 4

S
pe

ed
up

Nodes

10K Scale 20K Scale 40K Scale
80K Scale 100K Scale

Figure 21. Achieved Speedup of the parallel algorithm at different data scales with the Mesos
resource manager.

Remote Sens. 2017, 9, 1301 25 of 32

Figure 21. Achieved Speedup of the parallel algorithm at different data scales with the Mesos resource
manager.

In Figure 21, we find the same phenomenon as with the Yarn mode. For example, the
acceleration curve tends to be flat with the data scales of between 10 K and 40 K, while better
acceleration ratios are achieved as the data scale becomes larger.

To determine the performance difference of these two resources managers, experiments were
performed using a data scale of 100 K for both of these modes. A comparison chart of their
acceleration performance is shown in Figure 22.

Figure 22. Performance comparison of Yarn and Mesos resources manager.

From Figure 22, it can be seen that Yarn shows better performance, and is more suitable than
Mesos for applications with more iterations. The reason for this is that the Yarn resource manager is
able to deal with the dynamic distribution of resources according to the application requirements
when dealing with algorithms with multiple iterations. As a result, Yarn can make full use of the
computing capability of the Spark cluster platform.

6. An Urban Congestion Area Discovery Application

6.1 Summary of City Traffic Congestion Area Discovery

Urban transportation is one of the main driving forces of urban development, and is responsible
for connecting cities, regulating the passenger flow, and providing logistics for city development.
The traffic situation has a decisive impact on a city’s system development, and the lives of traveling
people [51]. However, with the development of the urban economy, the numbers of private cars,
taxis, and bus holdings have gradually increased, and the traffic infrastructure in some areas has been
unable to meet the growing demand for vehicle operation and transport capacity. Thus, locating areas
of traffic congestion, and subsequently targeting the planning of new urban roads to alleviate these
problems are important hurdles that urgently need to be overcome in urban design and construction
[52]. Spatial data contains rich spatial features, thematic features, temporal characteristics, and other
semantic information. Therefore, by studying temporal and spatial trajectory spatial data, we can
understand the rules of its movement and its corresponding changes. Taxi trajectory data can reflect
the traffic situation in a city to a certain extent. Through a large volume of taxi trajectory data, one
can quickly understand the dynamical distribution of vehicles and find congested areas in urban
traffic. Locating these congested areas can help urban planners understand the problems in urban
transportation, and hence adopt some measures to adjust, optimize and upgrade urban roads to meet
the growing demand for traffic and transportation. The DBSCAN algorithm can be used in these
applications.

13.92

20.35

24.88 28.51

13.92 19.22

23.56

26.9

0

5

10

15

20

25

30

1 2 3 4

S
pe

ed
up

Nodes

Spark on YARN Spark on Mesos

Figure 22. Performance comparison of Yarn and Mesos resources manager.

6. An Urban Congestion Area Discovery Application

6.1. Summary of City Traffic Congestion Area Discovery

Urban transportation is one of the main driving forces of urban development, and is responsible
for connecting cities, regulating the passenger flow, and providing logistics for city development.
The traffic situation has a decisive impact on a city’s system development, and the lives of traveling
people [51]. However, with the development of the urban economy, the numbers of private cars, taxis,
and bus holdings have gradually increased, and the traffic infrastructure in some areas has been unable
to meet the growing demand for vehicle operation and transport capacity. Thus, locating areas of traffic
congestion, and subsequently targeting the planning of new urban roads to alleviate these problems
are important hurdles that urgently need to be overcome in urban design and construction [52].

Remote Sens. 2017, 9, 1301 26 of 33

Spatial data contains rich spatial features, thematic features, temporal characteristics, and other
semantic information. Therefore, by studying temporal and spatial trajectory spatial data, we can
understand the rules of its movement and its corresponding changes. Taxi trajectory data can reflect
the traffic situation in a city to a certain extent. Through a large volume of taxi trajectory data, one
can quickly understand the dynamical distribution of vehicles and find congested areas in urban
traffic. Locating these congested areas can help urban planners understand the problems in urban
transportation, and hence adopt some measures to adjust, optimize and upgrade urban roads to
meet the growing demand for traffic and transportation. The DBSCAN algorithm can be used in
these applications.

6.2. Traffic Congestion Area Discovery Based on the Spark Platform

Although the serial DBSCAN algorithm has been successfully applied in the field of traffic-jam
discovery, with the gradual increase in data size, it cannot meet the needs of some real-time applications.
In order to speed up the process, this study applied the parallel DBSCAN algorithm to the problem of
city traffic congestion discovery based on the Spark cluster platform.

First, the GPS trajectory data was cleaned to obtain a spatial data format suitable for
data-clustering operations. Then, the spatial data was clustered on each computing node in the
Spark cluster. After each computing node had finished a calculation, the clustering results were
merged. Then, through certain data processing means, areas of traffic congestion were identified.
Finally, based on comparison with the existing research results, the feasibility and practicality of the
parallel DBSCAN algorithm were verified. The entire process is demonstrated in Figure 23.

Remote Sens. 2017, 9, 1301 26 of 32

6.2. Traffic Congestion Area Discovery Based on the Spark Platform

Although the serial DBSCAN algorithm has been successfully applied in the field of traffic-jam
discovery, with the gradual increase in data size, it cannot meet the needs of some real-time
applications. In order to speed up the process, this study applied the parallel DBSCAN algorithm to
the problem of city traffic congestion discovery based on the Spark cluster platform.

First, the GPS trajectory data was cleaned to obtain a spatial data format suitable for data-
clustering operations. Then, the spatial data was clustered on each computing node in the Spark
cluster. After each computing node had finished a calculation, the clustering results were merged.
Then, through certain data processing means, areas of traffic congestion were identified. Finally,
based on comparison with the existing research results, the feasibility and practicality of the parallel
DBSCAN algorithm were verified. The entire process is demonstrated in Figure 23.

Figure 23. Entire process of the congested area discovery with GPS trajectory data.

6.3. Experimental Data and Platform Configuration

The experimental data used are taxi GPS data of Shenzhen City in the year of 2011. The data
contains a total of 13,799 vehicles and a data size of 1331 MB. The acquired data are from April 18 to
April 26, with an acquisition frequency of 1–5 s. The data format as shown in Table 10. Experiments
were performed on this data set using the serial DBSCAN algorithm and the corresponding parallel
algorithm based on the single-node platform and the Spark cluster platform. The hardware and
software configuration of the test platforms were as described in Table 6.

Table 10. Experimental GPS data format (using one vehicle as an example).

Car No. Time ID wd Status v Angle
YB000H6 2011/04/18 00:07:53 114.118347 22.574850 0 0 0
YB000H6 2011/04/18 00:08:01 114.118347 22.574850 0 0 0
YB000H6 2011/04/18 00:08:03 114.118347 22.574850 0 2 0
YB000H6 2011/04/18 00:08:33 114.118301 22.574301 0 25 4
YB000H6 2011/04/18 00:08:39 114.118286 22.573967 0 22 3

…… …… …… …… …… …… ……

Figure 23. Entire process of the congested area discovery with GPS trajectory data.

6.3. Experimental Data and Platform Configuration

The experimental data used are taxi GPS data of Shenzhen City in the year of 2011. The data
contains a total of 13,799 vehicles and a data size of 1331 MB. The acquired data are from April 18 to
April 26, with an acquisition frequency of 1–5 s. The data format as shown in Table 10. Experiments
were performed on this data set using the serial DBSCAN algorithm and the corresponding parallel
algorithm based on the single-node platform and the Spark cluster platform. The hardware and
software configuration of the test platforms were as described in Table 6.

Remote Sens. 2017, 9, 1301 27 of 33

Table 10. Experimental GPS data format (using one vehicle as an example).

Car No. Time ID wd Status v Angle

YB000H6 2011/04/18 00:07:53 114.118347 22.574850 0 0 0
YB000H6 2011/04/18 00:08:01 114.118347 22.574850 0 0 0
YB000H6 2011/04/18 00:08:03 114.118347 22.574850 0 2 0
YB000H6 2011/04/18 00:08:33 114.118301 22.574301 0 25 4
YB000H6 2011/04/18 00:08:39 114.118286 22.573967 0 22 3

. .

6.4. Experiments and Analysis

After selecting the above GPS trajectory data, a pre-processing process was used to remove wild
values, e.g., (1) GPS geographical location data that exceeded the geographic location of Shenzhen,
(2) acquisition data obtained for time periods between 00:00 and 06:00, (3) repeated data points, etc.
The GPS data format after pre-processing is demonstrated in Table 11.

Table 11. GPS data format after the pre-processing procedure.

Car No. Time ID wd Status Velocity Angle

YB000H6 2011/04/18 07:59:52 114.150284 22.591333 0 0 4
YB000H6 2011/04/18 08:04:52 114.118301 22.589149 0 16 5
YB000H6 2011/04/18 08:05:22 114.149269 22.588949 0 10 5
YB000H6 2011/04/18 08:06:22 114.149284 22.588949 0 0 5

. .

After the pre-processing process, the data was processed a second time. In this process, we
simplified the data, extracting only the latitude and longitude information of the taxi from the
pre-processed data. Then, the spatial data was included in the cluster operation using the DBSCAN
algorithm following extraction of the latitude and longitude information of the taxi from the
pre-processed data. The format of the processed GPS tracking data (here using the car YB000H6
as an example) is shown in Table 12, while a visualization of the taxi trajectory distribution before the
clustering is shown in Figure 24.

Based on the above optimized latitude and longitude data, the parallel DBSCAN algorithm
based on the Spark platform was used to cluster and obtain the areas most highly frequented by
taxis within a fixed time period, i.e., the trajectory interest area. The processed results are shown in
Table 13, and a visualization of the taxi trajectory distribution obtained from the parallel DBSCAN
clustering algorithm is shown in Figure 25. In this figure, there are two generated clusters (color with
black and gray). The two clustered areas show the areas more densely frequented by taxis. The light
gray-colored areas represent noise; that is, it shows points that do not satisfy the DBSCAN algorithm
cluster conditions.

Table 12. GPS data format after optimization processing.

Car No. Longitude Latitude

YB000H6 114.150284 22.591333
YB000H6 114.118301 22.589149
YB000H6 114.149269 22.588949
YB000H6 114.149284 22.588949
YB000H6 114.135834 22.578899
YB000H6 114.115616 22.602633

.

Remote Sens. 2017, 9, 1301 28 of 33Remote Sens. 2017, 9, 1301 28 of 32

Figure 24. The trajectory distribution of the original data before clustering.

Figure 25. Visualization of the trajectory data distribution after the clustering operation.

All taxi trajectory GPS data were processed in the same way with the parallel DBSCAN
algorithm on the Spark platform. After each node in the Spark cluster completed the data processing,
the clustering results were merged to produce the final clustering result. The final clustering result
shows dense areas of taxi traffic that appear at specific time slots in the city.

The final results of the entire clustering process show that 14 clusters were generated; that is, the
city has 14 densely congested traffic areas in the designated time period. By obtaining the GPS
coordinates of the central points of these clusters, we can locate the congested regional centers and
find the corresponding congested sections. The coordinates of the central points of these clusters and
the corresponding distribution of the congested urban sections are shown in Table 14. The results in
the table are consistent with existing research findings for the Shenzhen Traffic Jamming Area [53],
which shows that the parallel algorithm has achieved correct results and verifies the practicality of
the parallel DBSCAN algorithm based on the Spark platform.

Figure 24. The trajectory distribution of the original data before clustering.

Table 13. Results format after clustering

Longitude Latitude Subordinated Clustering No.

114.150284 22.591333 1
114.118301 22.589149 1
114.149269 22.588949 1
114.149284 22.588949 1
114.135834 22.578899 2
114.115616 22.602633 0 (noise point)

.

Remote Sens. 2017, 9, 1301 28 of 32

Figure 24. The trajectory distribution of the original data before clustering.

Figure 25. Visualization of the trajectory data distribution after the clustering operation.

All taxi trajectory GPS data were processed in the same way with the parallel DBSCAN
algorithm on the Spark platform. After each node in the Spark cluster completed the data processing,
the clustering results were merged to produce the final clustering result. The final clustering result
shows dense areas of taxi traffic that appear at specific time slots in the city.

The final results of the entire clustering process show that 14 clusters were generated; that is, the
city has 14 densely congested traffic areas in the designated time period. By obtaining the GPS
coordinates of the central points of these clusters, we can locate the congested regional centers and
find the corresponding congested sections. The coordinates of the central points of these clusters and
the corresponding distribution of the congested urban sections are shown in Table 14. The results in
the table are consistent with existing research findings for the Shenzhen Traffic Jamming Area [53],
which shows that the parallel algorithm has achieved correct results and verifies the practicality of
the parallel DBSCAN algorithm based on the Spark platform.

Figure 25. Visualization of the trajectory data distribution after the clustering operation.

All taxi trajectory GPS data were processed in the same way with the parallel DBSCAN
algorithm on the Spark platform. After each node in the Spark cluster completed the data processing,

Remote Sens. 2017, 9, 1301 29 of 33

the clustering results were merged to produce the final clustering result. The final clustering result
shows dense areas of taxi traffic that appear at specific time slots in the city.

The final results of the entire clustering process show that 14 clusters were generated; that is,
the city has 14 densely congested traffic areas in the designated time period. By obtaining the GPS
coordinates of the central points of these clusters, we can locate the congested regional centers and
find the corresponding congested sections. The coordinates of the central points of these clusters and
the corresponding distribution of the congested urban sections are shown in Table 14. The results in
the table are consistent with existing research findings for the Shenzhen Traffic Jamming Area [53],
which shows that the parallel algorithm has achieved correct results and verifies the practicality of the
parallel DBSCAN algorithm based on the Spark platform.

Table 14. Central points of congested areas.

Area No. Longitude Latitude Congested Urban Sections

1 114.115838 22.585331 Bujiguan
2 114.163884 22.605763 Shawangguan
3 113.910531 22.552058 Nantouguan
4 114.092502 22.55025 Huaqiangbei Road
5 114.132781 22.560929 Dongmenzhong Road
6 114.094852 22.618864 Qingshuiqiao
7 113.990657 22.540561 Shennan Rd., Huaqiaocheng
8 114.243162 22.599692 Shenyan Rd., Yantianganqu
9 114.344448 22.601422 YanbaRd., Expressway Entrance
10 114.125419 22.605532 Buji Road
11 114.289037 22.748603 Shenhui Road
12 114.066885 22.611871 Bantian Wuhe Ave.
13 114.202285 22.558944 Luosha Rd.
14 113.910531 22.552058 #107 National Highway

At the same time, performance experiments based on two data sets were performed. One had
4000 K trajectory records and a data volume of 1054 MB, while the other had 2000 K trajectory records
and a data size of 500 MB. The processing time required for these data sets using the traditional
serial algorithm and the parallel algorithm on Spark platform was tested, and the results are shown
in Table 15.

Table 15. Processing time comparison of the serial algorithm and the parallel algorithm with different
data sets

Data Scale Processing Platform Selected Algorithm Elapsed Time (h)

4000 K (1054 MB)
Single node Serial DBSCAN Algorithm Out of memory

Spark cluster Parallel DBSCAN Algorithm based on Spark 2.2

2000 K (500 MB)
Single node Serial DBSCAN Algorithm 13

Spark cluster Parallel DBSCAN Algorithm based on Spark 0.4

From Table 15, it can be seen that when the data scale was 2000 K, the elapsed time of the serial
algorithm was 13 h, which cannot satisfy real-time requirements. Compared with the serial algorithm,
the parallel algorithm processing time was 0.4 h. The obtained speedup ratio is 32, which indicates that
the parallel algorithm can effectively improve processing efficiency. When the spatial data scale reached
4000 K, the single-node method failed; however, the parallel algorithm’s processing time was 2.2 h.

In summary, compared with traditional processing methods, the parallel DBSCAN algorithm
based on the Spark platform can dramatically improve the efficiency of city congestion discovery.
These experiments verify the high efficiency and practicability of the parallel algorithm proposed in
this paper.

Remote Sens. 2017, 9, 1301 30 of 33

7. Conclusions and Future Directions

To resolve the problem of long processing times associated with large-scale data processed with
the serial DBSCAN algorithm, in this paper, the big data processing platform Spark was used to design
and implement a parallel DBSCAN clustering algorithm. The experimental results show that the
DBSCAN algorithm achieves a stable acceleration effect on the single-node Spark platform compared
with the serial program. In addition, on the Spark cluster platform, the Spark–Yarn deployment method
is more suitable for applications that have many iterations compared to the Spark–Mesos method.
However, there is still a place for optimizing the currently implemented parallel algorithm. For example,
we could explore the data partitioning and merge the optimization strategies, or introduce the Spark
map calculation method, etc., in order to further speed up the processing speed of the algorithm in
the future.

Acknowledgments: This study was supported mainly by the Key Laboratory of Spatial Data Mining & Information
Sharing of the Ministry of Education, Fuzhou University (Grant Nos. 2017LSDMIS03 & 2016LSDMIS06),
Hubei Provincial Key Laboratory of Intelligent Geo-information Processing (China University of Geosciences)
(Grant No. KLIGIP2016A03), the Engineering Research Center of Geospatial Information and Digital Technology
(NASG) (Grant No. SIDT20170601), the Fundamental Research Funds for the Central Universities (Grant No.
ZYGX2015J111), the National Key Research and Development program of China (Grant No. 2017YFB0504202),
and also the National Science Foundation of the United States (Award No. 1251095, 1723292).

Author Contributions: Fang Huang, Lizhe Wang conceived and designed the experiments, and Fang Huang
wrote the paper; Qiang Zhu, Du Jin performed the experiments; Jian Tao, Ji Zhou, Xiaocheng Zhou and Xicheng
Tan analyzed the data and made key modifications to the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X.W. A density-based algorithm for discovering clusters
a density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings
of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA,
2–4 August 1996; pp. 226–231.

2. He, Y.; Tan, H.; Luo, W.; Mao, H.; Ma, D.; Feng, S.; Fan, J. MR-DBSCAN: A scalable MapReduce-based
DBSCAN algorithm for heavily skewed data. Front. Comput. Sci. 2014, 8, 83–99. [CrossRef]

3. Ankerst, M.; Breunig, M.M.; Kriegel, H.-P.; Sander, J. OPTICS: Ordering points to identify the clustering
structure. In Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data,
Philadelphia, PA, USA, 1–3 June 1999; pp. 49–60.

4. Chen, M.; Gao, X.; Li, H. Parallel DBSCAN with Priority R-tree. In Proceedings of the 2010 2nd IEEE
International Conference on Information Management and Engineering, Chengdu, China, 16–18 April 2010;
pp. 508–511.

5. Kryszkiewicz, M.; Lasek, P. TI-DBSCAN: Clustering with DBSCAN by Means of the Triangle Inequality.
In Rough Sets and Current Trends in Computing, Proceedings of the 7th International Conference, RSCTC 2010,
Warsaw, Poland, 28–30 June 2010; Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q., Eds.;
Springer: Berlin/Heidelberg, Germany, 2010; pp. 60–69.

6. Owens, J.D.; Luebke, D.; Govindaraju, N.; Harris, M.; Krüger, J.; Lefohn, A.E.; Purcell, T.J. A Survey of
General-Purpose Computation on Graphics Hardware. Comput. Graph. Forum 2007, 26, 80–113. [CrossRef]

7. Wang, L.; Tao, J.; Ranjan, R.; Marten, H.; Streit, A.; Chen, J.; Chen, D. G-Hadoop: MapReduce across
distributed data centers for data-intensive computing. Future Gener. Comput. Syst. 2013, 29, 739–750.
[CrossRef]

8. Gan, L.; Fu, H.; Luk, W.; Yang, C.; Xue, W.; Huang, X.; Zhang, Y.; Yang, G. Solving the global atmospheric
equations through heterogeneous reconfigurable platforms. ACM Trans. Reconfig. Technol. Syst. 2015, 8, 11.
[CrossRef]

9. Li, L.; Xue, W.; Ranjan, R.; Jin, Z. A scalable Helmholtz solver in GRAPES over large-scale multicore cluster.
Concurr. Comput. Pract. Exp. 2013, 25, 1722–1737. [CrossRef]

10. Liu, P.; Yuan, T.; Ma, Y.; Wang, L.; Liu, D.; Yue, S.; Kolodziej, J. Parallel processing of massive remote sensing
images in a GPU architecture. Comput. Inf. 2014, 33, 197–217.

http://dx.doi.org/10.1007/s11704-013-3158-3
http://dx.doi.org/10.1111/j.1467-8659.2007.01012.x
http://dx.doi.org/10.1016/j.future.2012.09.001
http://dx.doi.org/10.1145/2629581
http://dx.doi.org/10.1002/cpe.2979

Remote Sens. 2017, 9, 1301 31 of 33

11. Chen, D.; Li, D.; Xiong, M.; Bao, H.; Li, X. GPGPU-Aided Ensemble Empirical-Mode Decomposition for EEG
Analysis during Anesthesia. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 1417–1427. [CrossRef] [PubMed]

12. Bernabé, S.; Lopez, S.; Plaza, A.; Sarmiento, R. GPU Implementation of an Automatic Target Detection and
Classification Algorithm for Hyperspectral Image Analysis. IEEE Geosci. Remote Sens. Lett. 2013, 10, 221–225.
[CrossRef]

13. Agathos, A.; Li, J.; Petcu, D.; Plaza, A. Multi-GPU Implementation of the Minimum Volume Simplex Analysis
Algorithm for Hyperspectral Unmixing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2281–2296.
[CrossRef]

14. Deng, Z.; Hu, Y.; Zhu, M.; Huang, X.; Du, B. A scalable and fast OPTICS for clustering trajectory big data.
Clust. Comput. 2015, 18, 549–562. [CrossRef]

15. Chen, D.; Li, X.; Wang, L.; Khan, S.U.; Wang, J.; Zeng, K.; Cai, C. Fast and Scalable Multi-Way Analysis of
Massive Neural Data. IEEE Trans. Comput. 2015, 64, 707–719. [CrossRef]

16. Huang, F.; Tao, J.; Xiang, Y.; Liu, P.; Dong, L.; Wang, L. Parallel compressive sampling matching pursuit
algorithm for compressed sensing signal reconstruction with OpenCL. J. Syst. Archit. 2017, 72, 51–60.
[CrossRef]

17. Yu, T.; Dou, M.; Zhu, M. A data parallel approach to modelling and simulation of large crowd. Clust. Comput.
2015, 18, 1307–1316. [CrossRef]

18. Wang, L.; Chen, D.; Liu, W.; Ma, Y.; Wu, Y.; Deng, Z. DDDAS-based parallel simulation of threat management
for urban water distribution systems. Comput. Sci. Eng. 2014, 16, 8–17. [CrossRef]

19. Hu, C.; Zhao, J.; Yan, X.; Zeng, D.; Guo, S. A MapReduce based Parallel Niche Genetic Algorithm for
contaminant source identification in water distribution network. Ad Hoc Netw. 2015, 35, 116–126. [CrossRef]

20. Kim, Y.; Shim, K.; Kim, M.-S.; Sup Lee, J. DBCURE-MR: An efficient density-based clustering algorithm for
large data using MapReduce. Inf. Syst. 2014, 42, 15–35. [CrossRef]

21. Xu, X.; Jäger, J.; Kriegel, H.-P. A Fast Parallel Clustering Algorithm for Large Spatial Databases. Data Min.
Knowl. Discov. 1999, 3, 263–290. [CrossRef]

22. Erdem, A.; Gündem, T.I. M-FDBSCAN: A multicore density-based uncertain data clustering algorithm.
Turkish J. Electri. Eng. Comput. Sci. 2014, 22, 143–154. [CrossRef]

23. Böhm, C.; Noll, R.; Plant, C.; Wackersreuther, B. Density-based clustering using graphics processors.
In Proceedings of the 18th ACM Conference on Information and Knowledge Management, Hong Kong,
China, 2–6 November 2009; pp. 661–670.

24. Andrade, G.; Ramos, G.; Madeira, D.; Sachetto, R.; Ferreira, R.; Rocha, L. G-DBSCAN: A GPU Accelerated
Algorithm for Density-based Clustering. Procedia Comput. Sci. 2013, 18, 369–378. [CrossRef]

25. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51,
107–113. [CrossRef]

26. Böse, J.-H.; Andrzejak, A.; Högqvist, M. Beyond online aggregation: Parallel and incremental data mining
with online Map-Reduce. In Proceedings of the 2010 Workshop on Massive Data Analytics on the Cloud,
Raleigh, NC, USA, 26 April 2010; pp. 1–6.

27. He, Y.; Tan, H.; Luo, W.; Mao, H.; Ma, D.; Feng, S.; Fan, J. MR-DBSCAN: An Efficient Parallel Density-Based
Clustering Algorithm Using MapReduce. In Proceedings of the 2011 IEEE 17th International Conference on
Parallel and Distributed Systems, Tainan, Taiwan, 7–9 December 2011; pp. 473–480.

28. Dai, B.R.; Lin, I.C. Efficient Map/Reduce-Based DBSCAN Algorithm with Optimized Data Partition.
In Proceedings of the 2012 IEEE Fifth International Conference on Cloud Computing, Honolulu, HI, USA,
24–29 June 2012; pp. 59–66.

29. Fu, Y.X.; Zhao, W.Z.; Ma, H.F. Research on parallel DBSCAN algorithm design based on mapreduce.
Adv. Mater. Res. 2011, 301–303, 1133–1138. [CrossRef]

30. Kumar, A.; Kiran, M.; Prathap, B.R. Verification and validation of MapReduce program model for parallel
K-means algorithm on Hadoop cluster. In Proceedings of the 2013 Fourth International Conference on
Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, India, 4–6 July 2013;
pp. 1–8.

31. Anchalia, P.P.; Koundinya, A.K.; Srinath, N.K. MapReduce Design of K-Means Clustering Algorithm.
In Proceedings of the 2013 International Conference on Information Science and Applications (ICISA),
Suwon, Korea, 24–26 June 2013; pp. 1–5.

http://dx.doi.org/10.1109/TITB.2010.2072963
http://www.ncbi.nlm.nih.gov/pubmed/20813649
http://dx.doi.org/10.1109/LGRS.2012.2198790
http://dx.doi.org/10.1109/JSTARS.2014.2320896
http://dx.doi.org/10.1007/s10586-014-0413-9
http://dx.doi.org/10.1109/TC.2013.2295806
http://dx.doi.org/10.1016/j.sysarc.2016.07.002
http://dx.doi.org/10.1007/s10586-015-0451-y
http://dx.doi.org/10.1109/MCSE.2012.89
http://dx.doi.org/10.1016/j.adhoc.2015.07.011
http://dx.doi.org/10.1016/j.is.2013.11.002
http://dx.doi.org/10.1023/A:1009884809343
http://dx.doi.org/10.3906/elk-1202-83
http://dx.doi.org/10.1016/j.procs.2013.05.200
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.4028/www.scientific.net/AMR.301-303.1133

Remote Sens. 2017, 9, 1301 32 of 33

32. Xu, Z.Q.; Zhao, D.W. Research on Clustering Algorithm for Massive Data Based on Hadoop Platform.
In Proceedings of the 2012 International Conference on Computer Science and Service System, Nanjing,
China, 11–13 August 2012; pp. 43–45.

33. Nagpal, A.; Jatain, A.; Gaur, D. Review based on data clustering algorithms. In Proceedings of the 2013 IEEE
Conference on Information & Communication Technologies, Thuckalay, India, 11–12 April 2013; pp. 298–303.

34. Lin, X.; Wang, P.; Wu, B. Log analysis in cloud computing environment with Hadoop and Spark.
In Proceedings of the 2013 5th IEEE International Conference on Broadband Network & Multimedia
Technology, Guilin, China, 17–19 November 2013; pp. 273–276.

35. Shukla, S.; Lease, M.; Tewari, A. Parallelizing ListNet training using spark. In Proceedings of the 35th
International ACM SIGIR Conference on Research and Development in Information Retrieval, Portland, OR,
USA, 12–16 August 2012; pp. 1127–1128.

36. Lawson, D. Alternating Direction Method of Multipliers Implementation Using Apache Spark; Stanford University:
Stanford, CA, USA, 2014.

37. Biglearn. Available online: http://biglearn.org/2013/files/papers/biglearning2013_submission_7.pdf
(accessed on 15 December 2016).

38. Wang, B.; Yin, J.; Hua, Q.; Wu, Z.; Cao, J. Parallelizing K-Means-Based Clustering on Spark. In Proceedings of
the 2016 International Conference on Advanced Cloud and Big Data (CBD), Chengdu, China, 13–16 August
2016; pp. 31–36.

39. Jiang, H.; Liu, Z. Parallel FP-Like Algorithm with Spark. In Proceedings of the 2015 IEEE 12th International
Conference on e-Business Engineering, Beijing, China, 23–25 October 2015; pp. 145–148.

40. Jin, F.; Zhang, F.; Du, Z.H.; Liu, R.; Li, R.Y. Spatial overlay analysis of land use vector data based on Spark.
J. Zhejiang Univ. 2016, 43, 40–44.

41. Xie, X.L.; Xiong, Z.; Hu, X.; Zhou, G.Q.; Ni, J.S. On Massive Spatial Data Retrieval Based on Spark. In Web-Age
Information Management, Proceedings of the WAIM 2014 International Conference on Web-Age Information
Management, Macau, China, 16–18 June 2014; Chen, Y.G., Balke, W.T., Xu, J.L., Xu, W., Jin, P.Q., Lin, X.,
Tang, T., Hwang, E.J., Eds.; Springer: Cham, Switzerland, 2014; pp. 200–208.

42. Suchanek, F.; Weikum, G. Knowledge harvesting in the big-data era. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, New York, NY, USA, 22–27 June 2013;
pp. 933–938.

43. Li, X.Y.; Li, D.R. DBSCAN spatial clustering algorithm and its application in urban planning. Sci. Surv. Mapp.
2005, 30, 51–53.

44. Nisa, K.K.; Andrianto, H.A.; Mardhiyyah, R. Hotspot clustering using DBSCAN algorithm and shiny web
framework. In Proceedings of the 2014 International Conference on Advanced Computer Science and
Information System, Jakarta, Indonesia, 18–19 October 2014; pp. 129–132.

45. Çelik, M.; Dadaşer-Çelik, F.; Dokuz, A.S. Anomaly detection in temperature data using DBSCAN algorithm.
In Proceedings of the 2011 International Symposium on Innovations in Intelligent Systems and Applications,
Istanbul, Turkey, 15–18 June 2011; pp. 91–95.

46. Silva, T.L.C.D.; Neto, A.C.A.; Magalhaes, R.P.; Farias, V.A.E.D.; Macêdo, J.A.F.D.; Machado, J.C. Efficient and
distributed DBScan algorithm using mapreduce to detect density areas on traffic data. In Proceedings of
the 16th International Conference on Enterprise Information Systems, Lisbon, Portugal, 27–30 April 2014;
pp. 52–59.

47. Adiba, M.E.; Lindsay, B.G. Database Snapshots. In Proceedings of the Sixth International Conference on
Very Large Data Bases, Montreal, QC, Canada, 1–3 October 1980; pp. 86–91.

48. Wang, W.; Tao, L.; Gao, C.; Wang, B.F.; Yang, H.; Zhang, Z.A. C-DBSCAN Algorithm for Determining
Bus-Stop Locations Based on Taxi GPS Data. In Proceedings of the 10th International Conference on
Advanced Data Mining and Applications, Guilin, China, 19–21 December 2014; pp. 293–304.

49. Liu, C.K.; Qin, K.; Kang, C.G. Exploring time-dependent traffic congestion patterns from taxi trajectory data.
In Proceedings of the 2015 2nd IEEE International Conference on Spatial Data Mining and Geographical
Knowledge Services (ICSDM), Fuzhou, China, 8–10 July 2015; pp. 39–44.

50. Chen, X.W.; Lu, Z.H.; Jantsch, A.; Chen, S. Speedup analysis of data-parallel applications on Multi-core NoCs.
In Proceedings of the IEEE 8th International Conference on ASIC, Changsha, China, 20–23 October 2009;
pp. 105–108.

http://biglearn.org/2013/files/papers/biglearning2013_submission_7.pdf

Remote Sens. 2017, 9, 1301 33 of 33

51. Ieda, H. Development and management of transport systems. In Sustainable Urban Transport in an Asian
Context; Springer: Tokyo, Japan, 2010; pp. 277–335.

52. Yin, L. The Analysis of Our Urban Transportation Problem and the Research of Road Construction &map
Planning Management. In Proceedings of the 2010 International Conference on E-Product E-Service and
E-Entertainment, Henan, China, 7–9 November 2010; pp. 1–4.

53. Shao, Y.; Song, J.H. Traffic Congestion Management Strategies and Methods in Large Metropolitan Area:
A Case Study in Shenzhen. Urban Transp. China 2010, 8. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.13813/j.cn11-5141/u.2010.06.001(In Chinese)
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	DBSCAN Algorithm
	Mathematical Principles of the DBSCAN Algorithm
	Processing Procedure of the DBSCAN Algorithm

	Design and Implementation of the DBSCAN Algorithm on the Spark Platform
	Analyzing the Sequential DBSCAN Algorithm
	Parallel Design of the DBSCAN Algorithm
	Data Partitioning Stage
	Local Clustering Stage
	Data Merger Stage
	Global Cluster Generation Stage

	Optimizing the Parallel DBSCAN Algorithm on the Single-Node Spark Platform
	Optimization Method 1: Optimization of Data Transmission
	Optimization Method 2: Serialization Optimizing
	Optimization Method 3: Optimization of Resource Parameters

	Implementation of the Parallel DBSCAN Algorithm on a Virtual Spark Cluster
	Implementation of the Parallel DBSCAN Algorithm on the Spark Cluster with Yarn
	Implementation of the Parallel DBSCAN Algorithm on a Spark Cluster with Mesos

	Test and Analysis of the Proposed Parallel DBSCAN Algorithm
	Configurations of the Experimental Platforms
	Experimental Data
	Parallel Algorithm Evaluation Index
	Experiment Design
	Experimental Results and Analysis
	Testing the Parallel Algorithm on a Single-Node Spark Platform
	Testing the Optimized Parallel Algorithm on a Single-Node Spark Platform
	Testing the Parallel Algorithm on a Virtual Spark Cluster Platform
	Testing the Parallel Algorithm on a Spark Cluster with the Yarn Resources Manager
	Testing the Parallel Algorithm on a Spark Cluster with the Mesos Resources Manager

	An Urban Congestion Area Discovery Application
	Summary of City Traffic Congestion Area Discovery
	Traffic Congestion Area Discovery Based on the Spark Platform
	Experimental Data and Platform Configuration
	Experiments and Analysis

	Conclusions and Future Directions

