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Abstract: The use of Unmanned Aerial Vehicles (UAV) for photogrammetric surveying has recently
gained enormous popularity. Images taken from UAVs are used for generating Digital Surface
Models (DSMs) and orthorectified images. In the glaciological context, these can serve for quantifying
ice volume change or glacier motion. This study focuses on the accuracy of UAV-derived DSMs.
In particular, we analyze the influence of the number and disposition of Ground Control Points (GCPs)
needed for georeferencing the derived products. A total of 1321 different DSMs were generated from
eight surveys distributed on three glaciers in the Swiss Alps during winter, summer and autumn.
The vertical and horizontal accuracy was assessed by cross-validation with thousands of validation
points measured with a Global Positioning System. Our results show that the accuracy increases
asymptotically with increasing number of GCPs until a certain density of GCPs is reached. We call
this the optimal GCP density. The results indicate that DSMs built with this optimal GCP density
have a vertical (horizontal) accuracy ranging between 0.10 and 0.25 m (0.03 and 0.09 m) across all
datasets. In addition, the impact of the GCP distribution on the DSM accuracy was investigated.
The local accuracy of a DSM decreases when increasing the distance to the closest GCP, typically at a
rate of 0.09 m per 100-m distance. The impact of the glacier’s surface texture (ice or snow) was also
addressed. The results show that besides cases with a surface covered by fresh snow, the surface
texture does not significantly influence the DSM accuracy.

Keywords: UAV photogrammetry; glacier; unmanned aerial vehicle; accuracy assessment; digital
surface models

1. Introduction

In recent years, Unmanned Aerial Vehicle (UAV) photogrammetry has emerged as an on-demand
method to generate high-resolution datasets including Digital Surface Models (DSMs) and orthorectified
images (orthophotos). This method offered a new range of application in many different research
areas including forestry and agriculture (e.g., [1,2]), archeology (e.g., [3,4]) biology [5,6] and hydrology
(e.g., [7,8]). An increase of studies using UAV photogrammetry is observed in geosciences, as well
(e.g., [9,10]), where the DSMs and orthophotos are typically used for mapping and monitoring
(e.g., [11,12]), object detection (e.g., [13]) or quantification of topographic changes, for instance
(e.g., [14,15]). Classically, DSMs are produced through photogrammetric analysis of either terrestrial
surveys or dedicated air- and space-borne campaigns (e.g., [16,17]). Light detection and ranging has
more recently emerged as an alternative for generating high resolution DSMs (e.g., [18,19]). Compared
to these methods, UAV photogrammetry can be appealing due to the (i) portability of the required
UAV platforms; (ii) the possibility of self-designing and modifying the integrated sensors; (iii) the
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availability of user-friendly software for data evaluation; (iv) the possibility to reach areas inaccessible
with ground-based surveys and; (v) the relatively low cost.

The accuracy of DSMs derived from UAV photogrammetry is influenced by different factors
that have been investigated separately, such as the camera’s focal length (e.g., [20]), the flight altitude
and camera orientation (e.g., [21,22]), as well as the image quality (e.g., [23,24]). Additionally, the
number and spatial distribution of Ground Control Points (GCPs) used for georeferencing the acquired
images have been cited as one of the most important factors (e.g., [25]). Several studies investigated
the effect of varying number and position of GCPs on DSM accuracy. Shahbazi et al. [26], for instance,
did several tests varying the number and locations of GCPs, as well as the number of images where
the GCPs are visible. They found that a DSM georeferenced with a larger number of GCPs is more
accurate that a DSM georeferenced with few and that an evenly distributed GCP-network generates a
DSM of higher accuracy than a network in which GCPs are clustered. They also showed that DSM
accuracy is higher when the GCPs are installed in a way that they are visible on many images. The
studies of Tahar et al. [27], Tahar [28], as well as Rosnell and Honkavaara [29] also concluded that
DSM accuracy increases with increasing number of GCPs. A similar conclusion was made in the
study of Tonkin and Midgley [30], who additionally showed that when a certain number of GCPs is
reached, the DSM accuracy does not increases further. All of these studies, however, performed their
accuracy assessments on flat or undulated terrain and on well-structured surfaces, which facilitate
DSM construction.

Glaciers surface texture is mainly constituted of ice and snow that can have high reflectance, a
lack of structures and low contrasts, which make photogrammetry challenging. Although several
studies already used UAV photogrammetry on glaciers (e.g., [31,32]) and snow (e.g., [33,34]), only a
few of them thoroughly assessed the DSM accuracy. In particular, available assessments are based
on a small set of validation points only, thus providing limited confidence in the obtained results.
A rigorous assessment of the impact of GCP number and disposition on DSMs generated on ice or
snow is missing to date.

Here, we investigate the vertical and horizontal accuracy of 1321 DSMs generated from eight
surveys. Each DSM is built with a different number of GCPs and validated with thousands of validation
points independently acquired with differential Global Positioning Systems (dGPS). We focus on three
different glaciers located in the Swiss Alps, and derive DSMs for different seasons (summer, autumn
and winter). In addition, we test the DSM accuracy according to: (i) the distance to the closest GCP;
(ii) the varying surface texture; and (iii) the parameter settings in the software Agisoft Photoscan that
we use for DSM generation. Our results provide indications for the design of field surveys on glaciers
and snow and for the accuracy that can be expected when deploying a given number of GCPs.

2. Study Areas and Data Acquisition

Three glaciers of different size, located in the Swiss Alps, were surveyed in this study (Figure 1).
Findelengletscher, Sankt Annafirn and Griesgletscher have an area of 13 km2, 0.2 km2 and 4 km2 (as of
2015), respectively. Because of the large extent of Findelengletscher, only the main part of the tongue
(5 km2) was monitored.

GCPs were deployed on the glacier surface as red dots (55 cm in diameter) printed on thick paper
sheets. These were fixed to the surface with wood screws in summer and with wooden sticks in winter
(Figure 2a,b). The GCP center was measured prior to the UAV flights with a dGPS (Trimble R7 or Leica
GPS 1200). From repeated measurements of fixed locations, we estimated the mean accuracy of the
measurements to be in the order of 2 cm. The dGPS survey was executed in real-time kinematic mode
using virtual reference stations from the permanent GNSS station network of Switzerland (AGNES:
Automated GNSS Network for Switzerland). The same dGPS devices were used to measure transects
of surface elevations between the individual GCPs (Figure 1). For these transects, points were recorded
at regular intervals of about 0.50 m with an accuracy of 5 cm. We call the so-acquired points the
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“continuous dGPS points”. The number of GCPs and continuous dGPS points measured during each
campaign can be found in Table 1.

Figure 1. (a) Overview of the study areas. Coordinates are given in CH1903+/LV95 [35]. The outlines
of Findelengletscher (b), Griesgletscher (c) and Sankt Annafirn (d) are given in violet for the year 2015.
The locations of the GCPs and the validation points measured with a differential Global Positioning
Systems (dGPS) (continuous dGPS points) are depicted for each season. Because of the high spatial
density, continuous dGPS points are not resolved individually, but appear as a line. The elevation
differences between two DSMs over stable areas (Section 4.2) are shown for Findelen- and Griesgletscher.
(Background maps: Swiss Federal Office of Topography, Swisstopo.)

Figure 2. Example of a GCP set on (a) ice and (b) snow. The GCP center is measured with a Leica
GPS 1200 (b). (c) SenseFly eBee (left) and computer (right) linked to the transmitter sending the flight
coordinates to the UAV.
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For the UAV surveys, we used a SenseFly eBee system (Figure 2c; [36]). This ready-to-fly platform
has a fixed wing span of 96 cm and weights 700 g including sensors. Its cruising speed is between
40 and 90 km/h, and the maximum flight duration at about 2500 m a.s.l. is of 30–35 min. The images
were acquired with a customized Canon S110 camera, with a near-infrared filter (apart for the winter
campaign on Sankt Annafirn, where a red-edge camera was used). The camera has a resolution of
12 megapixels and a sensor size of 7.44 mm × 5.58 mm. During every image acquisition, an on-board
GPS and an inertial measurement unit provide information about the approximate 3D position, roll,
pitch and yaw of the UAV. A compact UAV system including characteristics such as hand-starting (as
opposed to catapult-starting), autonomous landing and small (ca. 50 m) radius turns is required for
deployment in rough topography.

Flights were planned with the software eMotion 2.4 provided by SenseFly. The number of flights
performed for each field campaign is shown in Table 1. An 80% lateral and 75% longitudinal ground
overlap was ensured between adjacent images. The mean flight altitude was 115 m above ground,
resulting in a mean ground sampling distance (GSD) of 6 cm.

Table 1. Overview of the conducted field campaigns. The season and date of each survey is given
together with the total number of (a) UAV flights (N f light), (b) images acquired (Nimg), (c) GCPs
deployed (NGCP), (d) collected continuous dGPS points (Ncont.pts) and (e) produced DSMs (NDSM). In
addition, the area surveyed during each campaign (Area) is provided. Note that no continuous dGPS
points were collected for Sankt Annafirn.

Glacier Season Date N f light Nimg NGCP Ncont.pts NDSM Area (km2)

Sankt Annafirn Summer 15 July 2015 4 750 14 - 224 1.4
Sankt Annafirn Autumn 28 September 2015 5 856 21 - 378 1.6
Sankt Annafirn Winter 15 April 2015 5 748 18 - 311 1.5

Findelengletscher Summer 22–23 July 2015 9 2044 20 10,665 72 4.0
Findelengletscher Autumn 21–22 September 2015 13 3002 36 38,813 90 5.2
Findelengletscher Winter 19–20 April 2016 12 2901 21 12,914 66 4.2

Griesgletscher Summer 3–04 August 2015 15 3307 25 15,795 96 6.2
Griesgletscher Autumn 27–28 September 2015 14 3789 32 10,790 84 6.9

3. Methods

3.1. DSM and Orthophoto Generation

The images taken from the UAV were processed with a Structure-from-Motion (SfM) and
multi-view stereo approach. These approaches allow the geometric constraints of camera position,
orientation and GCPs from many overlapping images to be solved simultaneously through an
automatic workflow [24]. In this study, the image datasets were processed with the software Agisoft
Photoscan Pro 1.1.6. [37]. Computations were performed on a working station with two Intel Xeon
CPU E5-2670 v3 processors (48 cores) and 128 GB random access memory. Ten steps were required to
generate the DSMs and orthophotos (Figure 3):

1. In the field, the GCPs are deployed on the glacier surface and their positions recorded.
2. The image dataset is acquired through several (between four and fifteen; Table 1) UAV flights.
3. The images are imported in Agisoft Photoscan, together with the information about acquisition

location (coordinates) and the roll, pitch and yaw of the UAV platform. The information is used
to preliminarily orientate the images.

4. The “Align” step in Agisoft Photoscan comprises three phases. First, a feature-detection algorithm
is applied to detect features (or “keypoints”) on every image [38]. The number of detected
keypoints depends on the image resolution, image texture and illumination [39]. Second, matching
keypoints are identified and inconsistent matches removed. Third, a bundle-adjustment algorithm
is used to simultaneously solve the 3D geometry of the scene, the different camera positions and
the camera parameters (focal length, coordinates of the principal point and radial lens distortions).
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The output of this step is a sparse point cloud. The preliminary orientation of the images (Step 3)
reduces the processing time of the “align” operation, as only neighboring images (and not the
entire image dataset) are searched for matching keypoints. Step 4, often referred to as SfM
workflow (e.g., [40]), accounts for around 35% of the total Agisoft Photoscan processing time
(Steps 3–10).

5. The GCPs are manually identified on the images and their coordinates imported.
6. The GCPs coordinates are used to refine the camera calibration parameters and to optimize the

geometry of the output point cloud [24].
7. Multi-view stereo image matching algorithms (e.g., [40]) are applied to increase the density of the

sparse point cloud. The density of the final georeferenced dense point cloud is strongly related to
the number of matching keypoints. Different cloud quality parameters (“low”, “medium” and
“high”) are available for the “build dense cloud” step. In this study, the parameter “low” was
chosen. As shown later (Section 4.4), this reduces the DSM accuracy by 3 cm (6 cm) compared to
a DSM built with the “medium” (“high”) parameter, but reduces the processing time by a factor
of six (eighteen). The “build dense cloud” step with the “low” parameter accounts for around
45% of the total processing time.

8. A polygon mesh is created from the dense point cloud.
9. A texture map derived from all images is applied to the polygon mesh and used to create

an orthophoto.
10. A DSM with a cell size of 0.50 m is generated from the mesh and exported from Agisoft Photoscan.

This cell size reflects a compromise between processing time and DSM accuracy (cf. Section 4.4).

Figure 3. Workflow used for DSM and orthophoto generation (left column) and parameters selected
in Agisoft Photoscan (right column).
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3.2. Impact of the Number of GCPs on DSMs’ Accuracy

The accuracy of the DSMs was assessed by comparing the DSMs to the acquired dGPS points.
For this, 1321 different DSMs were built using different numbers and combinations of GCPs.
The detailed number of DSMs built for each dataset is shown in Table 1. For every campaign,
DSMs were generated by using between 3 and the maximum number of GCPs (NGCP; see Table 1) for
georeferencing. The remaining GCPs, which we call Check Points (CPs), were used for cross-validation
(Figure 4). Analyzing all possible combinations (hundreds to thousands for every GCP number)
was unfeasible. Therefore, for any given number of GCPs to be used for DSM generation, we only
considered a subset of maximally n = 6 (Findelen- and Gries- gletscher) or n = 21 (Sankt Annafirn)
combinations. The combinations were generated automatically, and an approximately homogeneous
spatial distribution of GCPs was ensured by specifying a minimal distance between two GCPs.
The standard deviation σvert of the elevation differences between the DSMs and the CPs was used
to quantify the vertical accuracy. σvert was computed from the pool of all CPs obtained from the
n combinations. For Findelen- and Gries- gletscher, the continuous dGPS points (Table 1) were
additionally used for validation (cf. Section 2).

In order to assess the horizontal accuracy of the DSMs, a similar cross-validation analysis was
performed using the orthophotos. The known horizontal coordinates of the CPs were compared with
the positions of the GCPs that were manually extracted from the 1321 orthophotos. By doing so, it is
the orthophoto’s horizontal accuracy that is assessed. However, as the re-projection error of the final
point cloud is small in our datasets, the DSM’s horizontal accuracy is assumed to be very similar. As for
the vertical accuracy, the standard deviation of the differences between the coordinates measured
in the field and the coordinates extracted from the orthophotos (σhoriz) was used as a measure for
horizontal accuracy.

Figure 4. Methodology to assess the vertical accuracy for DSMs built with different numbers of GCPs.
Here, an example is given for one dataset with N GCPs. Given a number of GCPs to be used for
DSM generation (e.g., 3 and 4 in the top and bottom part of the figure, respectively; orange points),
n different GCP-combinations (rows) are randomly selected. The remaining GCPs (check points; grey)
are used for DSM validation. The standard deviation of the elevation difference between the DSM and
the check points is then computed by pooling the n combinations (σvert).

3.3. Factors Impacting Local DSM Accuracy

The local accuracy of a DSM is governed by a number of factors, including the distance to the
closest GCP, the surface structure, the topography, the varying contrast on the images, as well as the
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degree of image overlap, for example. In this study, we investigated the first two factors. The influence
of the other factors is not further analyzed, but is included in the discussion.

A relation between GCP density and DSM accuracy is expected to exist also at the local level, i.e.,
the accuracy is expected to decrease with increasing distance to the closest GCP. In order to quantify
this effect, we computed the absolute elevation differences between the DSMs and the CPs, similarly
to the methodology described in Section 3.2, and compared them against the distance to the nearest
GCP used during DSM generation. The effect of the surface structure on the local DSM accuracy was
assessed by computing the correlation between (a) the absolute elevation differences between DSMs
and CPs and (b) the mean surface roughness calculated for a given area (varied between 2 and 50 m2)
around the CPs locations.

3.4. Impact of Surface Characteristics on DSM Accuracy

Snow has been cited as a potentially problematic surface for pattern-matching algorithms
(e.g., [41]), although recent results have shown the applicability of SfM techniques for snow-covered
surfaces, as well (e.g., [33,42]). For addressing the effect of the snow cover on the efficiency with which
image matching keypoints are generated, we separately processed 20 images with fresh snow and
20 images of one-day-old snow, as well as 20 images of bare glacier ice. Images with snow-covered and
bare-ice surfaces were taken from the Findelengletscher winter and summer campaigns, respectively.
We processed these images up to Step 7 of the workflow presented in Section 3.1 and kept track of the
number of oriented images, matching keypoints and points generated for the dense point cloud.

3.5. Effect of the Parameters Setting in Agisoft Photoscan on DSM Accuracy

The accuracy of the DSMs can depend on the SfM and multi-view stereo algorithms. The studies of
Jaud et al. [43] and Vallet et al. [44] showed that depending on the software, accuracy differences in the
order of 2–5 GSDs can emerge. We assess differences for Agisoft Photoscan parameters by generating
a set of different DSMs for the autumn campaign on Findelengletscher’s tongue. In particular, we
built nine different DSMs with all available GCPs, varying the parameters controlling the “depth
filter” and “cloud quality” in the image matching step (Step 7 in Figure 3). The different depth filters
(“aggressive”, “mild” or “moderate”) control the degree to which outliers are removed from the point
cloud, whilst the cloud quality parameters (“low”, “medium” or “high”) affects the level of detail in
the reconstructed scenes. In addition, we investigated the impact of the DSM cell size by generating
DSMs of 0.1 m, 0.5 m and 1.0 m for each parameter set. All generated DSMs were validated with the
continuous dGPS points, and the resulting elevation differences were compared to each other.

4. Results and Discussion

4.1. Influence of GCP Number on Vertical and Horizontal DSM Accuracy

The results of the accuracy assessment based on the elevation differences between DSMs and
the CPs for all datasets are shown in Figure 5. In order to allow for the results of all campaigns to be
compared, the number of GCPs used for DSM georeferencing was divided by the surveyed glacier
area. We call the so-obtained values the GCP density. For Findelen- and Gries- gletscher, the vertical
and horizontal accuracies increase (smaller σvert and σhoriz) when increasing the number of GCPs used
for DSM generation. This is expected, as more GCPs allow a reduction of the bundle adjustment error
and therefore a more robust georeferencing (e.g., [45]). This increase in accuracy is asymptotic and can
be characterized with a relation of the form:

σ = a × exp(−b × ρGCP) + c (1)

which we derived empirically. In the equation, σ (m) is either σvert or σhoriz; ρGCP (1/km2) is the density
of GCPs per unit area; and a, b and c are three parameters to be estimated. Averaged over the three
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glaciers we considered and using a non-linear least squares fit for parameter estimation, we found
a = 2.08, b = 0.59, c = 0.17 (r2 = 0.70) for σvert and a = 0.98, b = 1.02, c = 0.06 (r2 = 0.67) for σhoriz.
This means, for example, that the σvert (σhoriz) drops from 0.58 m (0.13 m) when 3 GCPs/km2 are used,
to 0.19 m (0.06 m) when 12 GCP/km2 are considered. Most importantly, however, the relation indicates
that σvert does not further decreases significantly for ρGCP > 17 GCP/km2 (less than 5% variation
compared to ρGCP = ∞) and that the same is true for ρGCP >7 GCP/km2 when considering σhoriz.
In our case, with GSD = 6 cm, the above means that the vertical (horizontal) accuracy does not increase
significantly after a GCP density of 6.12 × 10−8 GCP/GSD (2.52 × 10−8 GCP/GSD). Assuming that
the values of σvert and σhoriz scale linearly with the GSD, we suggest that the so-expressed GCP density
can be used as a rule of thumb for the planning of any UAV campaign on alpine glaciers with similar
flight characteristics (e.g., image overlap, image block shape).

Figure 5. Vertical (a) and horizontal (b) DSM accuracy against GCP density. The accuracy is defined as
the standard deviation (SD) of the elevation differences between DSMs and check points. The GCP
density is calculated from the number of GCPs used to build a DSM, divided by the area investigated.
Glaciers (seasons) are represented by different symbols (colors). The exponential fit (in black) follows
Equation (1).

Our results show that the DSM accuracy increases with increasing the number of GCPs until a
certain GCP density is reached, similarly as reported by Rock et al. [21] and Tonkin and Midgley [30].
The latter compared DSMs covering a glacier moraine of 0.145 km2 with a mean GSD of 2 cm, built
with varying numbers of spatially distributed GCPs (from 3–101 GCPs). They found that the vertical
accuracy of the DSM built with 3GCPs (21 GCP/km2 or 5.70 × 10−8 GCP/GSD) was 2.5-times lower
than DSMs built with a larger GCP number (4–101 GCPs). In their study, the vertical accuracy did not
decrease further for ρGCP > 7.6 × 10−8 GCP/GSD, which is similar to our results.

The parameter c in Equation (1) can be interpreted as the maximal accuracy that can be expected
for a given DSM, independently of the number of GCPs used for DSM generation. In our datasets, this
estimated maximal accuracy ranges between 0.10 and 0.25 m for the vertical accuracy and between
0.03 and 0.09 m for the horizontal accuracy (Table 2). For the vertical accuracy, our results are similar
to three other studies that assessed the accuracy of DSMs on glaciers or snow ([31,46,47]; Table 3).
For the horizontal accuracy instead, our results are comparable to the ones of Nolan et al. [47], who
generated repeated DSMs for one site in the Alaskan tundra. We suspect that the comparatively low
horizontal accuracies obtained by Whitehead et al. [46] (cf. Table 3) might be related to their use of
natural features (instead of artificial targets) for georeferencing.
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Our results for the horizontal and vertical accuracy are influenced by the process of manually
setting the coordinates in the center of the GCPs (Step 6 in the workflow presented in Section 3.2).
The accuracy of this manual processing step is estimated to be 0.3 pixels [43], which in our case
corresponds to 1.8 cm on average. A similar uncertainty is expected when determining the coordinates
of the GCP centers on the orthophotos, a determination that was used within the horizontal accuracy
assessment (cf. Section 3.2). An additional source of error might affect the datasets generated over
two days. On the one hand, surface lowering due to ice or snow melt can occur; on the other, ice flow
can cause horizontal surface displacement. Both effects are strongest during summer, but repeated
readings of stakes drilled into the ice indicate that these effects are below 0.03 and 0.02 m, respectively,
on average.

Table 2. Vertical (σvert) and horizontal (σhoriz) accuracies derived from parameter c in Equation (1).
For Findelen- and Gries- gletscher, σvert as estimated from the continuous dGPS points (cont. pts) is
given additionally.

Dataset σvert σvert σhoriz
from Check Points (m) from the Cont. Pts (m) from Check Points (m)

Sankt Annafirn Summer 0.12 - 0.06
Sankt Annafirn Autumn 0.22 - 0.03
Sankt Annafirn Winter 0.18 - 0.06

Findelengletscher Summer 0.12 0.13 0.05
Findelengletscher Autumn 0.10 0.13 0.05
Findelengletscher Winter 0.04 0.10 0.03
Griesgletscher Summer 0.12 0.20 0.09
Griesgletscher Autumn 0.25 0.39 0.07

Table 3. Comparison between studies assessing DSM accuracy on snow or glaciers. The survey date,
ground sampling distance (GSD), vertical (σvert) and horizontal (σhoriz) accuracies, as well as the density
of GCPs are given.

Study Surface Date
GSD σvert σhoriz GCP Density

(m) (m) (m) (GCP/km2) (GCP/GSD)

Immerzeel et al. (2014) Glacier May 2013 0.05 0.30 0.20 6.3 1.55 × 10−8

Immerzeel et al. (2014) Glacier October 2013 0.04 0.15 0.15 6.0 9.40 × 10−9

Nolan et al. (2015) Snow April 2014 0.15 0.10 0.05 2.1 4.73 × 10−9

Whitehead et al. (2013) Glacier July 2010 0.12 0.42 0.20 4.8 7.00 × 10−8

Whitehead et al. (2013) Glacier July 2011 0.12 0.19 0.55 6.9 1.00 × 10−7

4.2. Factors Impacting Local DSM Accuracy

The results for the relation between local DSM accuracy and the distance to the closest GCP show
that, on average, the vertical accuracy decrease by 0.09 m when increasing the distance to the next
GCP by 100 m (Figure 6a, light blue line). This was determined by binning the distance to the closest
GCP into 10-m bins and performing a linear least squares fit of the 50th percentile of the elevation
differences between the DSMs and the CPs for each of these bins. The large scatter in the relation (cf.
empirical 95% confidence interval in Figure 6a) shows that the local DSM accuracy is not governed by
the distance to the closest GCP alone. Tonkin and Midgley [30] performed a similar analysis. Instead of
calculating elevation differences between DSM and CPs, however, they used the elevation differences
between two DSMs built with 10 and 28 GCPs, respectively. They observed an ∼10-cm increase in
elevation difference for every 100 m increase in distance to the closest GCP, which is very similar to
our result.

The analysis of surface roughness versus DSM accuracy provided inconclusive results.
In particular, no clear relation was found between the two quantities. The DSM resolution of the
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0.5-m cell might be too coarse to capture the characteristic roughness length of the analyzed surfaces.
Similarly, no relation between accuracy and topographical parameters, such as aspect or slope, was
found. We attribute this latter finding to the fact that our analyses focused on rather flat surfaces, i.e.,
areas for which such parameters are similar.

Varying contrast on the images was however found to potentially generate local DSM inaccuracies.
Important elevation differences occurred, for example, when subtracting summer and autumn DSMs
of Findelen- or Gries- gletscher over stable areas (cf. Figure 1) that strongly differed in terms of
illumination between the two campaigns (Figure 7). As known from classical photogrammetry
(e.g., [48]), sharp shadows were particularly prone to generate such differences.

The percentage of image overlap can also impact the DSM accuracy. This was shown in the
study of Rosnell and Honkavaara [29], for instance, who performed several UAV flights over the
same area, varying the longitudinal ground overlap from 60% to 90%. They found that increasing
the overlap clearly improves the DSM accuracy, due to a better estimation of the image block
orientation parameters.

The relation between vertical accuracy and distance to the closest GCP highlights the importance
of a spatially-distributed GCP network for optimizing the DSM accuracy. An example comparing two
DSMs built with the same number of GCPs, but with a different spatial distribution (distributed vs.
clustered) is shown in Figure 6b,c. Here, it is visible that the difference between the generated DSMs
and the continuous dGPS points increases with distance and that this difference does not increase
linearly, i.e., both positive and negative differences can occur depending on location. Figure 6d
depicts a network of GCPs located at the edge of the survey area, which is a common configuration in
traditional photogrammetry. This figure shows that in an area where the distance between GCPs is
large, the DSMs present a “dome” or “bowl” effect (e.g., [49,50]). A dome effect can appear if: (1) the
GCP density is not sufficient; (2) the images are taken in near-parallel (nadir) directions; and (3) inexact
camera calibration models are used (e.g., [51]). Based on our results, we recommend to place GCPs in
a spatially distributed network for UAV surveys.

Figure 6. (a) Distance to the closest GCP used for DSM generation against absolute elevation differences
between DSM and CPs. The data refer to all campaigns (cf. Table 1). The light blue line is a linear fit of
the 50th percentiles of the elevation differences between the DSMs and the check points, calculated
for 10-mdistance bins. The red lines are linear fits of the 2.5 and 97.5 percentiles. (b–d) Elevation
differences between continuous dGPS points and a DSM built with (b) three clustered GCPs on the
glacier tongue, (c) three spatially distributed GCPs and (d) GCPs located at the edge of the survey area.
The example is from the Findelengletscher autumn campaign.
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Figure 7. (a) Elevation differences between summer and autumn DSMs. Orthophoto of the same area
in (b) summer and (c) autumn. The glacier outline (violet line) and features changing appearance
because of different illumination (red arrows) are highlighted.

4.3. Impact of Surface Characteristics on DSM Accuracy

The test performed with images from different surface characteristics shows contrasting results
(Table 4). When processing the fresh snow images, only two of them oriented (Section 3.1, Step 4),
providing 330 matching keypoints in total. For one-day-old snow, 19 out of the 20 images oriented,
yielding a total of 34,800 matching keypoints. For bare ice, all 20 images oriented, providing over
380,000 matching keypoints. This indicates that the lack of structure of fresh snow makes it impossible
to generate DSMs or orthophotos. However, even after being exposed to sunlight for one day only,
snow seems to develop enough structure and contrast to allow for image orientation. For each surface
type, Table 4 shows the number of points generated for the sparse and dense point cloud (Section 3.1,
Steps 4 and 7, respectively). Although the number of matching keypoints for one-day-old snow is
10-times lower than for ice, the number of points in the dense point cloud is only 1.5-times smaller.
This shows that the number of matching keypoints does not significantly affect the performance of the
surface reconstruction algorithm, which can explain the similar accuracies obtained for our datasets in
summer and winter (cf. Table 2). Furthermore, Piermattei et al. [52] showed that images do not orient
on fresh snow surfaces, which can yield incomplete DSM coverage. They also highlighted that surface
texture has an impact on the density of the final dense point cloud. In their case, the point density for
fresh-snow surfaces was three- to four-times lower than for debris, ice or firn. We thus conclude that
in the case of fresh snow, too few matching keypoints can be found to allow for image orientation,
whilst in the case of other surface textures, the number of matching points has a minor influence on
DSM accuracy.

Table 4. Number of oriented images, matching keypoints and points in the sparse point cloud after the
“align” step (Section 3.1, Step 4) in Agisoft Photoscan. The number of point in the dense point cloud is
determined after the “build dense cloud” step (Section 3.1, Step 7).

Surface Texture Oriented Matching Sparse Dense
Images Keypoints Point Cloud Point Cloud

Fresh snow 2 of 20 330 143 115,250
One-day-old snow 19 of 20 34,800 15,400 1,032,700

Ice 20 of 20 380,000 118,700 1,540,000

4.4. Effect of the Parameters Settings in Agisoft Photoscan on DSM Accuracy

Our results indicate that there is virtually no difference between different depth filters on the final
DSM accuracy and that the influence of switching the cloud quality parameter from “low” to “high” is
in the order of a decimeter only (Figure 8). Note, however, that this assessment was performed in a
rather flat area, in which even a low density point cloud might capture the mean surface elevation
well. The influence of the cloud quality parameter might thus be larger in steeper terrain. The small
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accuracy difference between DSMs generated with different cloud quality parameters is very much in
contrast to the required computational time. In fact, changing the parameter from “low” to “high”, for
example, increased the required computational time by a factor of eighteen.

The DSM cell size was found to affect the mean elevation of the DSM itself. The mean elevation
difference between DSMs and continuous dGPS points for DSMs with a 0.1-m cell size is 0.08 m.
This difference decreases to 0.05 m for DSMs with a cell size of 0.5 m and to 0.02 m for DSMs with a
cell size of 1.0 m. A dependence between the mean DSM elevation and cell size might be surprising at
first. It has to be noted, however, that the elevation distribution of small-scale topographic features is
not symmetric. Consider a 1-m2-portion of a given surface for example. The probability of observing
small scale features at a given elevation (say 1 m) above the mean elevation of this surface portion is
obviously smaller than the probability of observing a feature that is the same distance below the mean.
In the example and loosely speaking: at 1 m above-average elevation, the observer is very likely to be
in free air, whilst at 1 m below-average elevation it is likely to be completely in ice. As the DSM cell
size grows and small-scale features are less and less captured, the mean elevation is thus expected to
decrease. This reasoning is obviously not true for any given cell size, but holds true as long as the cell
size is in the same order of magnitude as the typical surface roughness.

Figure 8. Elevation differences between a DSM generated on the tongue of the Findelengletescher
(autumn campaign) and the continuous dGPS points. The DSM was built with different parameters in
Agisoft Photoscan for the step “build dense cloud”: “aggressive”, “mild” or “moderate” depth filters
(left) and “low”, “medium” or “high” cloud quality (right). The different DSM cell size is displayed on
the left side of the plot. The boxplots show the median, interquartile range (box) and 95% confidence
interval (whiskers).
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5. Conclusions

Our study assessed the accuracy of DSMs derived over glaciers through UAV photogrammetry
with a focus on the influence of the number and disposition of GCPs. We generated over a thousand
DSMs with different GCP combinations and cross-validated them with precise validation points
collected on the ground. Our results show that the vertical and horizontal accuracy is asymptotically
related to the increasing number of GCPs. Combining all datasets, we found the maximal vertical
(horizontal) accuracy to be between 0.10 and 0.25 m (0.03 and 0.09 m). To achieve this, a density of
6.12 × 10−8 GCP/GSD (2.52 × 10−8 GCP/GSD) was necessary for DSMs’ georeferencing. We showed
that on average, the local accuracy decreases with the distance to the closest GCP at a rate of about
0.09 m per 100-m distance. The large scatter of this relation, however, shows that other factors
additionally impact the local accuracy. The surface type (i.e., ice or snow) was found not to significantly
affect the DSM accuracy, as long as the surface is not covered with fresh snow. In the latter case, in fact,
the used image-matching algorithm did not detect enough matching keypoints to orient the images.
Different parameter choices in Agisoft Photoscan and variations in DSM cell size can additionally
influence the DSM accuracy. In particular, the mean elevation can be affected by up to a decimeter.
Our work highlights that DSMs with similar accuracy can be obtained for all seasons over glaciers and
helps the design of efficient UAV field surveys.
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