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Abstract: The Tibetan Plateau, the world’s largest orogenic plateau, hosts thousands of lakes that 

play prominent roles as water resources, environmental archives, and sources of natural hazards 

such as glacier lake outburst floods. Previous studies have reported that the size of lakes on the 

Tibetan Plateau has changed rapidly in recent years, possibly because of atmospheric warming. 

Tracking these changes systematically with remote sensing data is challenging given the different 

spectral signatures of water, the potential for confusing lakes with glaciers, and difficulties in 

classifying frozen or partly frozen lakes. Object-based image analysis (OBIA) offers new 

opportunities for automated classification in this context, and we have explored this method for 

mapping lakes from LANDSAT images and Shuttle Radar Topography Mission (SRTM) elevation 

data. We tested our algorithm for most of the Tibetan Plateau, where lakes in tectonic depressions 

or blocked by glaciers and sediments have different surface colours and seasonal ice cover in images 

obtained in 1995 and 2015. We combined a modified normalised difference water index (MNDWI) 

with OBIA and local topographic slope data in order to classify lakes with an area >10 km2. Our 

method derived 323 water bodies, with a total area of 31,258 km2, or 2.6% of the study area (in 2015). 

The same number of lakes had covered only 24,892 km2 in 1995; lake area has increased by ~26% in 

the past two decades. The classification had estimated producer’s and user’s accuracies of 0.98, with 

a Cohen’s kappa and F-score of 0.98, and may thus be a useful approximation for quantifying 

regional hydrological budgets. We have shown that our method is flexible and transferable to 

detecting lakes in diverse physical settings on several continents with similar success rates. 
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1. Introduction 

The Tibetan Plateau is the world’s largest orogenic plateau, with a mean elevation of more than 4000 

m above sea level (a.s.l.), and is known as “the Roof of the World” or “the 3rd Pole of the Earth” [1–3]. The 

Plateau is surrounded by the Himalayas to the south, the Kunlun Shan to the north, the Pamir to the 

west, and the Qilian Shan to the northeast [4]. Together with these ranges, the Tibetan Plateau serves 

as “the Water Tower of Asia” [5–7], hosting glaciers and thousands of lakes that play prominent roles 

as water resources, environmental archives, and potential sources of natural hazards, such as glacier 

lake outburst floods [8]. 

The Tibetan Plateau is among the most sensitive places to atmospheric warming [9]. 

Temperatures on the plateau have risen by 0.3 °C per decade—three times the global average [1,10]. 

Symptoms attributed to atmospheric warming on the plateau include retreating glaciers [4,11], 

degrading permafrost [1,12], and rapidly changing lake areas [13]. The glaciers in the surrounding 
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mountain ranges are prone to changing hydrological and meteorological conditions, potentially 

contributing to changes in the size of the Plateau’s lakes [7]. Many studies have tried to detect and 

monitor these changes [9,14–17]. Some researchers [2,11] have argued that the meltwater from 

glaciers largely drives the size distribution of these lakes. Ground surveys [18] help to verify the 

changes in detail; however, such field measurements are difficult, expensive, and time-consuming 

for large regions, especially if needed regularly. Here, satellite-based monitoring offers a solution in 

terms of repeated and standardised images of lakes, their surface colour, and seasonal ice cover. 

Yang and Lu [13] used LANDSAT images covering several decades to capture how the size of lakes 

on the Tibetan Plateau has changed. Seasonal changes in size are evident for at least 105 lakes [19], with 

those in the south, central, and northeastern parts of the plateau having higher water levels between 

March and October, but showing almost no changes between November and February. Many lakes 

in the north, however, have lower water levels in the warm season, mainly because of strong 

evaporation and low precipitation. Ma et al. [20] reported that between 1960 and 2006, most existing 

lakes grew in size, while 60 new lakes >1 km2 appeared on the Tibetan Plateau and surrounding areas. 

Fang et al. [21] revealed different trends in how 35 lakes changed over the past 40 years. For example, 

Siling Co, the largest lake on the plateau, has increased by >600 km2, whereas lakes in the Himalayas 

have shrunk; lakes in the north and northeastern Tibetan Plateau mainly grew. A local study of Nam 

Co reported that this lake expanded by 51.8 km2 between 1970 and 2010 [22], owing to increasing 

annual precipitation, air temperature, and runoff, and decreasing evaporation, similar to trends of 

other lakes such as Siling Co, Bam Co, Pung Co, Darab Co, and Zige Tangco [23]. 

Few methods of detecting lakes and their changes on the Tibetan Plateau have been developed 

further. Li et al. [24] proposed an algorithm applying a normalised difference water index, 

topographic slope, and hillshading to discern glacial lakes from shadows on LANDSAT ETM+ 

images. They found that pixels classified as water were bimodally distributed, as opposed to pixels 

representing other land cover, and thus distinct from melting glaciers and shadows. Song et al. [6] 

estimated changes in lake-water storage on the Tibetan Plateau from the early 1970s to 2011. Using 

LANDSAT images and ICESat altimetry data, they reported an increase in lake areas and total water 

storage. They noted a more positive water balance in the northern and central plateau, but a decreasing 

water balance in the southeastern part, mostly related to glacier melt. Comparable results [17,25] from 

ICESat data apply to level changes for 154 lakes on the Tibetan Plateau between 2003 and 2009. 

Systematically tracking lake changes offers new challenges and opportunities for automatic 

classification methods, such as object-based image analysis (OBIA) [26]. Such automatic mapping of 

landforms reduces the operator bias produced by manual digitisation, and allows rapid investigation 

of large regions. The training of OBIA algorithms requires careful design, however, especially for 

areas like the Tibetan Plateau, where simple thresholding frequently confuses lakes with glaciers, ice 

and cloud cover, or highly reflecting sediments. We address this issue and present an OBIA approach 

to classifying large lakes on the Tibetan Plateau based on LANDSAT images and the Shuttle Radar 

Topography Mission (SRTM) digital elevation model (DEM). Our objective was to find a suitable 

workflow using an object-based approach for detecting large lakes based on a water index and digital 

topography, aiming for a metric insensitive to glaciers and ice cover, running water, or mountain 

shadows. We present here a method for rapidly delineating lake boundaries and for examining 

general trends in lakes size for a large area, such as the Tibetan Plateau. Specifically, we used a 

modified normalised difference water index (MNDWI) [27] to detect water pixels, and OBIA to 

extract lake boundaries and distinguish them from rivers and glaciers. We then further tested 

whether our method is readily applicable to classifying lakes of different origins and in different 

environmental settings elsewhere. 

2. Previous Work 

Remote sensing data are indispensable for delineating surface objects and tracking how they 

change [28–30]. The continuity of data collection with set parameters [31] enables consistent and 

accurate long-term analyses. Satellite images have a long tradition in classifying water [32–34], 

streams [35], changes in lake volumes [36], and lake monitoring [37]. 
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2.1. Thresholding Methods 

Methods for automatically detecting water bodies from remote sensing data use various spectral 

properties of water [2,38]. The most common approach uses thresholds on a single band or a ratio of 

bands, and is easy, quick, and quite accurate in delineating boundaries of water bodies [2,39]. Frazier 

and Page [32] were among the first to use density slicing on a single band (ρ) of LANDSAT 5 TM 

images, determining the optimal threshold on each band (i.e., 𝜌𝐵𝑙𝑢𝑒 , 𝜌𝐺𝑟𝑒𝑒𝑛 , 𝜌𝑅𝑒𝑑 , 𝜌𝑁𝐼𝑅  (ρ near-

infrared), 𝜌𝑆𝑊𝐼𝑅1  (ρ short-wave infrared), and 𝜌𝑆𝑊𝐼𝑅2  (ρ short-wave infrared)). They found that 

𝜌𝑆𝑊𝐼𝑅1 offered the most accurately classified water areas, only marginally inferior to those obtained 

via a more costly maximum likelihood-based approach to slicing six bands in total. McFeeters [40] 

introduced a band-ratio method for separating water from other land cover classes. His normalised 

difference water index (NDWI) [40] makes assumptions similar to those used for computing the 

normalised difference vegetation index (NDVI) [41] (Table 1), where vegetated surfaces have positive 

NDVI values, bare-ground areas have values close to zero, and water surfaces have negative values. 

McFeeters [40] found that replacing 𝜌𝑅𝑒𝑑 with 𝜌𝐺𝑟𝑒𝑒𝑛 emphasised water areas more than other land-

surface objects (Table 1), where water surfaces have positive NDWI values, and other objects have 

negative values. The NDWI remains widely used and has motivated the search for alternative band 

ratios to allow better separation of water bodies from other land cover. For example, Rogers and 

Kearny [42] suggested using the ratio of 𝜌𝑅𝑒𝑑and 𝜌𝑆𝑊𝐼𝑅1 to automatically delineate water boundaries, 

arguing that only water is more reflective in 𝜌𝑆𝑊𝐼𝑅1 than 𝜌𝑅𝑒𝑑. The NDWI often misclassifies noise 

in urban areas, because the reflectance pattern of built-up areas on 𝜌𝐺𝑟𝑒𝑒𝑛 and 𝜌𝑁𝐼𝑅 mimics that of 

water [27]. Built-up areas also reflect much stronger in 𝜌𝑆𝑊𝐼𝑅1 than in 𝜌𝑁𝐼𝑅, so that Xu [27] proposed 

a modified normalised difference water index (MNDWI) (Table 1), which maintains a robust 

threshold [43]. Nonetheless, new and more complex indices are on the rise. Feyisa et al. [44] suggested 

a non-normalised automated water extraction index (AWEI) from multi-band ratios of LANDSAT 5 

TM data, as an alternative for areas that are easily misclassified as water, such as dark surfaces 

(AWEInsh) and mountainous areas with deep shadows (AWEIsh) (Table 1). The non-normalised water 

index (WI) proposed by Fisher et al. [45] combines five LANDSAT ETM+ bands (Table 1), and is 

intended mainly for regional applications. Upon testing several band-ratio indices, Ouma and 

Tateishi [18] reported that in general the NDWI overestimated water areas by including non-water 

pixels, whereas the MNDWI underestimated water areas by rejecting some water pixels. Amongst all 

these methods, simple thresholding can be very accurate only in relatively flat areas, whereas in 

mountainous terrain it frequently misclassifies shadows, snow, ice, and clouds with spectral 

properties similar to those of water. Thresholding is also unable to distinguish between rivers and 

lakes. Combining the water index with more advanced methods such as OBIA, segmentation, and 

spectral matching is preferable [46]. 

Table 1. Band-ratio indices proposed in previous studies to classify vegetation and water. 

Index Equation Author 

Normalised Difference Vegetation 

Index 
NDVI = (𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑)/( 𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑) 

Townshend and 

Justice [41] 

Normalised Difference Water Index NDWI = (𝜌𝐺𝑟𝑒𝑒𝑛 − 𝜌𝑁𝐼𝑅)/(𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝑁𝐼𝑅) McFeeters [40] 

Normalised Difference Water Index NDWI = (𝜌𝑅𝑒𝑑 − 𝜌𝑆𝑊𝐼𝑅1)/(𝜌𝑅𝑒𝑑 + 𝜌𝑆𝑊𝐼𝑅1) 
Rogers and 

Kearny [42] 

Modified Normalised Difference 

Water Index 
MNDWI = (𝜌𝐺𝑟𝑒𝑒𝑛 − 𝜌𝑆𝑊𝐼𝑅1)/(𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝑆𝑊𝐼𝑅1) Xu [27] 

Automated Water Extraction Index 

(for non-shadow areas) 
AWEInsh = 4 × (𝜌𝐺𝑟𝑒𝑒𝑛 − 𝜌𝑆𝑊𝐼𝑅1) − (0.25 ×  𝜌𝑁𝐼𝑅 + 2.75 × 𝜌𝑆𝑊𝐼𝑅2) Feyisa et al. [44] 

Automated Water Extraction Index 

(for shadow areas) 
AWEIsh = 𝜌𝐵𝑙𝑢𝑒 + 2.5 × 𝜌𝐺𝑟𝑒𝑒𝑛 − 1.5 × (𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅1) − 0.25 × 𝜌𝑆𝑊𝐼𝑅2 Feyisa et al. [44] 

Water Index WI = 1.7204 + 171𝜌𝐺𝑟𝑒𝑒𝑛 + 3𝜌𝑅𝑒𝑑 − 70𝜌𝑁𝐼𝑅 − 45𝜌𝑆𝑊𝐼𝑅1 − 71𝜌𝑆𝑊𝐼𝑅2 Fisher et al. [45] 
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2.2. Classification Methods 

Several methods have been designed for extracting lake outlines from remote sensing data. 

Habib et al. [47] combined the spectral angle mapper classification method, the irregular pyramid, 

and the watershed-with-markers methods in order to identify lakes from SPOT images. They 

evaluated the angular spectral deviation between every pixel and a set of reference spectra, and 

assigned each pixel to the closest reference spectrum. Using graph theory and a bottom-up approach 

to merge neighbouring pixels into bigger segments (irregular pyramids), they also incorporated 

watershed segmentation. To avoid oversegmentation, they applied markers, which they used as the 

minima of the gradient image.  

Texture analysis is an approach aiding the regional mapping of larger lakes (>200 m2), involving 

thresholding and supervised classification of LANDSAT GeoCoverTM mosaics (GWEM) [48]. The 

method uses a low-pass filter with 3 × 3 kernel size to remove small objects (<10 pixels). Thus, derived 

lake polygons are then combined with hillshade data to find shadows wrongly classified as lakes, as 

shadows and clouds are major sources of misclassification for this approach. Alternatives include an 

automated method for extracting rivers and lakes from LANDSAT TM and ETM+ images [49], which 

combines the NDWI, MNWDI, and AWEI for more reliable mapping, especially when considering 

neighbour effects of mixed pixels at lake shores [49]. All these methods, however, were tested in ice- 

and snow-free areas only. 

A global mapping study addressing the problem of ice in detecting water bodies from 

LANDSAT images [50] relied on the MNDWI, and on a SRTM DEM to exclude ice, snow, and 

shadows. Sheng et al. [51] proposed a similar method at continental and global scales using 

LANDSAT 8 and segmenting the NDWI with an arbitrary initial threshold to detect lakes. They 

analysed each lake separately to determine individual thresholds, while SRTM-derived slope and 

hillshade data helped to remove shadows in mountainous terrain. Again, none of these approaches 

catered to the detection of lakes in a (partly) frozen state. 

2.3. Classification Methods and Monitoring 

The water indices and other more advanced classification methods find use in monitoring long-

term changes of water areas. An example of small-scale change detection is a study by Gao et al. [52], 

who investigated a global database of large reservoirs with 250-m resolution Moderate Resolution 

Imaging Spectroradiometer (MODIS) data. They analysed changes in the areas of 34 reservoirs 

between 1992 and 2010 by thresholding and clustering the NDVI for delineating water bodies. This 

approach worked well and consistently for classifying reservoirs, particularly those with small 

shoreline-to-area ratios. Similarly, Deus and Gloaguen [53] used MODIS data, the MNDWI, and 

histogram thresholding to quantify changes in Lake Manyara in East Africa, detecting significant 

decreases in lake area that were strongly correlated with annual rainfall variability. Bai et al. [54] used 

LANDSAT MSS, TM, and ETM+ images, as well as segmentation of the NDWI to study lake changes 

in arid central Asia, and found that lakes decreased in size by ~50% between 1975 and 2007, with 

shrinkage spreading from east to west along major precipitation gradients. Rokni et al. [55] used 

LANDSAT TM, ETM+, and OLI images to automatically extract water areas and model the changes 

of Lake Urmia, Iran, from 2000–2013, and found that the NDWI was the most suitable of the various 

indices for mapping a shrinking lake area. 

3. Study Area and Data 

Our study covered nearly 1,187,000 km2, the greater part of the Tibetan Plateau (Figure 1), where 

lakes mostly formed in tectonic depressions, or behind glaciers and sediments. The lakes have different 

colours due to sediment concentrations, mineral content (salinity), water depths, aquatic vegetation, and 

seasonal ice cover (Figure 2). We excluded from our analysis the southeastern Tibetan Plateau because 

few cloud-free LANDSAT images were available for this area. We analysed 47 LANDSAT 5 images taken 

in 1995 and 47 LANDSAT 8 images taken in 2015. The size of the study area and the different weather 

conditions captured on these images required that we analyse different days of the year (i.e., 25 April–17 
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December 1995, and 8 June–22 November 2015). High-quality images were few for 1995, so we included 

22 images from 1994 and four images from 1996. To avoid bias due to seasonal lake-level changes we 

selected, whenever possible, image pairs that were less than three months apart (Figure 1); for most of the 

study area, we obtained 36 out of 47 pairs. We selected only images with negligible cloud cover 

(Figure 1), and atmospheric and sun-angle correction provided by the U.S. Geological Survey 

(http://espa.cr.usgs.gov/). We used top-of-atmosphere (TOA) reflectance bands instead of at-sensor 

spectral radiance (SR) because the cosine effect of different solar zenith angles linked to different 

acquisition times was already removed [31]. TOA reflectance compensates for different values of 

exoatmospheric solar irradiance arising from spectral band differences; TOA data also account for the 

varying distance between the Earth and the Sun [31]. To distinguish frozen lakes from glaciers and 

mountain shadows, we used the SRTM DEM version 4 [56] as a supporting layer in the OBIA, generating 

a local slope map from the maximum elevation change between pixels in a 3 × 3 neighbourhood. 

 

Figure 1. Study area of the Tibetan Plateau, showing glaciers and lakes with an area >10 km2. Cloud 

cover and acquisition dates differ between images for the two time slices in 1995 and 2015. LANDSAT 

image credits: U.S. Geological Survey (http://espa.cr.usgs.gov/); SRTM data credits: CGIAR 

Consortium for Spatial Information (http://srtm.csi.cgiar.org/). 
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Figure 2. Examples of seasonal differences in lake-ice cover and corresponding RGB values in 

LANDSAT 5 (1995) and LANDSAT 8 (2015) images. For lake locations on the Tibetan Plateau see 

corresponding labels on Figure 1. LANDSAT image credits: U.S. Geological Survey 

(http://espa.cr.usgs.gov/). 

4. Methods 

We developed an algorithm for mapping lakes with seasonal ice cover, combining a water index 

with digital elevation models using OBIA principles. Our algorithm is insensitive to the physical state 

of water and allows us to distinguish between frozen lakes and glaciers. We estimated the accuracy 

of our automatic classification for two time slice datasets for the Tibetan Plateau collected in 1995 and 

2015 using a confusion matrix. Furthermore, we tested the transferability of our approach to areas 

with different environmental conditions. In addition, we verified changes in lake size and general 

trends over the last 20 years. 

An OBIA approach allows the classification of objects from images, by combining spectral 

properties of pixels and analysing the spatial relation between them. The principle in using this 

approach is to classify objects that are not uniform across a large area, and to reduce randomly 

distributed noise that occurs when using pixel-based classification algorithms. The first step in OBIA 

is segmentation, where pixels are merged into bigger homogenous objects. In the next step, it is 

possible to build assumptions based on segments’ spectral values. Here, algorithms defining their 

shape, geometry, spatial position, and connections to the neighbouring segments, are considered an 

advantage over other classifiers. In OBIA, it is also possible to combine layers of different types of 

data, such as satellite images and DEM, to extract objects of interest. We chose this approach because 

attempts to classifying water boundaries based on colour alone have had limited success. From the 

broad range of available normalised water indices, we selected the MNDWI [27], as it produces the 

smallest differences between water, snow, and ice, compared to other indices. This allowed us to 

more easily combine the ‘frozen’ and ‘non-frozen’ parts of a single lake together, while maintaining 

a stable threshold [43]. We also tested the applicability and the performance of our OBIA workflow 

for three recently proposed non-normalised water indices: the automated water extraction indices 

AWEInsh and AWEIsh [44], and the water index WI [45] (Figure 3). For each of these indices, water 

areas should have positive values, and all other surfaces should have negative values. Glaciers and 

mountain shadows also have positive values, however, making the classification of lakes in 

mountainous and glaciered areas like the Tibetan Plateau more difficult. 
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Figure 3. The modified normalised difference water index (MNDWI), water index (WI), automated 

water extraction index for areas without shadows (AWEInsh), and automated water extraction index 

for areas with shadows (AWEIsh) for selected lakes on the Tibetan Plateau, based on LANDSAT 5 

(1995) and LANDSAT 8 (2015). For lake locations on the Plateau see Figure 1. 

We generated mosaics from all images for 1995 and 2015 via the Mosaic to New Raster method 

available in ArcGIS 10.3 software. To speed up the OBIA process, we stretched the MNDWI, AWEI, 

and WI values into a 0–255 scale (Figure 4b), converting them to 8-bit unsigned integer rasters. We 

then used a multiresolution segmentation algorithm [57] (Figure 4c) on the MNDWI, AWEI, and WI 

values. We segmented each index separately, but omitted information on local slope, as the 

underlying SRTM data were obtained in February 2000, and may thus have biased the segmentation. 

We also avoided automatic scale selection methods, such as scale-parameter estimation [58] or 

plateau objective functions [59], as they turned out to be mostly redundant and time consuming. For 

example, applying the segmentation algorithm to a single LANDSAT image without automatic scale 

selection using an Intel Core i7-4600U processor with 16GB RAM memory took less than five minutes, 

whereas using scale-parameter estimation for the same task took more than one hour, partly because 

some of the segmentation process produced redundant data. The distribution of index values for 

water bodies (Figure 4b) is more homogenous than those of other types of land cover [24]. The 
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segments for water areas are therefore mostly larger and more compact than for the surrounding 

landscapes. The multiresolution segmentation algorithm uses three parameters—‘scale’, ‘shape’, and 

‘compactness’—which control segment size, roundness, and the degree of homogeneity of values 

inside the segments, respectively. The crucial point in our OBIA approach was to select an appropriate 

segment size so that it remained below the smallest lake to be analysed, while remaining large enough to 

warrant feasible computing times. We selected a scale of 100, shape of 0.1, and a compactness of 0.7 

(Figures 4c and 5), after running tests with different parameter combinations, and observing that high 

values of ‘shape’ and low values of ‘compactness’ performed poorly in classifying water bodies. 

 

Figure 4. Object-based workflow used for lake classification using eCognition software, and visual 

representation of individual steps in the classification; (a) example of LANDSAT 8 input image; (b) 

modified normalised difference water index (MNDWI); (c) multiresolution segmentation of MNDWI; 

(d) MNDWI thresholding; (e) SRTM slope-derived map; (f) neighbourhood analysis of incorrectly 

classified segments; (g) merging neighbouring segments assigned to the same class; (h) final 

classification of lakes >10 km2. 



Remote Sens. 2017, 9, 339 9 of 21 

 

 

Figure 5. Effects of model parameters ‘scale’, ‘shape’, and ‘compactness’ in the multiresolution 

segmentation algorithm applied to stretched (0–255) modified normalised difference water index 

(MNDWI) for 2015; all ‘scales’ are shown for fixed ‘shape’ = 0.1, and ‘compactness’ = 0.7. 

We then used the thresholding of the water indices to classify segments as either ‘water’ or 

‘other’ (Figure 4d). Due to the different histogram ranges of MNDWI, AWEInsh, AWEIsh, and WI, we 

developed four individual workflows with different thresholds. First, we applied higher thresholds 

(MNDWI > 180) to find areas clearly representing water, then incrementally lowered the thresholds 

(MNDWI > 160) in an infinite loop, adding more neighbourhood assumptions regarding sharing the 

boundary with segments already classified as water (relative border to water >0.25) and with  

slopes ≤ 0.5°. The lowest threshold of MNDWI we applied was >150, with a stricter assumption 

regarding the segment borders; a threshold of >0.4 helped to assign additional water areas, especially 

those along lake shores or covered by cloud. To distinguish lakes from rivers, we further used the 

asymmetry of segments and their relation to neighbouring segments. We used the Asymmetry 

function in the eCognition 9.1 software, defined as the segment length relative to a regular polygon 

drawn around the segment; asymmetry can range from 0 to 1, with higher values expressing more 

asymmetric segments. We found that rivers can be separated from lakes for an Asymmetry > 0.85, a 

relative border to other water segments <0.15, and a boundary shared by a single water segment at 

the most. Many glaciers on the Tibetan Plateau have MNDWI, AWEI, and WI values similar to those 

of lakes, so that a pure OBIA-based classification based on a water index produced many 

misclassifications. We therefore used a local slope map generated from SRTM DEM as a supporting 

layer; as most glaciers occupy areas with slopes >2° (Figure 4e), we reclassified all segments 

accordingly. In a neighbourhood analysis, we corrected segments that were misclassified as glaciers 

(Figure 4f). We reclassified all segments from the glacier class with relative borders to water bodies 

and glaciers of >0.4 and ≤0.1, respectively, as water. Accordingly, we reclassified water class segments 

with relative borders to glaciers and water bodies of ≥0.4 and <0.1, respectively, and with a mean 

slope >0.5°, as glaciers, merging neighbouring segments assigned to the same class (Figure 4g). 

To reduce errors arising from the resolution of satellite images and the DEM, we focused on 

lakes that were >10 km2 in size in 2015 (see Section 5.1), and exported these as vector polygons for 

further quality assessment (Figure 4h). The whole procedure for automatic lake detection using an 

Intel Core i7-4600U processor with 16GB RAM memory took us ~15 min for each processed tile (we 

had 16 tiles in total), where each individual raster tile contained 12.156 columns and 10.405 rows 

(~113,835 km2). We used the lake polygons to generate reference data, visually checking the accuracy 

of each single lake boundary based on natural colour mosaics, and manually improving the 

automatically-extracted lakes where necessary. Manual digitising of each lake was necessary because 

the lakes on the Tibetan Plateau change their size seasonally and in the long term, resulting in no 
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available accurate reference data. We applied the same digitisation scheme and rules for all manually-

generated lake polygons. 

We digitised the reference data by photographic interpretation of LANDSAT images in 2D in 

ArcMap 10.3 at scales between 1:5000 and 1:20,000, depending on the complexity of the lake shores. 

We selected this scale range by taking into account the minimum mapping unit of our images, which 

was 30 × 30 meters. We also checked whether lakes were overlooked by the automatic classification 

or other objects were falsely assigned as lakes. Several lakes, had diffuse boundaries due to lake 

salinity, clouds, or mountain shadows, which hindered correct interpretation of images. In such cases, 

we used water index maps and images with higher resolution, available at ArcGIS online, as 

supporting layers to delineate the lake boundary. In total, we generated 323 reference lakes for each 

time slice. We used these reference data to estimate the accuracy of the classification (Table 2) in terms 

of type I error, type II error, total error [60], overall accuracy, producer’s accuracy, user’s accuracy 

[61], Cohen’s kappa [62], and F-score measures. In addition, we estimated root mean square error, 

mean absolute error, and mean error (bias) (Table 2). The most significant measure is user’s accuracy, 

because it describes whether the automatically extracted lakes were captured in the reference data. 

Table 2. Summary of performance metrics of the classification of lakes on the Tibetan Plateau. 

Performance Metrics 

Type I error FP/(TP + FP) 

 

Type II error FN/(FN + TN) 

Total error (FP + FN)/(TP + FP + FN + TN) 

Overall accuracy (TP + TN)/(TP + FP + FN + TN) 

Producer’s accuracy TP/(TP + FP) 

User’s accuracy TP/(TP + FN) 

Cohen’s kappa (po − pe)/(1 − pe) 

F-score 2TP/(2TP + FP + FN) 

Root mean square error √
1

𝑁
∑ (𝑥𝑖 − 𝑥𝑖)2

𝑁

𝑖=1
 

Mean absolute error 
1

𝑁
∑ |𝑥𝑖 − 𝑥𝑖|

𝑁

𝑖=1
 

Bias (Mean error) 
1

𝑁
∑ (𝑥𝑖 − 𝑥𝑖)

𝑁

𝑖=1
 

TP—true positive; FP—false positive; FN—false negative; TN—true negative; po—relative observed 

agreement among rates; pe—hypothetical probability of chance agreement; 𝑥𝑖 —predicted value;  

𝑥𝑖—observed value; N—number of observations. 

5. Results 

Our classification of Tibetan lakes detected 323 lakes with areas of >10 km2 in the study area in 

2015, with a total area of 31,258 km2, or 2.6% of the study area. Twenty years earlier, the same lakes 

covered only 24,892 km2, meaning that their total area grew by ~26%. 

5.1. Accuracy of Extracted Lakes 

We selected a minimum lake area of 10 km2, given the 30-m resolution of the satellite images 

and to minimise the influence of mixed pixels from low-resolution images. The proportion of mixed 

pixels to total lake pixels increases with decreasing lake area (Figure 6). For lakes <10 km2, this 

proportion is >0.2, whereas for lakes >50 km2 it is <0.07. Estimating the accuracy of lakes with high 

percentages of mixed pixels may therefore misrepresent the accuracy of the method. We compared 

the classified lake boundaries with the manually generated reference data and computed several 

performance metrics for the entire study area (Table 3). 
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Figure 6. Proportion of mixed pixels versus lake size; MP is the ratio of mixed pixels; A is the lake 

area in km2. 

Table 3. Performance metrics for OBIA-based extraction of lakes on the Tibetan Plateau with 

MNDWI, WI, AWEInsh, and AWEIsh for 1995 and 2015. 

Performance 

Metric 

1995 2015 

MNDWI WI AWEInsh AWEIsh MNDWI WI AWEInsh AWEIsh 

Type I 0.0134 0.0089 0.0234 0.0140 0.0169 0.0081 0.0337 0.0143 

Type II 0.0003 0.0016 0.0005 0.0022 0.0005 0.0018 0.0007 0.0016 

Total 0.0006 0.0018 0.0010 0.0024 0.0010 0.0020 0.0016 0.0020 

O. Acc. 0.9994 0.9982 0.9990 0.9976 0.9990 0.9980 0.9984 0.9980 

P. Acc. 0.9866 0.9911 0.9766 0.9860 0.9831 0.9919 0.9663 0.9857 

U. Acc. 0.9850 0.9292 0.9778 0.9073 0.9808 0.9376 0.9732 0.9428 

Kappa 0.9855 0.9583 0.9767 0.9438 0.9815 0.9630 0.9690 0.9628 

F-score 0.9858 0.9592 0.9772 0.9450 0.9819 0.9640 0.9698 0.9638 

RMSE 0.0244 0.0420 0.0309 0.0490 0.0309 0.0442 0.0398 0.0442 

MAE 0.0005 0.0018 0.0010 0.0024 0.0010 0.0020 0.0016 0.0020 

ME −0.0003 −0.0014 0.0003 −0.0018 −0.0001 −0.0015 0.0002 −0.0012 

Type I error (Type I); Type II error (Type II); Total error (Total); Overall accuracy (O. Acc.); Producer’s 

accuracy (P. Acc.); User’s accuracy (U. Acc.); Cohen’s kappa (Kappa); Root mean square error (RMSE); 

Mean absolute error (MAE); Mean error (ME). 

Our OBIA method for extracting lakes >10 km2 had an overall accuracy of 0.99, and the 

producer’s and user’s accuracy, Cohen’s kappa, and the F-score for both time slices were >0.98 when 

using the MNDWI (Table 3). The performance with AWEInsh, AWEIsh and WI was slightly lower, 

albeit >0.94, with the exception of the user’s accuracy for WI of ~0.92. The accuracy in classifying lakes 

with respect to their physical states of water (frozen, partly frozen, and unfrozen) was similar. All 

lakes, irrespective of ice cover, were detected with very high producer’s accuracy (Figure 7). The 

MNWDI achieved the highest accuracy and the lowest root mean square error, mean absolute error, 

and mean error; we checked the performance of standalone water indices in extracting lakes >10 km2 

(Figure 8), and found that the area under the curve (AUC) of MNWDI exceeded those of the AWEI 

and WI indices. 
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Figure 7. Box-and-whisker plots of the estimated producer’s accuracy in classifying lakes on the 

Tibetan Plateau with respect to their ice cover, using one of four different water indices. 

 

Figure 8. Receiver operating characteristics (ROC) with area under the curve (AUC) for estimating 

the performance in classifying lakes on the Tibetan Plateau using different water indices. 

Visual cross checks revealed that using the AWEIsh in our OBIA approach misclassified many 

land areas as lakes, especially by falsely assigning border segments adjacent to lakes (Figure 9,  

Table 3). The AWEInsh appeared to be the least useful for selecting thresholds between water and non-

water pixels (Figure 9). Histograms showed that the zero threshold was more reliable to use on 

MNDWI than any other water index. Most misclassified areas were along the border of lakes, 

particularly irregular shorelines; river deltas were also often represented by single segments in our 

method. Clouds also caused some misclassification of lakes (Figure 9), whereas glaciers were a lesser 

problem. In some cases, small islands in the lakes were also misclassified. 

We note that seasonal lake ice had little influence on our data; however, with our OBIA 

approach, lakes were mostly classified correctly regardless. We studied Siling Co, in detail, which is 

the largest lake in our study area (though not on the entire Tibetan Plateau). We selected additional 

images for the two time slices, covering more seasonal variations in lake ice and snow cover on 

shorelines. To this end, we used the OBIA classification with the MNDWI without changing any 

parameter in the workflow. We found our method to be robust throughout and capable of detecting 

lakes with high accuracy (Figure 10). Misclassification occurred only in an image obtained on 2 

December 1994, in which shores were covered by snow, violating the assumptions of our OBIA 

approach designed exclusively for snow-free images. 
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Figure 9. Estimated accuracy of OBIA classification of lakes on the Tibetan Plateau using different 

water indices: MNDWI, WI, AWEInsh, and AWEIsh; TP is the true positive rate; FP is the false positive 

rate; FN is the false negative rate; and TN is the true negative rate. 

 

Figure 10. Results from OBIA classification of Siling Co (see inset for location on Tibetan Plateau) with 

different degrees of seasonal ice cover. 
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5.2. Sources of Error in the Analyses 

Although our classification has very high accuracy, we have highlighted several sources of error 

unrelated to the algorithm but nevertheless influencing our classification. The first source of error 

arose from splitting the data into smaller tiles. To make our analysis feasible, we had to separate the 

study area into 16 square tiles with two pixels of overlap between neighbouring tiles. This led to 

misclassifying small parts of lakes along the borders of the tiles. 

Another source of error concerned reference data that solely relied on LANDSAT images. The 

30-m resolution of images made it difficult to delineate some of the blurrier lake images. The 

roundness of the lakes also played a role, as rounded shapes with a lower perimeter-area ratio are 

easier to digitise. This ratio translated into the number of pixels along lake borders for which correct 

classification was difficult. Another important point is that manually-generated reference data are 

always prone to operator bias, as different people are likely to map the same lakes with minor 

differences. Such differences may produce fake changes in lake areas, and therefore we treated any 

lake-area changes of <1 km2 as potentially suspicious. 

5.3. Lake-Area Changes (1995–2015) 

Our analysis showed that the total area of lakes >10 km2 on the Tibetan Plateau increased by 

6,366 km2. Out of 323 lakes, 25 increased their area by >50 km2, eleven lakes grew by >100 km2, and 

one lake by >500 km2. These changes were not evenly spread throughout the study area. The highest 

relative increase occurred in the northern part of the Tibetan Plateau, where most lakes are 

concentrated (Figure 11); these grew mostly by between 100% and 200%, and up to 50 km2 in absolute 

area (Figure 11). The highest increase in total lake area (2,404 km2) occurred in internal basin ‘6’ on 

the northeastern part of the plateau, where 108 lakes were detected (Figure 11). In basin ‘5’, which 

has a similar number of lakes (112), the total lake area increased by 1,037 km2. Most lakes that 

underwent moderate changes (<10 km2) are in the southwestern Tibetan Plateau, mainly along the 

Himalayas and adjacent mountain belts. Between 1995 and 2015, eighteen new lakes >1 km2 formed 

mostly in the northeastern part of the plateau, at elevations between 4,700 and 5,000 m a.s.l., slightly 

below the most dominant elevation (Figure 11). This narrow elevation band also featured the greatest 

increase in lake size, whereas most lakes with lesser changes lie at lower elevation. We notice a weak 

correlation of lake growth with incoming solar radiation, especially for basins ‘7’ and ‘8’ (Figure 11). 

5.4. Transferability of OBIA Approach 

We tested the global transferability of our method for extracting lakes with the MNDWI, as this 

index achieved the highest accuracy. We selected six LANDSAT 8 images capturing areas with 

numerous lakes on five continents, representing environments greatly different to that of the Tibetan 

Plateau (Figure 12, Table 4). 

We maintained our OBIA workflow for these selected areas without changing any parameters, 

and found that nearly all classified test areas yielded overall, producer’s, and user’s accuracies of 

>0.95, with a Cohen’s kappa and F-score of >0.96, with low root mean square errors, mean absolute 

errors, and mean errors (Table 5). For one test area, the lakes in Lago Cochrane National Reserve, 

Chile, the performance metrics were much lower, mainly because the algorithm misclassified a single 

large river delta (Figure 12b). Visual checks indicated that flat and hilly regions allow for better 

delineation of lake boundaries than high mountains. Shadows were correctly distinguished from 

lakes; however, where shadows overlapped with lakes, misclassifications arose. Small and thin 

clouds were usually correctly distinguished from lakes (Figure 12f); however, thicker clouds 

increased misclassification (Figure 9). Overall, our method performed well for nearly all landscape 

types, including low-gradient environments without glaciers (Figure 12a) and alpine environment 

with glaciers (Figure 12d, Table 5). 
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Figure 11. General trends in lake-area changes and the ratio of changes between 1995 and 2015 on the 

Tibetan Plateau; * lakes with ratio > 5 are set to 5.1 for better legibility. 
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Figure 12. Transferability and accuracy assessment of OBIA method for extracting lakes in areas other 

than the Tibetan Plateau; TP is the true positive rate; FP is the false positive rate; FN is the false 

negative rate; and TN is the true negative rate. 

Table 4. Characteristics of test sites across the world used to verify the transferability of our OBIA 

method for lake classification (see Figure 12 for locations). 

TS 
Continent  

(Country) 
Landscape Type Extracted Lakes Date TA 

a 
North America  

(USA) 
Flat area 

Leech Lake, etc. in Cass 

County, Minnesota 
29.09.2015 2,156.28 

b 
South America  

(Chile/Argentina) 
Mountains 

Lakes in Lago Cochrane 

National Reserve 
01.04.2014 1,518.87 

c 

Africa  

(Democratic Republic 

of the Congo) 

Flat forested area Mai-Ndombe Lake, etc. 12.01.2016 2,812.52 

d 

Europe  

(Germany/Switzerland

/Austria) 

Mountains with 

glaciers 
Constance Lake, etc. 22.05.2016 802.76 

e 
Europe  

(Sweden) 

Lakeland—flat 

postglacial area 
Vänern and Vättern Lakes, etc. 09.05.2016 5,848.82 

f 
Australia  

(New Zealand) 
Hilly region Lakes in Mackenzie Basin 17.03.2016 1,696.70 

TS (test site); Date (Image acquisition date [day.month.year]); TA (Total area [km2] of lakes >10 km2 on image). 
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Table 5. Performance metrics for OBIA-based lake extraction using MNDWI for lakes in different test 

areas across the world (see Figure 12 for locations). 

Performance Metrics 
Test Area 

a b c d e f 

Type I error 0.0022 0.0216 0.0021 0.0050 0.0025 0.0471 

Type II error 0.0004 0.0120 0.0014 0.0001 0.0012 0.0005 

Total error 0.0005 0.0124 0.0014 0.0002 0.0014 0.0027 

Overall accuracy 0.9995 0.9876 0.9986 0.9998 0.9986 0.9973 

Producer’s accuracy 0.9978 0.9784 0.9979 0.9950 0.9975 0.9529 

User’s accuracy 0.9940 0.7825 0.9835 0.9948 0.9939 0.9899 

Cohen’s kappa 0.9956 0.8631 0.9898 0.9948 0.9949 0.9697 

F-score 0.9959 0.8695 0.9906 0.9949 0.9957 0.9711 

Root mean square error 0.0220 0.1113 0.0381 0.0149 0.0369 0.0515 

Mean absolute error 0.0005 0.0124 0.0014 0.0002 0.0014 0.0027 

Mean error −0.0002 −0.0106 −0.0011 −0.0001 −0.0006 0.0017 

6. Discussion 

In the second part of the 20th century, 82% of the Tibetan Plateau glaciers retreated; if this trend 

continues, two-thirds of the current Tibetan Plateau glaciers could be gone in the coming centuries [1]. 

Changes in evaporation may significantly increase this trend, supplying water to lakes and enhancing 

their growth. Systematically monitoring lake areas therefore supports estimates of the rates of 

change. Our comparative analysis confirms previous findings that have reported that expanding 

lakes are not spread uniformly across the Tibetan Plateau [6,19,21], but are instead focused in the 

northeastern part of the Plateau. Compared to the distribution of glaciers (Figure 1), we found that 

lakes grew by the smallest amount where glaciers in the Himalayan Mountains Range are most 

numerous. This may be due to the temperature increase, which may promote stronger evaporation [25]. 

Accurate automated mapping of lake boundaries may aid regional studies of the hydrological 

balance of tens to thousands of lakes. Our OBIA based approach provides a tool that allows, in a short 

time and an easy way, to delineate the shorelines of large lakes, thus assisting the monitoring of 

regional changes in lake size, both seasonal and in the long term. The performance of our automatic 

classification tested on the Tibetan Plateau is surprisingly high. Tests of our method on lakes in other 

environments, without changing any parameters, were similarly successful, and most lakes were 

correctly detected with only minor misclassification at the boundaries of lakes, especially where 

shorelines were complex. This high accuracy largely draws from using a water index in an OBIA 

context. The water index we used, the MNDWI, is generally highly accurate; however, misclassifying 

glaciers, shadows, and clouds, as well as its varying threshold for separating ‘water’ from other land-

cover types—which should be around zero value—makes it difficult to transfer the method to areas 

outside of the training area. We implemented water index thresholding in the OBIA using few 

thresholds, which more correctly detected the lakes’ boundaries than did single thresholding. 

Applying neighbourhood assumptions for every segment allowed us to distinguish lakes from other 

objects falsely assigned by the water index. By using a multiresolution segmentation algorithm, we 

reduced unwanted salt-and-pepper noise that is a characteristic of simple water index thresholding. 

The OBIA rule set relied on relations between the segments and their spatial location, allowing us to 

more realistically separate lakes from other bjects with similar water index values. The OBIA protocol 

found segments that were incorrectloy classified by the MNDWI thresholding due to their low values 

caused by clouds above the lakes, MNDWI values that were too low, or shadows, and subsequently 

re-classified them as lakes. The topographic slope information excludes glaciers and other falsely 

included objects. Although our method is designed for lakes >10 km2, it is capable of extracting 

numerous smaller lakes accurately; however, we omitted some small lakes (<1 km2) owing to the 

choice of ‘scale’ parameter. For detecting lakes <10 km2 more correctly, we recommend decreasing 

the ‘size’ of segments. The smallest correctly-identified lake for the 1995 images had an area of 0.0135 

km2 (15 pixels). The correctness of its predicted boundaries is difficult to check, however, given the 

30-m data resolution. 
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Mixed pixels along lake shores remain a major challenge for classification. We have shown that 

they can form a large proportion of the classified lake area, especially for small lakes and low-resolution 

images, thus increasing the cost of classifying them compared to large lakes. We suggest that this 

proportion should not exceed 10% of the area of the smallest object of interest. This is why we focused 

only on lakes >10 km2, as for most of these lakes the mixed pixels ratio was <10% (Figure 6). 

We found that MNDWI accurately indicated of water areas, detecting nearly all lakes in our 

study area. Compared to several other water indices, the MNDWI ROC curve indicated the best 

performance in detecting lakes >10 km2; additionally its derivation is physically more intuitive than 

those for the WI and AWEI. In computing the MNDWI, one may neglect erroneous pixels in the input 

bands, because for such errors the absolute value of MNDWI will be >1, thus enabling fast and easy 

quality checks. For computing the AWEI and WI, this issue remained pending; therefore, one must 

check all input bands carefully and exclude erroneous values from the bands separately. The MNWDI 

is a normalised metric, and therefore it is easier to manipulate, contrast, and stretch the data as 

desired, while the range of values remains the same with respect to SR or TOA data, making it 

possible to use the same threshold independently of the input data. 

Combining optical images with elevation models enabled us to build more sophisticated 

assumptions in OBIA and separate lakes from glaciers, which have similar spectral properties on 

LANDSAT images. A slope map derived from DEM gives adequate information on the differences 

between these two landforms. Lakes have a slope of approximately zero, whereas the slope for 

glaciers is mostly larger. Although the slope of some lake shores may be similar to that of glaciers, 

the use of common boundaries with other flatter lake segments promotes a correct assignment to the 

lake class. In very steep terrain, lake-shore pixels can have spuriously high slopes as an artefact of 

including nearby hillslopes. Using a more accurate DEM may allow us to achieve better results, 

especially if the DEM data were gathered shortly before or after the time slice of interest. We used a 

DEM from 2000 to analyse lakes in 1995 and 2015, so that five and 15 years of geomorphic change 

could have affected our elevation data. LANDSAT images are available for the entire globe; however, 

SRTM data are only available between 56° S and 60° N. The lack of more digital topographic data for 

areas with higher altitude therefore curtails our method, particularly in Arctic regions featuring 

thousands of glacial and periglacial lakes. In such cases, however, a new global 0.4 arc second (~12m) 

DEM gathered by the TerraSAR-X-Add-on for Digital Elevation Measurements (TanDEM-X) mission 

(https://tandemx-science.dlr.de/) may open new doors. 

We also recall that, in snow-covered areas, the multiresolution segmentation algorithm is unable 

to properly delineate lake boundaries using a water index, so we recommend using our method only 

for images without snow cover. Using a metric of the spread of water-index values, such as their 

standard deviation, may help to distinguish water from snow. Similarly, clouds remain an issue in 

detecting lake boundaries. The fraction of cloud cover provided with LANDSAT images may be 

insufficient because even an image with low cloud cover may introduce classification errors, where 

clouds obscuring parts of lakes can be crucial. Visual checks of images remain indispensable. We 

recommend tools such as the LAND Viewer (http://lv.eosda.com), which enables verification of the 

RGB and different band compositions of LANDSAT-8 and SENTINEL-2 images in relation to date, 

percentage of cloud, and sun angle in detail before downloading. 

Our method fills in a gap in classifying lakes prone to seasonal ice cover, as such lakes are 

notoriously difficult to detect automatically. Our automatic and fast classification allows the mapping 

of water bodies, irrespective of landscape type, with an accuracy similar to those of previous 

approaches [48,49,63]. The added value of our algorithm is that it detects lakes regardless of whether 

they are partly or completely frozen. We therefore believe that our OBIA algorithm has great potential 

for tracking in detail not only long-term changes, but also seasonal variations in lake areas, especially 

given the increasing access to free high-resolution satellite images, such as those from the SENTINEL 

sensor, which revisits a given area every five days. 
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7. Conclusions 

We have proposed an approach for automatically detecting large lakes prone to seasonal ice 

cover. We developed our method for the Tibetan Plateau, where such ice cover and surrounding 

glaciers make the use of various remote-sensing-based water indices problematic. Our method is 

insensitive in this regard and distinguishes with high estimated accuracy between lakes, glaciers, and 

shadows, giving the opportunity to track annual and seasonal changes of mountain lakes, especially 

those surrounded by many glaciers. Our approach combines a satellite-image-derived water index, 

OBIA, and a DEM-derived slope map to automatically extract lakes. The method can be applied in 

areas where acquiring images in ice-free seasons is difficult. Testing of our method on LANDSAT 

images for two time slices (1995 and 2015) showed that lakes on the Tibetan Plateau grew ~26% in 

total, and that the changes were not evenly spread through the whole tested area. The largest increase 

occurred in the northeast, whereas the southwestern Tibetan Plateau saw the largest decrease. 

Further tests of our method in areas abundant in lakes throughout the world showed that our 

approach may be general and flexible enough for regional, if not global, monitoring of lake changes. 
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