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Abstract: This paper presents a novel semi-supervised joint dictionary learning (S2JDL) algorithm
for hyperspectral image classification. The algorithm jointly minimizes the reconstruction and
classification error by optimizing a semi-supervised dictionary learning problem with a unified
objective loss function. To this end, we construct a semi-supervised objective loss function which
combines the reconstruction term from unlabeled samples and the reconstruction–discrimination
term from labeled samples to leverage the unsupervised and supervised information. In addition,
a soft-max loss is used to build the reconstruction–discrimination term. In the training phase,
we randomly select the unlabeled samples and loop through the labeled samples to comprise the
training pairs, and the first-order stochastic gradient descents are calculated to simultaneously
update the dictionary and classifier by feeding the training pairs into the objective loss function. The
experimental results with three popular hyperspectral datasets indicate that the proposed algorithm
outperforms the other related methods.

Keywords: hyperspectral image classification; discriminative sparse representation; semi-supervised
joint dictionary learning (S2JDL); soft-max loss

1. Introduction

Hyperspectral remote sensing sensors can provide plenty of useful information that increases
the accurate discrimination of spectrally similar materials of interest and allow for the acquisition
of hundreds of contiguous bands for the same area on the surface of the Earth [1]. The acquired
hyperspectral images have been extensively exploited for classification tasks [2–5], which aim at
assigning each pixel with one thematic class for an object in a scene.

Recently, sparse representation has emerged as an effective way to solve various computer vision
tasks, such as face recognition, image super-resolution, motion tracking, image segmentation, image
denoising and inpainting, background modeling, photogrammetric stereo, and image classification [6],
where the concept of sparsity often leads to state-of-the-art performances. Sparse representation
has also been used for hyperspectral image classification [4,7], target detection [7,8], unmixing [9],
pansharpening [10], image decomposition [11,12], and dimensionality reduction [13,14], where the
high-dimensional pixel vectors can be sparsely represented by a few training samples (atoms) from
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a given dictionary and the encoded sparse vectors carry out the class-label information. In order
for sparse representation to yield superior performances, the desired dictionary should have good
representation power [15].

Traditional methods for learning a representative and compact dictionary have been extensively
exploited [16–19]. The method of optimal directions (MOD) [16] is an improvement of matching
pursuit with an iterative optimization strategy, which iteratively calculates the optimal adjustment for
the atoms. Singular value decomposition generalized from K-means (K-SVD) [17] is an iterative method
that alternates between sparse coding of instances based on the current dictionary and updating the
dictionary to better represent the data. The majorization method (MM) [18] is an optimization strategy
that substitutes the original objective function with a surrogate function updated in each optimization
step. The recursive least squares algorithm (RLS-DLA) [19] adopts a continued update approach as
each atom is being processed. These methods have shown good performances in various computer
vision tasks. However, these dictionary learning algorithms are designed for reconstruction tasks but
not for the purpose of classification. Moreover, these algorithms often result in high computational
complexity, less representative power for specific class, and lower discriminative power.

Advanced dictionary learning algorithms have been recently proposed to incorporate
a discriminative term into the objective function in the dictionary learning problem [20–30], which has
been regarded as discriminative sparse representation (DSR) in our previous work [31]. DSR allows for
jointly learning reconstructive and discriminative parts instead of only the reconstructive one. Existing
DSR models include the following categories:

(i) The seminal studies that paved the way for considering discrimination in dictionary learning.
Mairal [20] adopted MOD and K-SVD to update the dictionary by using a truncated Newton
iteration method. However, this method is not strictly convex and it did not explore the
discrimination capability of sparse coefficients. Later, Mairal [22] adopted a logistic loss function
to build a binary classification problem. This work also illustrated the possibility of extending
the proposed binary classification problem to multi-class classification problems using soft-max
loss function. Pham [21] designed a constrained optimization problem by adopting a linear
classifier with quadratic loss and `2-norm regularization to jointly minimize the reconstruction and
classification errors. This approach may suffer from a local minimum issue due to the fact that it
iteratively alternates between reconstruction and classification terms.

(ii) Exploiting a different loss function and discriminative criterion. Lian [23] adopted a hinge loss
function inspired from support vector machines (SVMs) to design a unified objective loss function
that links classification with dictionary learning. Such a framework is able to further increase
the margins of a binary classifier, which consequently decreases the error bound of the classifier.
Yang [26] presented a novel discrimination dictionary learning (FDDL) method by using a Fisher
discrimination criterion for penalizing the sparse coefficients, where a structured dictionary was
used for minimizing the reconstruction error. Henao [32] developed a new Bayesian formulation
for nonlinear SVM, based on a Gaussian process and with the hinge loss expressed as a scaled
mixture of normals.

(iii) Incorporating K-SVD with a DSR model. Following the work [21], Zhang [25] proposed
a discriminative K-SVD (D-KSVD) by incorporating the classification error term into the
K-SVD-based objective function. However, this approach does not guarantee the ability of
discrimination when acting on a small training set. In order to overcome this issue, Jiang [29]
presented a label consistent K-SVD (LC-KSVD) algorithm, where the class-label information is
associated with dictionary atoms to enforce discriminative property, and the optimal solution is
efficiently obtained by using the K-SVD algorithm.

(iv) Exploiting the hybrid supervised and unsupervised DSR model. Lian [24] presented a probabilistic
model that combines an unsupervised model (i.e., Gaussian mixture model) and a supervised
model (i.e., logistic regression) for supervised dictionary learning. Marial [33] presented an online
dictionary learning (OnlineDL) algorithm. Following this work, Zhang [30] presented an online
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semi-supervised dictionary learning (OnlineSSDL) algorithm by optimizing the reconstruction
error from labeled and unlabeled data, and the classification error from labeled data. However, for
the sake of simplicity, OnlineSSDL droops the weight decay for classifier parameters and makes
the problem strictly convex, resulting in a suboptimal solution.

(v) Exploiting structured sparsity in the DSR model. Compared with traditional sparse representation
methods, structured sparsity-based methods are always more robust to noise due to the stability
associated with group structure [34]. In addition, the structured sparsity-inducing dictionary
learning methods require a smaller sample size to obtain the optimal solution [35–38]. Based
on graph topology, Jiang [27] proposed a submodular dictionary learning (SDL) algorithm by
optimizing an objective function that accounts for the entropy rate of random walk on a graph and
a discriminative term. This dictionary learning problem can be considered as a graph partitioning
problem, where the dictionary is updated by finding a graph topology that maximizes the
objective function.

These works also stated that a good dictionary learning method should find a proper balance
between reconstruction, discrimination, and compactness. Particularly, some studies have exploited
DSR for hyperspectral image processing. Charles [39] modified an existing unsupervised learning
method to learn the dictionary for hyperspectral image classification. Later, Castrodad [40] exploited
DSR, where block-structured dictionary learning and subpixel unsupervised abundance mapping
were jointly considered. More recently, Wang [41] designed a hinge loss function inspired from learning
vector quantization to address the discriminative dictionary learning problem. Wang [42] proposed
a semi-supervised classification method by jointly learning the classifier and dictionary in a task-driven
framework, where logistic loss function is adopted to build the discriminative term. Our previous work
presented a new method for DSR by learning a reconstructive dictionary and a discriminative classifier
in a sparse representation model regularized with total variation [31].

Despite the good performances of these dictionary learning methods, some shortcomings can
be observed. On the one hand, most of these approaches deal with supervised dictionary learning
problems, and the performances of the learnt dictionary for classification greatly depend on the number
of labeled samples. Unfortunately, the collection of labeled training samples is generally difficult,
expensive and time-consuming, whereas unlabeled training samples can be generated in a much easier
way, which has fostered the idea of exploiting semi-supervised learning (SSL) for hyperspectral image
classification [43]. On the other hand, the loss function adopted in most of these approaches is square
loss that considers classification as a regression problem. In addition, square loss often suffers from one
critical flaw that the data outliers are punished too heavily when squaring the errors.

In this paper, we consider the above issues by jointly learning a reconstructive and discriminative
dictionary in a semi-supervised fashion. To this end, we first employ a soft-max loss function to build
the multi-class discriminative term to address the multi-class classification problem. Different from
square loss, soft-max loss is overparameterized, which means for any hypothesis that needs to fit, there
are multiple parameter settings giving rise to exactly the same hypothesis function mapping from
inputs to the predictions. We then calculate the first-order stochastic gradient descents (SGD) [44]
to simultaneously update the dictionary and classifier. The dictionary learning phase is iteratively
performed in a semi-supervised learning fashion with the obtained labeled and unlabeled training
pairs. The ultimate goal of this study is classification, while dictionary is an implicit variable when
applying the proposed DSR model on hyperspectral image classification. Note that the recent study [42]
is related to our work. However, we adopt soft-max loss to build the discriminative term, whereas [42]
used logistic loss.

Although our previous studies [11,14,45,46] have exploited sparse representation for hyperspectral
image classification, the methodologies are quite different from this work. Xue [11] focused on
hyperspectral image decomposition for spectral-spatial classification, Xue [14] addressed hyperspectral
image dimensionality reduction using sparse graph embedding, and Xue [45,46] exploited sparse graph
regularization for hyperspectral image classification with very few labeled samples.
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In this context, the main contribution of our work is the proposed semi-supervised joint dictionary
learning (S2JDL) algorithm, which leverages the information from labeled and unlabeled samples,
allowing more accurate classification performance. Note that the proposed algorithm is unique
compared to previously proposed approaches in the hyperspectral image classification community.
In addition, we adopted a soft-max loss function to build the DSR problem, which is beneficial to
hyperspectral image classification since the multi-class classification problem is very common in
this community.

2. Background

Let X = [Xl , Xu] = [x1, ..., xN ] ∈ Rn×N be a hyperspectral dataset with an n-dimensional signal
for each pixel xi = [x1, ..., xn]T, i ∈ 1, ..., N. Let superscripts l and u be the labeled and unlabeled
sample or dataset, and let the subscripts u and s be unsupervised or supervised objective loss function
(i.e., Γ or L). Let Y = [y1, ..., yN ] ∈ Rm×N represent the label matrix for the input data, where the
index of the nonzero value (i.e., 1) of yi represents its label. Let Y(xi) ∈ {1, ..., m} denote the label
of xi. Let D = [d1, ..., dK] ∈ Rn×K be the dictionary. Let W = [wT

1 , ..., wT
m]

T ∈ Rm×K be the classifier.
Let Z = [z1, ..., zN ] ∈ RK×N be the sparse coefficients for X.

2.1. Sparse Representation

In the context of sparse representation, the sparse coefficients of X with respect to dictionary D
can be obtained by optimizing an `1-norm regularization problem [6]

arg min
Z

1
2
‖X−DZ‖2

F + λ‖zi‖1, (1)

where λ is a regularization parameter controlling the tradeoff between reconstruction error and sparsity.

2.2. Dictionary Learning for Classification

For various dictionary learning algorithms, the construction of D can be achieved by minimizing
the reconstruction error and satisfying the sparsity constraint as

arg min
D,Z

1
2
‖X−DZ‖2

F + λ‖zi‖1. (2)

K-SVD [17], which iteratively alternates between sparse coding and dictionary updating to
better fit the data, is an efficient algorithm generalized from the K-means clustering process to solve
Equation (2). However, K-SVD is not explicitly designed for classification tasks, as it only focuses on
minimizing the reconstruction error.

Separating dictionary learning from classification may result in a suboptimal D for classification.
Therefore, it is generally preferred to jointly learn the dictionary and classifier by solving [21,22,25,28–30]

arg min
D,W,Z

1
2
‖X−DZ‖2

F +
1
N

N

∑
i=1

Γ[yi, f (z∗(xi, D), W)] +
λ1

2
‖W‖2

F + λ‖zi‖1, (3)

where the classifier can be obtained by optimizing the model parameter W = [w1, ..., wm]T ∈ Rm×K as

W = arg min
W

1
N

N

∑
i=1

Γ[yi, f (z∗(xi, D), W)] +
λ1

2
‖W‖2

F, (4)

where Γ denotes the objective loss function which can be of square loss, logistic loss, soft-max loss,
and hinge loss forms, z∗(xi, D) denotes the sparse code zi obtained by solving Equation (1), and λ1 is
another regularization parameter preventing overfitting.
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2.3. Related Work

Recently proposed joint dictionary learning methods mainly focus on supervised dictionary
learning, which take the form [22]

arg min
D,W,Z

1
2
‖X−DZ‖2

F +
1
N

N

∑
i=1
{Γ[−yi, f (z∗(xi, D), W)]− Γ[yi, f (z∗(xi, D), W)]}+ λ1

2
‖W‖2

F + λ‖zi‖1. (5)

However, Equation (5) is designed for binary classification with yi ∈ {[1 0]T; [0 1]T}.
K-SVD can be extended to discriminative K-SVD (D-KSVD) [25] by reconstructing an augmented

dictionary with augmented training data, which can be formulated as

arg min
D,W,Z

α‖X−DZ‖2
F + β‖Y−WZ‖2

F + λ‖zi‖1,

⇒ arg min
D̃,W,Z

‖X̃− D̃Z‖2
F + λ‖zi‖1,

(6)

where X̃ = [
√

αXT,
√

βYT]T, D̃ = [
√

αDT,
√

βWT]T, α and β are two scalars controlling the related
contributions of the corresponding terms.

Recently, label consistent K-SVD (LC-KSVD) [29] has emerged as an effective way to solve
Equation (6) by jointly adding a classification term and a label consistent regularization term into the
square loss objective function, which is of the form

arg min
D,W,G,Z

‖X−DZ‖2
F + α‖Q−GZ‖2

F + β‖Y−WZ‖2
F + λ‖zi‖1, (7)

where the term ‖Q−GZ‖2
F signifies the discriminative sparse code error, Q = [q1, ..., qN ] ∈ RK×N

refers to the discriminative sparse code (0 or 1) corresponding to input data Z. The nonzero values
(i.e., 1) of qi = [q1

i , ..., qK
i ]

T ∈ RK occur at those indices where the input signal zi and the dictionary
atom dk share the same label. G∈ RK×K is a linear transformation matrix, which transforms the original
sparse code to be the most discriminative one in sparse feature space RK. Similar to D-KSVD, LC-KSVD
is solved by using K-SVD with an augmented dictionary D̃ = [

√
αDT,

√
βWT,

√
γGT]T [29].

More recently, based on LC-KSVD, Zhang [30] tried to solve Equation (7) in an online SSL fashion
by using a block-coordinate gradient descent algorithm to update the dictionary, which is named as
OnlineSSDL and formulated as

arg min
D,W,G,Z

‖Xu −DZu‖2
F + α‖Xl −DZl‖2

F + β‖Y−WZl‖2
F + γ‖Q−GZl‖2

F + λ‖zi‖1. (8)

Mairal [28] represented semi-supervised dictionary learning as an extension in the task-driven
dictionary learning problem, which takes the form

arg min
D,W

(1− µ)Ex
[
Γu( f (z∗(xu, D)))

]
+ µEy,x

[
Γs(y, f (z∗(xl , D), W))

]
+

λ1

2
‖W‖2

F, (9)

where the loss functions Γs and Γu are, respectively, for supervised and unsupervised learning fashions,
and µ ∈ (0, 1) is a new parameter controlling the tradeoff between them.

However, Equation (9) adopts the logistic loss with a one-versus-all strategy and addresses
classification as a regression problem, resulting in the scalability issues and large memory burden.

3. Proposed Method

In the proposed method, we first define a semi-supervised joint dictionary learning problem.
Then, the optimization phase includes initialization, sparse coding, dictionary updating, and classifier
updating. Finally, the class labels of unknown data are predicted by using the learnt classifier and the
sparse coefficients. Figure 1 graphically illustrates the main idea.
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Figure 1. Graphical illustration of the proposed method.

3.1. Model Assumption

An attractive and promising research line for jointly learning the dictionary and classifier is to
incorporate SSL. Inspired by the Equations (8) and (9), we now reformulate the semi-supervised joint
dictionary learning problem into an improved form

arg min
D,W,Z

(1− µ)
{ 1

N

N

∑
i=1

Γu[ f (z∗(xu
i , D))] + λψ(zu

i )
}

+ µ
{1

2
‖Xl −DZl‖2

F +
1
N

N

∑
i=1

Γs[yi, f (z∗(xl
i , D), W)] +

λ1

2
‖W‖2

F + λψ(zl
i)
}

,

(10)

where ψ is a sparsity-inducing function.
We adopt an `1-norm for ψ, and adopt a soft-max loss to design the supervised objective loss

function, which takes the form

Γs[yi, f (z∗(xl
i , D), W)] , −

m

∑
j=1

1{Y(xl
i) = j} log

exp(wT
j zl

i)

∑m
p=1 exp(wT

pzl
i)

, (11)

where 1{·} is an indicator function, so that 1{a true statement} = 1 and 1{a false statement} = 0,
and j ∈ {1, 2, ..., m} refers to class.

Finally, the designed semi-supervised joint dictionary learning problem can be defined as

arg min
D,W,Z

(1− µ)
{1

2
‖Xu −DZu‖2

F + λ‖zu
i ‖1

}
+ µ

{1
2
‖Xl −DZl‖2

F

− 1
N

N

∑
i=1

m

∑
j=1

1{Y(xl
i) = j} log

exp(wT
j zl

i)

∑m
p=1 exp(wT

pzl
i)

+
λ1

2
‖W‖2

F + λ‖zl
i‖1

} (12)

3.2. Optimization

3.2.1. Initialization

Let us assume that we have a small labeled dataset Xl spanning all classes and a large unlabeled
dataset Xu. Two variables need to be initialized since Y can be seen as a prior. For D0, we intend
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to initialize such a dictionary in a way that its atoms are uniformly allocated to each class, with the
number of atoms proportional to the dictionary size. Thus, we randomly select multiple class-specific
dictionaries with equal size from the training data. The initialization process is completely supervised
and the class labels attached to the dictionary remain fixed during the dictionary learning process.
As for W0, we employ a multivariate ridge regression model [47] as

arg min
W

1
2‖Y−WZ‖2

F +
λ1
2 ‖W‖2

F, (13)

which is equipped with square loss and `2-norm regularization, and yields the following solution

W = YZT(ZZT + λ1
2 IK)

−1, (14)

where IK denotes the identity diagonal matrix with degree K.
We employ a spectral unmixing by variable splitting and augmented Lagrangian (SUnSAL)

algorithm [48] to obtain the sparse code Z for the input data X with respect to the initialized dictionary
D0. Then, the initial W0 can be computed by using Equation (14). Our previous studies have validated
the good performance of SUnSAL for hyperspectral image processing [11,14,31,45,46].

3.2.2. Variables Updating

We can resort to the SGD algorithm to optimize Equation (12) since the objective loss function in
our problem is highly nonlinear. In order to achieve semi-supervised optimization, we first regard
the optimization process as two independent ingredients (i.e, unsupervised learning and supervised
learning) and then calculate their gradients respectively. Then, we can combine the gradients with
weighted summation strategy to obtain the final update.

At iteration t, we first select the t-th labeled sample xl
t from Xl . Assume currently, the dictionary

Dt and the label matrix yt are all given. We then randomly select an unlabeled sample xu
t from Xu. Next,

we calculate the sparse codes (zu
t , zl

t) for the training pair (xu
t , xl

t) with respect to the current dictionary
by adopting the SUnSAL algorithm. At last, Dt and Wt can be updated by feeding the training pair
into the semi-supervised objective loss function. To this end, the gradients should be firstly formulated,
which poses a critical challenge in optimizing the proposed dictionary learning problem.

For an unlabeled sample xu
t , assume Lu[ f (z∗(xu

t , Dt))] , 1
2‖xu

t − Dtzu
t ‖2

2 + λ‖zu
t ‖1, then we

compute the gradients of Lu for xu
t with respect to Dt as

∇DtLu[ f (z∗(xu
t , Dt))] = (1− µ)(Dtzu

t − xu
t )z

uT
t . (15)

For a labeled sample xl
t, we solve the following problem

arg min
Dt ,Wt ,zl

t

1
2
‖xl

t −Dtzl
t‖2

2 + λ‖zl
t‖1 −

m

∑
j=1

1{Y(xl
t) = j} log

exp(wT
j zl

t)

∑m
p=1 exp(wT

pzl
t)

+
λ1

2
‖Wt‖2

F. (16)

The skeleton optimization process of the presented semi-supervised joint dictionary learning
(S2JDL) method is summarized in Algorithm 1. More details for the dictionary and classifier updating
can be found in the Appendix A.
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Algorithm 1 Semi-Supervised Joint Dictionary Learning (S2JDL).

1: Input: Xl , Xu, K, T, λ, λ1, λ2, µ, ρ.
2: Output: D and W.
3: Initialization: Initialize D0 with K atoms from Xl and obtain W0 by Equation (14).
4: for each xl

t in Xl do

5: Randomly select an unlabeled sample xu
t from Xu.

6: Obtain (zl
t, zu

t ) for (xl
t, xu

t ) with the current dictionary Dt using SUnSAL.
7: Find the support set Λt for zl

t.
8: Calculate the learning rate: ρt ← min(ρ, ρt0/t).
9: Update D and W by Equations (A4) and (A5), respectively.

10: Remove the selected unlabeled sample: Xu ← Xu \ xu
t .

11: end for
12: return Dt+1 and Wt+1.

3.3. Classification

Once we have obtained the learnt dictionary D̂ and the classifier parameter Ŵ from Algorithm 1,
we can predict a new incoming test sample xtest. To this end, we first compute its sparse code ztest

using SUnSAL and then assign its label by the position corresponding to the largest value (also the
most possible value) in the label vector by

Y(xtest) = H(xtest, Ŵ) , arg min
j

Ŵztest. (17)

Since the proposed method can produce probability as Equation (17), we adopt graph cuts [49] to
obtain smoother classification maps. Graph cuts are as an energy minimization algorithm, which can
tackle the combinatorial optimization problem involving unary and pairwise interaction terms, i.e., the
maximum a posteriori (MAP) segmentation problem using multinomial logistic regression with
multilevel logistic prior. Graph cuts can yield very good approximations to the MAP segmentation
and are quite efficient from a computational point of view [50]. Overall accuracy (OA) and the Kappa
value (κ) generated from the confusion matrix are used to evaluate the classification performance
based on the ground-truth [51]. In addition, the Kappa [52] and McNemar z-score statistical tests [53]
are also adopted for accuracy assessment.

4. Experimental Results and Discussion

4.1. Experimental Settings

For performance comparison, some strongly related dictionary learning algorithms are considered.
The unsupervised methods are MOD, K-SVD, D-KSVD, and OnlineDL. The supervised category
includes LC-KSVD and SDL. We also implemented a semi-supervised method, semi-supervised joint
dictionary learning with logistic loss function (S2JDL-Log, “Log” for Logistic loss function), which is a
variant of the proposed method. We then denote by S2JDL-Sof (“Sof” for soft-max loss function) the
proposed method to differentiate them. It is worth noting that all the methods employ a multivariate
ridge regression model for classifier learning (see Equation (14)), and adopt orthogonal matching
pursuit (OMP) [54] for sparse coding.

It is worth noting that MOD, K-SVD, D-KSVD, LC-KSVD, OnlineDL, and SDL are implemented
based on their original source codes released to the public by their owners, and they share the
common parameters of sparsity level (T = 5), reconstruction error (E = 1 × 10−4), and `1-norm penalty
(λ = 1× 10−5). In addition, three other parameters in SDL have been set as the recommended values.
We also note that these parameters have been selected by careful cross-validation. In this context,
the parameter settings always ensure a fair comparison even if they are suboptimal. For dictionary
and classifier update, the initial learning rate is set to ρ = 1× 10−3, and the tradeoff between the
unsupervised and supervised learning ingredients is set to 0.5.
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We randomly select labeled training samples from the ground-truth to initialize the dictionary
and classifier. The `2-norm penalty parameter is set to λ1 = 1× 10−5 when initializing the classifier
using Equation (14).

For classification, we set the maximum number of iterations to kmax = 10, which means that the
reported overall accuracies (OAs), average accuracies (AAs), kappa statistic (κ), and class individual
accuracies are derived by averaging the results after conducting ten independent Monte Carlo runs
with respect to the initialized labeled training set. In addition, the smoothness parameter (τ) in graph
cuts is set to 3, and we adopt graph cuts for all the methods.

Finally, it is worth noting that all the implementations were carried out using Matlab R2015b
on a desktop PC equipped with an Intel Xeon E3 CPU (at 3.4 GHz) and 32 GB of RAM. It should be
emphasized that all the results are derived from our own implementations and the involved parameters
for these methods have been carefully optimized in order to ensure a fair comparison.

4.2. Hyperspectral Datasets

Three real hyperspectral datasets [55] collected by Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) and the Reflective Optics Spectrographic Imaging System (ROSIS) are used in our experiments.
The first hyperspectral image was acquired by the AVIRIS sensor over the Indian Pines region in
northwestern Indiana in 1992. The image size in pixels is 145 × 145, with moderate spatial resolution
of 20 m. The number of data channels in the acquired image is 220 (with spectral range from 0.4 to
2.5 µm). A total of 200 radiance channels are used in the experiments by removing several noisy and
water absorbed bands. A three-band false color composite image and the ground-truth map are shown
in Figure 2. A total of 10,366 samples containing 16 classes are available.

(a) (b)

Figure 2. (a) False color composition of the Airborne Visible Infrared Imaging Spectrometer (AVIRIS)
Indian Pines scene (R: 57, G: 27, B: 17); (b) Ground truth-map containing 16 mutually exclusive
land-cover classes.

The second hyperspectral image was acquired by the ROSIS sensor over the urban area of the
University of Pavia, Italy. The image size in pixels is 610 × 340, with very high spatial resolution of
1.3 m. The number of data channels in the acquired image is 103 (with spectral range from 0.43 to
0.86 µm). A three-band false color composite image and the ground-truth map are shown in Figure 3.
A total of 42,776 samples containing nine classes are available.
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(a) (b)

Figure 3. (a) False color composition of the Reflective Optics Spectrographic Imaging System (ROSIS)
University of Pavia scene (R: 102, G: 56, B: 31); (b) Ground truth map containing nine mutually exclusive
land-cover classes.

The third hyperspectral image was acquired by the AVIRIS sensor over Salinas Valley in southern
California, USA. The image size in pixels is 512 × 217, with a spatial resolution of 3.7 m. The number
of data channels in the acquired image is 224 (with spectral range from 0.4 to 2.5 µm). A total of 204
radiance channels are used in the experiments by removing the noisy and water absorbed bands. A
three-band false color composite image and the ground-truth map are shown in Figure 4. A total of
54,129 samples containing 16 classes are available.

(a) (b)

Figure 4. (a) False color composition of the AVIRIS Salinas scene (R: 57, G: 27, B: 17); (b) Ground truth
map containing 16 mutually exclusive land-cover classes.

4.3. Experiments with AVIRIS Indian Pines Dataset

Experiment 1: We first analyze the sensitivity of parameters for the proposed method. Figure 5
illustrates the sensitivity of the proposed method to parameters λ, λ1, and µ under the condition
that 10% of labeled samples per class are used for training and 15 labeled samples per class are used
to build the dictionary. As we can see from Figure 5a, the OA is insensitive to λ and λ1. Therefore,
we roughly set λ = 1× 10−5 and λ1 = 1× 10−5. This observation is reasonable since λ controls the
uniqueness of sparse coding and λ1 determines the initial performance of the classifier parameter.
The impacts of the two parameters are reduced in a iterative learning scheme since sparse coding and
classifier update are alternatively conducted. According to Figure 5b, we found that OA is sensitive to
µ, and the optimal value is set to µ = 3. This observation is in accordance with that made in [50].
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Figure 5. Parameter sensitivity analysis of the proposed method for the AVIRIS Indian Pines dataset
(10% of labeled samples per class are used for training and 15 labeled samples per class are used to
build the dictionary). (a) Overall accuracy (OA) as a function of λ and λ1; (b) Overall accuracy (OA) as
a function of τ. (a) OA vs. λ and λ1; (b) OA vs. τ.

Experiment 2: In this test, Gaussian random noise with a pre-defined signal-to-noise ratio

(SNR) (SNR , 10log10

(
E[‖X‖2

2]/E[‖N‖2
2]
)

) is generated and added to the original imagery. Figure 6
illustrates the evolution of OA with SNR for different classifiers. As shown in the figure, the proposed
method outperforms others in most cases with SNR = 5, 10, etc. The interval between the curve of the
proposed method and others visually indicates the significances, which confirms the robustness of the
proposed method to data noise.
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Figure 6. The evolution of overall accuracy with SNR for different classifiers (10% of labeled samples
per class are used for training and 15 labeled samples per class are used to build the dictionary).

Experiment 3: We then analyze the impact of training data size on classification accuracy. To this
end, we randomly choose 10% of labeled samples per class (a total of 1027 samples) to initialize
the training data and evaluate the impact of the number of atoms on the classification performance.
Figure 7 shows the OAs as a function of the number of atoms per class obtained by different methods.
As we can see from the figure, the proposed method obtains the highest accuracies in all cases. Another
observation is that, as the number of atoms increases, the OAs also increase. When the number of
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atoms per class is equal to 15, the proposed method reaches a stable level, with an OA higher than
80%. It is interesting to note that D-KSVD and LC-KSVD obtain very similar results.

Figure 8 shows the OAs as a function of the ratio of labeled samples per class for different
methods. As we can see from the figure, the proposed method obtains higher accuracies when the ratio
is larger than 5%. It is worth noting that the proposed method can stably obtain improved classification
performance with additional labeled samples. However, the other methods cannot produce higher
OAs as the ratio ranges from 3% to 10%. This observation can be explained by the increase of the
number of labeled samples; the proposed method can exploit more information from both the labeled
and unlabeled training samples, whereas the supervised dictionary learning methods can only rely on
the labeled information, and the performance cannot be improved significantly. Another observation
is that S2JDL-Log yields a very competitive classification performance. This is due to the fact that
S2JDL-Log is based on semi-supervised learning fashion.

Experiment 4: Table 1 reports the OA, AA, individual classification accuracies, and κ statistic. The
results of the proposed algorithm are listed in the last column of the table and we have marked
in bold typeface the best result for each class and the best results of OA, AA, and κ statistic.
Our method achieves the best results compared to the other supervised dictionary learning methods.
The improvements of classification accuracy are around 10–40% when compared to other methods.
Especially, when classifying the class Wheat, our method performs very well. Although our method
may not always obtain the best accuracy in some specific classes, AA, OA, and kappa are more
convincing metrics measuring the classification performance. In addition, the time costs of different
methods are listed in the table, where we can see that the proposed method is more efficient than
K-SVD, D-KSVD, and LC-KSVD. However, MOD, OnlineDL, and SDL take less time. The time cost of
the proposed method mainly comes from the optimization step, which can be reduced by exploiting
more efficient optimization strategy.

Table 2 reports the statistical tests between-classifier in terms of Kappa z-score and McNemar
z-score. The critical value of z-score is 1.96 at a confidence level of 0.95, and all the tests are significant
with 95% confidence, which indicates that the proposed method significantly outperforms the other
methods. Another observation is that the lower value of z-score demonstrates the closer classification
results, e.g., the Kappa z-score value for S2JDL-Log/S2JDL-Sof is 4.4. Similar observation can be made
for the tests using McNemar z-score.

For illustrative purposes, Figure 9 shows the obtained classification maps (corresponding to the
best one after ten Monte Carlo runs). The advantages obtained by adopting the semi-supervised
dictionary learning approach with regard to the corresponding supervised and unsupervised cases
can be visually appreciated in the classification maps displayed in Figure 9, where the classification
OAs obtained for each method are reported in the parentheses. Compared to the ground-truth
map, the proposed method obtains a more accurate and smoother classification map. Significant
differences can be observed when classifying the class Wheat in this scene, which is in accordance
with the former results. However, the classification maps obtained by D-KSVD and LC-KSVD are
much less homogeneous than the other methods. This observation can be explained by the fact that
Graph cuts are adopted as a post processing strategy, which largely relies on the initial classification
probabilities obtained by the classifiers. If the initial classification results are poor, then the classification
improvements may not be satisfied. That is the case for D-KSVD and LC-KSVD with an initial
OA = 60.07% for the former and an initial OA = 60.52% for the latter.
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Table 1. Overall (OA), average (AA), and individual class accuracies (%), kappa statistics (κ), and the standard deviation of ten conducted Monte Carlo runs obtained
for different classification methods for the AVIRIS Indian Pines dataset with a balanced training set (10% of labeled samples per class are used for training and
15 labeled samples per class are used to build the dictionary).

Class #Samples MOD K-SVD D-KSVD LC-KSVD OnlineDL SDL S2JDL-Log S2JDL-Sof
Train Test

Alfalfa 5 41 3.66 ± 11.57 0.00 ± 0.00 17.80 ± 17.36 33.90 ± 30.60 10.24 ± 31.55 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Corn-notill 143 1285 14.44 ± 8.94 58.44 ± 11.20 40.60 ± 6.87 33.70 ± 6.59 36.90 ± 15.71 59.28 ± 7.61 83.03 ± 5.67 82.40 ± 3.89

Corn-mintill 83 747 0.00 ± 0.00 48.63 ± 9.39 26.85 ± 11.35 29.84 ± 11.72 19.38 ± 26.51 53.13 ± 5.31 50.96 ± 12.25 55.85 ± 5.85
Corn 24 213 0.05 ± 0.15 2.35 ± 5.52 13.85 ± 8.73 15.02 ± 15.53 0.00 ± 0.00 15.35 ± 29.16 1.08 ± 3.41 5.77 ± 5.11

Grass-pasture 48 435 0.02 ± 0.07 71.91 ± 19.54 70.46 ± 12.43 64.85 ± 17.43 11.03 ± 10.64 24.34 ± 1.78 85.03 ± 3.84 88.41 ± 4.44
Grass-trees 73 657 83.84 ± 20.12 99.83 ± 0.24 88.57 ± 10.82 87.15 ± 12.77 89.82 ± 31.56 99.73 ± 0.51 98.83 ± 0.95 99.44 ± 0.46

Grass-pasture-mowed 3 25 0.80 ± 1.69 26.80 ± 43.17 38.00 ± 44.51 24.80 ± 39.05 2.40 ± 7.59 26.00 ± 42.09 0.00 ± 0.00 0.00 ± 0.00
Hay-windrowed 48 430 75.19 ± 32.08 100.00 ± 0.00 97.88 ± 2.22 96.95 ± 3.59 89.81 ± 31.56 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Oats 2 18 0.00 ± 0.00 0.00 ± 0.00 8.89 ± 18.56 7.78 ± 10.54 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Soybeans-notill 97 875 0.17 ± 0.54 73.65 ± 1.82 49.38 ± 7.25 49.20 ± 14.91 20.11 ± 27.13 74.26 ± 1.51 55.66 ± 8.59 53.69 ± 5.87

Soybeans-mintill 246 2209 99.84 ± 0.36 99.49 ± 0.67 79.00 ± 10.66 81.21 ± 8.01 88.47 ± 31.25 98.25 ± 2.34 98.71 ± 2.11 97.15 ± 0.76
Soybean-clean 59 534 0.00 ± 0.00 20.64 ± 13.06 26.70 ± 12.92 36.25 ± 13.04 2.68 ± 8.47 14.38 ± 12.53 55.21 ± 26.95 75.67 ± 8.67

Wheat 21 184 9.84 ± 31.11 99.13 ± 0.46 75.49 ± 22.95 93.15 ± 5.13 87.88 ± 30.91 87.12 ± 30.79 99.29 ± 0.52 99.18 ± 0.46
Woods 127 1138 99.85 ± 0.18 99.88 ± 0.22 92.50 ± 4.30 92.30 ± 4.69 89.53 ± 31.46 99.88 ± 0.11 99.85 ± 0.25 99.67 ± 0.32

Bldg-grass-tree-drives 39 347 0.06 ± 0.12 31.73 ± 16.71 15.48 ± 9.09 23.95 ± 12.60 9.86 ± 17.51 2.05 ± 6.47 59.91 ± 15.95 60.35 ± 5.73
Stone-steel-towers 9 84 56.79 ± 36.55 99.64 ± 0.80 99.05 ± 0.75 87.38 ± 30.90 78.69 ± 29.03 34.29 ± 44.78 37.98 ± 49.15 98.57 ± 2.68

Average accuracy - - 27.78 ± 4.50 58.26 ± 4.07 52.53 ± 4.10 53.59 ± 4.82 39.80 ± 12.01 49.25 ± 3.78 57.85 ± 4.35 63.51 ± 0.66
Overall accuracy - - 48.48 ± 3.35 75.79 ± 2.18 62.11 ± 2.83 62.65 ± 1.97 55.02 ± 19.54 71.77 ± 1.54 80.46 ± 2.52 82.25 ± 1.08

κ statistic - - 0.365 ± 0.04 0.715 ± 0.03 0.561 ± 0.03 0.567 ± 0.02 0.478 ± 0.17 0.667 ± 0.02 0.771 ± 0.03 0.793 ± 0.01

Time (Seconds) - - 2.64 ± 0.41 138.76 ± 8.02 148.11 ± 6.20 143.17 ± 9.03 1.96 ± 0.50 0.83 ± 0.13 53.97 ± 4.66 59.64 ± 4.67
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Figure 7. Overall accuracy (OA) as a function of the number of atoms per class for the AVIRIS dataset
(10% of labeled samples per class are used for training). Error bars indicate the standard deviations
obtained by the proposed method.
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Figure 8. Overall accuracy (OA) as a function of the ratio of labeled samples per class for the AVIRIS
Indian Pines dataset (15 labeled samples per class are used to build the dictionary). Error bars indicate
the standard deviations obtained by the proposed method.

Table 2. Pairwise statistical test in terms of Kappa z-score and McNemar z-score for the AVIRIS Indian
Pines dataset with a balanced training set (10% of labeled samples per class are used for training and
15 labeled samples per class are used to build the dictionary).

Between-Classifier κ (z-score) McNemar (z-score)

MOD/S2JDL-Sof 57.4 3.3 × 103

K-SVD/S2JDL-Sof 12.2 2.7 × 102

D-KSVD/S2JDL-Sof 31.7 1.3 × 103

LC-KSVD/S2JDL-Sof 32.3 1.3 × 103

OnlineDL/S2JDL-Sof 45.2 2.5 × 103

SDL/S2JDL-Sof 18.4 5.8 × 102

S2JDL-Log/S2JDL-Sof 4.4 5.5 × 101

The critical value of z-score is 1.96 at a confidence level of 0.95, and all the tests are significant with
95% confidence.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Classification maps obtained by different methods for the AVIRIS Indian Pines dataset.
The OA in each case is reported in the parentheses. (a) MOD (48.48%); (b) K-SVD (75.79%); (c) D-KSVD
(62.11%); (d) LC-KSVD (62.65%); (e) OnlineDL (55.02%); (f) SDL (71.77%); (g) S2JDL-Log (80.46%);
(h) S2JDL-Sof (82.25%).

Experiment 5: In the last experiment, we analyze the mechanism of the proposed method.
Firstly, we plot the stem distributions of sparse coefficients obtained by different methods. As we
can see from Figure 10, the distributions between-classifier are significantly different. Precisely, the
corresponding atoms belonging to the same land cover type contribute more than the others, thus
making the associated coefficients sparsely locate at those atoms. For example, the atoms indexed
by 146–160 in the dictionary belong to the class Wheat, and the sparse coefficients will mainly locate
at these atoms if this class is well represented. Obviously, the proposed method produces more
accurate sparse coefficients since the stem distributions mainly locate at the corresponding atoms (see
Figure 10g). As for the other methods, the associated sparse atoms cannot be accurately found, i.e.,
the stem distributions obtained by OnlineDL partially locate at the class Woods. Figure 11 spatially
exhibits the sparse coefficients relative to the class Wheat for different methods. As shown in Figure 11,
the proposed method yields more accurate sparse coefficients relative to the class Wheat. Therefore, the
aggregation characteristics of sparse coefficients naturally enlarge the discrimination between different
land cover types, and the spatial variations of sparse coefficients explain the accuracy of the prosed
method for sparse representation. The above observations demonstrate the good performance of the
proposed method in dictionary learning, and the discrimination performance of our method has been
validated in the former experiments.

Secondly, we analyze the denoising power of the proposed method by plotting the original
spectrum, the reconstructed spectrum, and the noise for the class Wheat. From the results shown
in Figure 12, we can see the original spectrum can be accurately reconstructed with a very small
Root-Mean-Square Error (RMSE) (The RMSE for two observations xi and xj can be defined as:

RMSE = sqrt
(

∑B
b=1(xi,b − xj,b)

2/B
)

), which is the difference between the original spectrum (x) and the
reconstructed spectrum (Dz). It is worth noting that the proposed method obtains a very small RMSE
value. In this context, the proposed method can accurately reconstruct the original spectrum with
high fidelity by removing noise, which explains the robustness to noise of the proposed method in the
former experiment. We then evaluate the global reconstruction performance of the proposed method by
considering all classes. As reported in Table 3, the proposed method obtains the smallest RMSE value.
This experiment also hints at the good performance of the proposed method in dictionary learning.
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Table 3. Global reconstruction performance for different methods by considering all classes.

MOD K-SVD D-KSVD LC-KSVD OnlineDL SDL S2JDL-Log S2JDL-Sof

RMSE 2.60 × 10−3 1.72 × 10−4 1.53 × 10−4 1.25 × 10−4 3.69 × 10−4 3.05 × 10−4 3.45 × 10−5 3.42 × 10−5

Finally, we attempt to analyze the dictionary structure by visually illustrating the matrix D learnt
by different methods. As shown in Figure 13, S2JDL-Sof and S2JDL-Log yield similar data structure,
and the atoms belonging to the same class are more similar to each other, while the atoms belonging
to different classes are more distinctive between each other. Similar observations can be made for
D-KSVD, LC-KSVD, and SDL. However, the dictionaries learnt by OnlineDL model very little data
structure, as shown in the figure. Note that we cannot currently explain the factors inducing the
differences of dictionary structure.
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Figure 10. Stem distributions of sparse coefficients relative to the class Wheat obtained by different
methods for the AVIRIS Indian Pines dataset. The circles terminating different stems represent the
sparse coefficients relative to the associated atoms which are marked with different colors representing
different classes. (a) MOD; (b) K-SVD; (c) D-KSVD; (d) LC-KSVD; (e) OnlineDL; (f) SDL; (g) S2JDL-Log;
(h) S2JDL-Sof.
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Figure 11. Graphical illustration of sparse coefficients relative to the class Wheat obtained by different
methods for the AVIRIS Indian Pines dataset. (a) MOD; (b) K-SVD; (c) D-KSVD; (d) LC-KSVD;
(e) OnlineDL; (f) SDL; (g) S2JDL-Log; (h) S2JDL-Sof; (i) Ground-truth.
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Figure 12. Reconstruction and denoising power of sparse representation for different methods by
taking the class Wheat as an example. The original spectrum (top), reconstructed spectrum with
RMSE value (middle), and noise (bottom) are given for each case. (a) MOD; (b) K-SVD; (c) D-KSVD;
(d) LC-KSVD; (e) OnlineDL; (f) SDL; (g) S2JDL-Log; (h) S2JDL-Sof; (i) Original.
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Figure 13. Graphical illustration of the dictionary structure learnt by different methods. The vertical
dashed lines in each figure separate different atoms belonging to different classes. (a) MOD; (b) K-SVD;
(c) D-KSVD; (d) LC-KSVD; (e) OnlineDL; (f) SDL; (g) S2JDL-Log; (h) S2JDL-Sof.

4.4. Experiments with ROSIS University of Pavia Dataset

Experiment 1: We first analyze the impact of training data size on classification accuracy.
We randomly choose 5% of labeled samples per class (a total of 2138 samples) to initialize the training
data and evaluate the impact of the number of atoms on classification performance achieved by the
proposed method for the ROSIS University of Pavia dataset. Figure 14 shows the OAs as a function of
the number of atoms per class obtained by different methods. Again, the proposed method obtains the
highest accuracies in all cases. Another observation is that, for most of the methods, the OAs increase
as the number of atoms also increase. Different from the former experiments, when the number of
atoms per class is larger than 10, the OAs obtained by D-KSVD and LC-KSVD become lower. In this
scene, MOD does not perform very well in all cases.
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Figure 14. Overall accuracy (OA) as a function of the number of atoms per class for the ROSIS
University of Pavia dataset (5% of labeled samples per class are used for training). Error bars indicate
the standard deviations obtained by the proposed method.

Figure 15 depicts the OAs as a function of the ratio of labeled samples per class for different
methods. As we can see from the figure, the proposed method obtains the highest accuracies in all
cases. It is interesting to note that the proposed method cannot stably obtain improved classification
performances with additional labeled samples. This may be due to the fact that the homogeneity in this
scene is not so significant, and graph cuts reduce the effects of the learning phase since the classification
accuracy cannot be significantly improved by using additional labeled samples. In addition, similar
observations can be made for other methods. In this scene, D-KSVD does not perform very well in
different cases. Again, S2JDL-Log provides competitive performance.
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Figure 15. Overall accuracy (OA) as a function of the ratio of labeled samples per class for the ROSIS
University of Pavia dataset (15 labeled samples per class are used to build the dictionary). Error bars
indicate the standard deviations obtained by the proposed method.

Experiment 2: Table 4 lists the OA, AA, individual classification accuracies, and κ statistic.
As reported in the table, the proposed method achieves the best results compared to the other supervised
dictionary learning methods. The improvements of classification accuracy are around 3–30% when
compared to other methods. When classifying the class Bare soil, our method obtains the highest
accuracy, with an OA of 23.10%. Although this accuracy is not very high, it demonstrates the merit of
the proposed method since Bare soil is very difficult to accurately classify. In addition, the time costs of
different methods are listed in the table, where we can see that the proposed method is more efficient
than K-SVD, D-KSVD, and LC-KSVD. Again, MOD, OnlineDL, and SDL take less time.
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Table 4. Overall (OA), average (AA), and individual class accuracies (%), kappa statistics (κ), and the standard deviation of ten conducted Monte Carlo runs obtained
for different classification methods for the ROSIS University of Pavia dataset with a balanced training set (5% of labeled samples per class are used for training and
15 labeled samples per class are used to build the dictionary).

Class #Samples MOD K-SVD D-KSVD LC-KSVD OnlineDL SDL S2JDL-Log S2JDL-Sof
Train Test

Asphalt 332 6299 78.61 ± 21.49 93.67 ± 1.51 11.92 ± 4.72 11.50 ± 14.42 98.58 ± 0.95 99.32 ± 0.38 98.22 ± 0.52 98.38 ± 0.98
Meadows 932 177,17 100.00 ± 0.00 100.00 ± 0.00 87.58 ± 8.56 81.89 ± 15.62 100.00 ± 0.00 100.00 ± 0.00 99.80 ± 0.38 100.00 ± 0.01

Gravel 105 1994 0.00 ± 0.00 15.31 ± 21.13 9.35 ± 10.97 13.23 ± 17.28 14.06 ± 14.40 8.57 ± 14.87 23.61 ± 19.49 42.54 ± 9.39
Trees 153 2911 2.70 ± 4.50 50.84 ± 4.37 16.54 ± 11.44 27.02 ± 19.63 36.81 ± 8.29 55.36 ± 3.77 73.48 ± 2.40 67.28 ± 6.93

Painted metal sheets 67 1278 99.66 ± 0.40 97.68 ± 0.90 27.07 ± 32.75 93.32 ± 10.51 99.49 ± 0.34 99.05 ± 0.72 99.87 ± 0.13 99.86 ± 0.20
Bare soil 251 4778 0.70 ± 1.56 22.12 ± 2.65 6.64 ± 7.37 15.23 ± 10.49 21.52 ± 4.09 18.28 ± 5.98 23.73 ± 2.57 23.10 ± 4.96
Bitumen 67 1263 0.00 ± 0.00 0.00 ± 0.00 17.03 ± 21.09 32.71 ± 37.04 5.22 ± 16.50 6.67 ± 14.36 0.00 ± 0.00 13.93 ± 18.64

Self-Blocking Bricks 184 3498 1.50 ± 2.96 24.08 ± 6.00 10.61 ± 12.66 3.69 ± 3.70 61.70 ± 14.99 40.54 ± 12.37 60.43 ± 6.44 59.83 ± 14.27
Shadows 47 900 22.44 ± 20.08 0.00 ± 0.00 100.00 ± 0.00 99.89 ± 0.05 84.66 ± 7.02 1.63 ± 3.89 0.00 ± 0.00 72.27 ± 11.78

Average accuracy - - 33.96 ± 3.77 44.85 ± 2.18 31.86 ± 6.67 42.05 ± 7.46 58.00 ± 2.69 47.71 ± 2.87 53.24 ± 2.53 64.13 ± 2.70
Overall accuracy - - 59.82 ± 3.64 70.25 ± 1.09 46.96 ± 4.07 48.34 ± 9.47 75.21 ± 1.45 72.37 ± 1.50 76.29 ± 1.24 78.79 ± 1.10

κ statistic - - 0.382 ± 0.08 0.572 ± 0.02 0.337 ± 0.04 0.365 ± 0.09 0.645 ± 0.02 0.603 ± 0.02 0.665 ± 0.02 0.701 ± 0.02

Time (Seconds) - - 8.30 ± 2.68 341.32 ± 42.90 93.09 ± 8.54 100.12 ± 9.40 6.17 ± 1.20 6.02 ± 0.90 521.07 ± 27.39 79.58 ± 8.17
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Table 5 also reports the statistical tests between-classifier in terms of Kappa z-score and McNemar
z-score. Again, the results indicate that the proposed method significantly outperforms the other
methods. In this scene, we observe that OnlineDL is closer to our method, i.e., the Kappa z-score value
for OnlineDL/S2JDL is 14.2, which is in accordance with the results reported in Table 4.

Table 5. Pairwise statistical test in terms of Kappa z-score and McNemar z-score for the ROSIS
University of Pavia dataset with a balanced training set (5% of labeled samples per class are used for
training and 15 labeled samples per class are used to build the dictionary).

Between-Classifier κ (z-score) McNemar (z-score)

MOD/S2JDL-Sof 74.5 7.6 × 103

K-SVD/S2JDL-Sof 33.9 2.8 × 103

D-KSVD/S2JDL-Sof 98.8 1.2 × 104

LC-KSVD/S2JDL-Sof 93.4 1.2 × 104

OnlineDL/S2JDL-Sof 14.2 5.6 × 102

SDL/S2JDL-Sof 24.5 2.5 × 103

S2JDL-Log/S2JDL-Sof 8.9 2.0 × 102

The critical value of z-score is 1.96 at a confidence level of 0.95, and all the tests are significant with
95% confidence.

Figure 16 visually depicts the obtained classification maps. The advantages obtained by adopting
the semi-supervised dictionary learning approach with regard to the corresponding supervised case
can be visually appreciated in the classification maps displayed in Figure 16, which also reports the
classification OAs obtained for each method in the parentheses. As shown in the figure, the homogeneity
is very clear for this scene, and the proposed method depicts a more accurate and smoother classification
map. As expected, D-KSVD and LC-KSVD obtain poor classification maps for this scene.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 16. Classification maps obtained by different methods for the ROSIS University of Pavia dataset.
The OA in each case is reported in the parentheses. (a) MOD (59.82%); (b) K-SVD (70.25%); (c) D-KSVD
(46.96%); (d) LC-KSVD (48.34%); (e) OnlineDL (75.21%); (f) SDL (72.37%); (g) S2JDL-Log (76.29%);
(h) S2JDL-Sof (78.79%).
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4.5. Experiments with AVIRIS Salinas Dataset

Experiment 1: Similarly, we first analyze the impact of training data size on classification accuracy.
A total of 5% of labeled samples per class (a total of 2706 samples) are randomly selected to initialize
the training data. We evaluate the impact of the number of atoms on the classification performance
achieved by the proposed method for the AVIRIS Salinas dataset. Figure 17 shows the OAs as a
function of the number of atoms per class obtained by different methods. Similar to the experiments
implemented for the AVIRIS Indian Pines dataset, the OAs become stable when 15 atoms per class are
used to build the dictionary. Another observation is that when the number of atoms per class is larger
than 10, our method stably outperforms the other methods. It is interesting to note that D-KSVD and
LC-KSVD obtain similar results even when the latter is incorporated with the class-label information.
For most of the cases, the OAs increase as the number of atoms also increases.
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Figure 17. Overall accuracy (OA) as a function of the number of atoms per class for the AVIRIS
Salinas dataset (5% of labeled samples per class are used for training). Error bars indicate the standard
deviations obtained by the proposed method.

Figure 18 plots the OAs as a function of the ratio of labeled samples per class for different
methods. As we can see from the figure, the proposed method obtains the highest accuracies in
all cases. Different from the former experiments, the proposed method can stably obtain improved
classification performance with the additional labeled samples in this scene. However, the additional
labeled samples deteriorate the classification performance for SDL.
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Figure 18. Overall accuracy (OA) as a function of the ratio of labeled samples per class for the AVIRIS
Salinas dataset (15 labeled samples per class are used to build the dictionary). Error bars indicate the
standard deviations obtained by the proposed method.

Experiment 2: Table 6 gives the OA, AA, individual classification accuracies, and κ statistic.
As reported in the table, the proposed method achieves the best results compared to the other supervised
dictionary learning methods. The improvements of classification accuracy are around 10–20% when
compared to the other methods. As for the specific classification accuracy, the proposed method obtains
higher accuracy when classifying the class Lettuce−romaine−6wk. In addition, the time costs of different
methods are listed in the table, where we can see that the proposed method is more efficient than
D-KSVD and LC-KSVD. Again, MOD, OnlineDL, and SDL take less time.
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Table 6. Overall (OA), average (AA), and individual class accuracies (%), kappa statistics (κ), and the standard deviation of ten conducted Monte Carlo runs obtained
for different classification methods for the AVIRIS Salinas dataset with a balanced training set (5% of labeled samples per class are used for training and 15 labeled
samples per class are used to build the dictionary).

Class #Samples MOD K-SVD D-KSVD LC-KSVD OnlineDL SDL S2JDL-Log S2JDL-Sof
Train Test

Brocoli−green−weeds−1 100 1909 99.25 ± 1.02 99.13 ± 0.91 97.52 ± 1.33 97.77 ± 1.15 99.66 ± 0.75 99.98 ± 0.07 99.18 ± 0.22 99.70 ± 0.38
Brocoli−green−weeds−2 186 3540 99.41 ± 0.87 90.19 ± 31.02 96.98 ± 4.93 98.16 ± 0.48 99.90 ± 0.16 98.63 ± 0.84 100.00 ± 0.00 99.25 ± 0.27

Fallow 99 1877 3.31 ± 7.36 98.00 ± 5.98 84.61 ± 14.29 92.10 ± 6.24 31.13 ± 10.68 80.61 ± 6.51 100.00 ± 0.00 90.51 ± 5.46
Fallow−rough−plow 70 1324 52.39 ± 39.19 4.46 ± 5.79 99.27 ± 0.55 99.19 ± 1.09 86.62 ± 23.04 99.32 ± 0.28 83.05 ± 3.93 99.49 ± 0.33

Fallow−smooth 134 2544 74.28 ± 41.09 99.94 ± 0.07 93.06 ± 6.20 90.39 ± 5.85 99.49 ± 0.37 99.24 ± 0.44 99.33 ± 0.11 98.79 ± 0.53
Stubble 198 3761 99.60 ± 0.24 99.90 ± 0.03 99.84 ± 0.13 99.84 ± 0.11 99.37 ± 0.23 99.99 ± 0.01 99.91 ± 0.02 99.97 ± 0.04
Celery 179 3400 93.70 ± 15.59 99.94 ± 0.03 97.24 ± 2.62 98.96 ± 0.68 99.92 ± 0.08 99.31 ± 0.21 99.90 ± 0.02 99.48 ± 0.26

Grapes−untrained 564 10,707 99.35 ± 0.34 95.35 ± 0.80 66.13 ± 7.08 67.38 ± 4.39 99.17 ± 1.09 99.46 ± 0.27 94.01 ± 0.85 98.21 ± 2.19
Soil−vinyard−develop 310 5893 99.92 ± 0.11 100.00 ± 0.00 97.39 ± 0.74 97.36 ± 0.86 99.89 ± 0.14 99.06 ± 0.90 100.00 ± 0.00 99.57 ± 0.39

Corn−senesced−green−weeds 164 3114 73.17 ± 26.15 95.28 ± 0.85 76.27 ± 7.63 76.61 ± 9.85 83.24 ± 3.73 83.16 ± 7.18 95.17 ± 0.49 94.24 ± 3.21
Lettuce−romaine−4wk 53 1015 42.24 ± 47.68 94.56 ± 0.89 91.28 ± 5.15 92.71 ± 3.77 94.09 ± 3.76 30.38 ± 41.43 94.47 ± 0.41 95.79 ± 3.66
Lettuce−romaine−5wk 96 1831 95.09 ± 6.40 99.95 ± 0.02 97.13 ± 3.94 96.35 ± 10.33 99.49 ± 0.72 98.96 ± 1.23 93.01 ± 8.53 99.89 ± 0.28
Lettuce−romaine−6wk 46 870 78.51 ± 31.42 0.00 ± 0.00 76.45 ± 40.62 90.97 ± 20.62 95.38 ± 2.64 96.93 ± 3.85 4.71 ± 7.70 97.83 ± 0.37
Lettuce−romaine−7wk 54 1016 68.47 ± 34.98 97.92 ± 0.44 82.44 ± 29.82 83.97 ± 10.14 94.29 ± 3.34 85.03 ± 22.89 97.08 ± 0.31 96.41 ± 1.82

Vinyard−untrained 363 6905 0.01 ± 0.02 57.27 ± 2.35 58.95 ± 4.15 56.54 ± 6.23 38.54 ± 7.07 3.77 ± 11.28 53.14 ± 2.29 55.73 ± 10.69
Vinyard−vertical−trellis 90 1717 81.68 ± 10.05 99.46 ± 0.10 89.17 ± 12.00 91.77 ± 8.42 88.53 ± 9.35 94.27 ± 4.22 98.78 ± 0.25 97.92 ± 0.64

Average accuracy - - 72.52 ± 6.55 83.21 ± 2.38 87.73 ± 2.64 89.38 ± 2.17 88.04 ± 1.81 85.51 ± 2.80 88.24 ± 0.93 95.17 ± 0.82
Overall accuracy - - 75.35 ± 2.96 87.89 ± 2.37 82.90 ± 1.47 83.56 ± 1.41 86.88 ± 1.48 82.98 ± 1.81 89.59 ± 0.53 92.50 ± 1.63

κ statistic - - 0.720 ± 0.03 0.865 ± 0.03 0.810 ± 0.02 0.817 ± 0.02 0.853 ± 0.02 0.808 ± 0.02 0.884 ± 0.01 0.916 ± 0.02

Time (Seconds) - - 11.93 ± 3.42 448.47 ± 25.98 617.16 ± 23.52 630.04 ± 31.32 5.72 ± 0.64 5.38 ± 0.92 593.68 ± 38.96 500.24 ± 16.38
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Similarly, we conduct the statistical tests between-classifier in terms of Kappa z-score and
McNemar z-score in this scene. According to the results reported in Table 7, we observe that the
proposed method significantly outperforms the other methods since all the tests are significant with
95% confidence. Another observation is that K-SVD and the proposed method produce similar results,
with the Kappa z-score value of 22.9.

Table 7. Pairwise statistical test in terms of Kappa z-score and McNemar z-score for the AVIRIS Salinas
dataset with a balanced training set (5% of labeled samples per class are used for training and 15 labeled
samples per class are used to build the dictionary).

Between-Classifier κ (z-score) McNemar (z-score)

MOD/S2JDL-Sof 77.8 8.7 × 103

K-SVD/S2JDL-Sof 22.9 9.3 × 102

D-KSVD/S2JDL-Sof 46.7 3.0 × 103

LC-KSVD/S2JDL-Sof 42.3 2.3 × 103

OnlineDL/S2JDL-Sof 29.5 2.3 × 103

SDL/S2JDL-Sof 44.7 4.1 × 103

S2JDL-Log/S2JDL-Sof 14.6 4.6 × 102

The critical value of z-score is 1.96 at a confidence level of 0.95, and all the tests are significant with
95% confidence.

The classification maps are given in Figure 19, where the OAs obtained for each method are
reported in the parentheses. As shown in the figure, we can see clear differences between different
methods. For example, when classifying the class Lettuce−romaine−6wk, the proposed method is more
accurate compared to the other methods. In addition, the homogeneity is very clear for this scene,
which is similar to the AVIRIS Indian Pines dataset. Also, our method produces a more accurate and
smoother classification map compared to the other methods.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 19. Classification maps obtained by different methods for the AVIRIS Salinas dataset. The OA
in each case is reported in the parentheses. (a) MOD (75.35%); (b) K-SVD (87.89%); (c) D-KSVD
(82.90%); (d) LC-KSVD (83.56%); (e) OnlineDL (86.88%); (f) SDL (82.98%); (g) S2JDL-Log (89.59%);
(h) S2JDL-Sof (92.50%).
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5. Conclusions

In this paper, we have developed a novel semi-supervised algorithm for jointly learning
a reconstructive and discriminative dictionary for hyperspectral image classification. Precisely,
w design a unified semi-supervised objective loss function which integrates a reconstruction term
with a reconstruction–discrimination term built by soft-max loss to leverage the unsupervised and
supervised information from the training samples. In the iteratively semi-supervised learning phase,
we simultaneously update the dictionary and classifier by feeding the obtained training pairs into the
unified objective function via a SGD algorithm. The experimental results obtained by using three real
hyperspectral images indicate that the proposed algorithm leads to better classification performance
compared to the other related methods. We should note that although dictionary learning serves
as an important part in DSR, previous studies involving the DSR problem mainly focused on the
classification performance. Our experiments also mainly focus on classification since it is the ultimate
goal of this work. On the basis of the comprehensive experiments, we draw the following conclusions:

(i) The proposed method is insensitive to λ and λ1, but it is sensitive to µ.
(ii) The proposed method outperforms other related algorithms in terms of classification accuracy,

which demonstrates the superiority of soft-max loss.
(iii) Although the proposed method exhibits slightly higher computational complexity compared with

MOD, OnlineDL, and SDL, its computational time is bearable.

Further experiments with additional scenes and comparison methods should be conducted
in the future. Furthermore, we also envisage two future perspectives for the development of the
presented work:

(i) Given the fact that the dictionary and classifier are updated by randomly selected unlabeled
samples, our future work will consider exploiting active learning [43] to select the most
informative samples during the learning phase in the DSR model.

(ii) Since the computational complexity of our algorithm is a bit high, in our future work we will
exploit the objective function to speed up the optimization process by incorporating incremental
learning [56].

(iii) Inspired by the experimental results, our future work will exploit the theoretical reason for when
and why more labeled samples help in the semi-supervised joint dictionary learning tasks, which
is a crucial and interesting problem. The possible reason may be training data distribution,
variance across the training and test data domain, feature dimensions, sample size, number of
labels samples per class, [57].

(iv) Since the spatial property is important in the proposed method, our future work will also focus on
exploiting the dictionary structure in the DSR problem [37], and we will try to reveal the relation
between dictionary structure and classification accuracy in DSR.
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Appendix A

Let Ls[yt, f (z∗(xl
t, Dt), Wt)] denote the unified objective loss function in Equation (16). At this

point, we have to compute the gradient descents of Ls for xl
t with respect to Dt and Wt. Due to the fact

that Dt is implicit in z∗(xl
t, Dt) and there is no explicit analytical link between zl

t and Dt [28], we have
to compute the gradients of ∇DtLs using a chain rule ∇xl

t
Ls∇Dt x

l
t (Hereinafter, we use Ls instead of

Ls[yt, f (z∗(xl
t, Dt), Wt)] for simplicity in the differential formulations), which leads to a main difficulty

in solving the objective loss function in Equation (12). Following Proposition 1 by the work [28], we
can obtain

∇DtLs = µ(−DtflzlT
t + (xl

t −Dtzl
t)fl

T),

flΛ = (DT
t,ΛDt,Λ + λ2IK,Λ)

−1∇zl
t ,Λ
LW

s ,

flΛ̄ = 0,

∇zl
t,Λ
LW

s =
m

∑
j=1

[ m
∑

p=1
wp,Λ exp(wT

p,Λzl
t,Λ)

m
∑

p=1
exp(wT

p,Λzl
t,Λ)

− 1{Y(xl
t) = j}wj,Λ

]
+ λIK,Λ,

(A1)

where γ is an auxiliary vector, Λ denotes the support set in sparse code zt (The support set contains
indices of nonzero coefficients in a sparse vector), Λ̄ refers to the zero indices, and LW

s denotes
Γs[yt, f (z∗(xt, Dt), Wt)] +

λ1
2 ‖Wt‖2

F. Note that we adopt the similar optimization scheme as stated by
the work [28] with the designed objective loss function to solve our problem since both of them adopt
the SGD algorithm for optimization, but we have derived ∇zl

t,Λ
LW

s by ourselves due to the fact that

we adopt a different loss function.
On the other hand, the gradients of LW

s with respect to wj can be easily obtained by

∇wjL
W
s = zlT

t

(
ewT

j zl
t

m
∑

p=1
ewT

p zl
t

− 1{Y(xl
t) = j}

)
+ λ1wj. (A2)

Then, the gradient descents of Ls with respect to Wt can be written as

∇WtLs =


∇w1LW

s
∇w2LW

s
· · ·

∇wmLW
s

 . (A3)

Since both the gradients from unsupervised and supervised dictionary learning phases are
obtained, we now can obtain the final update of the dictionary by the following expression

Dt+1 ← Dt − ρt[(1− µ)(Dtzu
t − xu

t )z
uT
t + µ(−DtγzlT

t + (xl
t −Dtzl

t)γ
T)], (A4)

where ρt refers to the learning rate.
Similar to the procedure adopted for updating the dictionary D, the classification parameter Wt

can be updated by
Wt+1 ← Wt − ρt∇WtLs. (A5)

So far, we have given the details in optimizing Equation (12). In addition, the learning rate
for updating the dictionary is usually chosen according to a heuristic rule. Here, we follow the
studies [28,29] by setting the learning rate to min(ρ, ρt0/t), where ρ is a constant that ensures the
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convergence of SGD with t0 = T/10 and T is the total number of iterations. Before applying another
iteration, we remove xu from the candidate pool Xu. The process of sampling, sparse coding, and
updating is repeated as we loop through all the labeled samples xl in Xl .

References

1. Toth, C.; Jozkow, G. Remote sensing platforms and sensors: A survey. ISPRS J. Photogramm. Remote Sens.
2016, 115, 22–36.

2. Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.;
Fauvel, M.; Gamba, P.; Gualtieri, A.; et al. Recent advances in techniques for hyperspectral image processing.
Remote Sens. Environ. 2009, 113, S110–S122.

3. Bioucas-Dias, J.; Plaza, A.; Camps-Valls, G.; Paul, S.; Nasrabadi, N.M.; Chanussot, J. Hyperspectral remote
sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36.

4. Camps-Valls, G.; Tuia, D.; Bruzzone, L.; Benediktsson, J.A. Advances in Hyperspectral Image Classification.
IEEE Signal Process. Mag. 2014, 31, 45–54.

5. Ghamisi, P.; Plaza, J.; Chen, Y.; Li, J.; Plaza, A.J. Advanced Spectral Classifiers for Hyperspectral Images:
A review. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–32.

6. Wright, J.; Ma, Y.; Mairal, J.; Sapiro, G.; Huang, T.S.; Yan, S.C. Sparse Representation for Computer Vision
and Pattern Recognition. Proc. IEEE 2010, 98, 1031–1044.

7. Li, W.; Du, Q. A survey on representation-based classification and detection in hyperspectral remote sensing
imagery. Pattern Recognit. Lett. 2016, 83, 115–123.

8. Nasrabadi, N.M. Hyperspectral Target Detection. IEEE Signal Process. Mag. 2014, 31, 34–44.
9. Ma, W.K.; Bioucas-Dias, J.M.; Chan, T.H.; Gillis, N.; Gader, P.; Plaza, A.J.; Ambikapathi, A.; Chi, C.Y. A Signal

Processing Perspective on Hyperspectral Unmixing. IEEE Signal Process. Mag. 2014, 31, 67–81.
10. Loncan, L.; Almeida, L.B.D.; Bioucas-Dias, J.M.; Briottet, X.; Chanussot, J.; Dobigeon, N.; Fabre, S.; Liao, W.;

Licciardi, G.A.; Simoes, M.; et al. Hyperspectral Pansharpening: A Review. IEEE Geosci. Remote Sens. Mag.
2015, 3, 27–46.

11. Xue, Z.; Li, J.; Cheng, L.; Du, P. Spectral-Spatial Classification of Hyperspectral Data via Morphological
Component Analysis-Based Image Separation. IEEE Trans. Geosci. Remote Sens. 2015, 53, 70–84.

12. Xu, X.; Li, J.; Huang, X.; Mura, M.D.; Plaza, A. Multiple Morphological Component Analysis Based
Decomposition for Remote Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3083–3102.

13. Ly, N.H.; Du, Q.; Fowler, J.E. Sparse Graph-Based Discriminant Analysis for Hyperspectral Imagery.
IEEE Trans. Geosci. Remote Sens. 2014, 52, 3872–3884.

14. Xue, Z.; Du, P.; Li, J.; Su, H. Simultaneous Sparse Graph Embedding for Hyperspectral Image Classification.
IEEE Trans. Geosci. Remote Sens. 2015, 53, 6114–6133.

15. Rubinstein, R.; Bruckstein, A.M.; Elad, M. Dictionaries for Sparse Representation Modeling. Proc. IEEE 2010,
98, 1045–1057.

16. Engan, K.; Aase, S.O.; Husoy, J.H. Frame based signal compression using method of optimal directions
(MOD). In Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, Orlando, FL,
USA, 30 May–2 June 1999; Volume 4, pp. 1–4.

17. Aharon, M.; Elad, M.; Bruckstein, A. K-SVD: An algorithm for designing overcomplete dictionaries for
sparse representation. IEEE Trans. Signal Process. 2006, 54, 4311–4322.

18. Yaghoobi, M.; Blumensath, T.; Davies, M. Dictionary learning for sparse approximation with majorization
method. IEEE Trans. Signal Process. 2009, 57, 2178–2191.

19. Skretting, K.; Engan, K. Recursive Least Squares Dictionary Learning Algorithm. IEEE Trans. Signal Process.
2010, 58, 2121–2130.

20. Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G.; Zisserman, A. Discriminative learned dictionaries for local image
analysis. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Anchorage, AK, USA, 23–28 June 2008; Volume 1–12, pp. 2415–2422.

21. Pham, D.S.; Venkatesh, S. Joint learning and dictionary construction for pattern recognition. In Proceedings
of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, AK, USA,
23–28 June 2008; Volume 1–12, pp. 517–524.



Remote Sens. 2017, 9, 386 28 of 29

22. Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G.; Zisserman, A. Supervised dictionary learning. arXiv 2009,
arXiv:0809.3083.

23. Lian, X.C.; Li, Z.W.; Lu, B.L.; Zhang, L. Max-Margin Dictionary Learning for Multiclass Image Categorization.
In Proceedings of the 2010 European Conference on Computer Vision ECCV, Pt IV, Hersonissos, Greece,
5–11 September 2010; Volume 6314, pp. 157–170.

24. Lian, X.C.; Li, Z.W.; Wang, C.H.; Lu, B.L.; Zhan, L. Probabilistic Models for Supervised Dictionary
Learning. In Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), San Francisco, CA, USA, 13–18 June 2010; pp. 2305–2312.

25. Zhang, Q.A.; Li, B.X. Discriminative K-SVD for Dictionary Learning in Face Recognition. In Proceedings of
the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA,
13–18 June 2010; pp. 2691–2698.

26. Yang, M.; Zhang, L.; Feng, X.C.; Zhang, D. Fisher Discrimination Dictionary Learning for Sparse
Representation. In Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV),
Barcelona, Spain, 6–13 November 2011; pp. 543–550.

27. Jiang, Z.L.; Zhang, G.X.; Davis, L.S. Submodular Dictionary Learning for Sparse Coding. In Proceedings
of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA,
16–21 June 2012, pp. 3418–3425.

28. Mairal, J.; Bach, F.; Ponce, J. Task-Driven Dictionary Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2012,
34, 791–804.

29. Jiang, Z.L.; Lin, Z.; Davis, L.S. Label Consistent K-SVD: Learning a Discriminative Dictionary for Recognition.
IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2651–2664.

30. Zhang, G.X.; Jiang, Z.L.; Davis, L.S. Online Semi-Supervised Discriminative Dictionary Learning for Sparse
Representation. In Proceedings of the 11th Asian Conference on Computer Vision (ACCV), Daejeon, Korea,
5–9 November 2012; Volume 7724, pp. 259–273.

31. Du, P.; Xue, Z.; Li, J.; Plaza, A. Learning Discriminative Sparse Representations for Hyperspectral Image
Classification. IEEE J. Sel. Top. Signal Process. 2015, 9, 1089–1104.

32. Henao, R.; Yuan, X.; Carin, L. Bayesian nonlinear support vector machines and discriminative factor
modeling. In Proceedings of the 27th International Conference on Neural Information Processing Systems,
Montreal, QC, Canada, 8–13 December 2014; pp. 1754–1762.

33. Marial, J.; Bach, F.; Ponce, J.; Sapiro, G. Online dictionary learning for sparse coding. In Proceeding of the
International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009.

34. Jenatton, R.; Audibert, J.Y.; Bach, F. Structured Variable Selection with Sparsity-Inducing Norms.
J. Mach. Learn. Res. 2011, 12, 2777–2824.

35. Jenatton, R.; Mairal, J.; ObozinskiF, G.; Bach, F. Proximal methods for sparse hi erarchical dictionary
learning. In Proceedings of the International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010;
pp. 487–494.

36. Huang, J.; Zhang, T.; Metaxas, D. Learning with structured sparsity. In Proceedings of the 26th International
Conference on Machine Learning (ICML), Montreal, QC, Canada, 14–18 June 2009.

37. Mairal, J.; Jenatton, R. Obozinski, G. Learning Hierarchical and Topographic Dictionaries with Structured
Sparsity. In Proceedings of the SPIE Wavelets and Sparsity XIV 81381P, San Diego, CA, USA, 21 August 2011.

38. Lian, W.; Rai, P.; Salazar, E.; Carin, L. Integrating Features and Similarities: Flexible Models for
Heterogeneous Multiview Data. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, Austin, TX, USA, 25–30 January 2015; pp. 2757–2763.

39. Charles, A.S.; Olshausen, B.A.; Rozell, C.J. Learning Sparse Codes for Hyperspectral Imagery. IEEE J. Sel.
Top. Signal Process. 2011, 5, 963–978.

40. Castrodad, A.; Xing, Z.M.; Greer, J.B.; Bosch, E.; Carin, L.; Sapiro, G. Learning Discriminative Sparse
Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery. IEEE Trans.
Geosci. Remote Sens. 2011, 49, 4263–4281.

41. Wang, Z.W.; Nasrabadi, N.M.; Huang, T.S. Spatial-Spectral Classification of Hyperspectral Images Using
Discriminative Dictionary Designed by Learning Vector Quantization. IEEE Trans. Geosci. Remote Sens. 2014,
52, 4808–4822.

42. Wang, Z.Y.; Nasrabadi, N.M.; Huang, T.S. Semisupervised Hyperspectral Classification Using Task-Driven
Dictionary Learning With Laplacian Regularization. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1161–1173.



Remote Sens. 2017, 9, 386 29 of 29

43. Persello, C.; Bruzzone, L. Active and Semisupervised Learning for the Classification of Remote Sensing
Images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6937–6956.

44. Kushner, H.J.; Yin, G. Stochastic Approximation and Recursive Algorithms and Applications; Springer: New York,
NY, USA, 2003.

45. Xue, Z.; Du, P.; Li, J.; Su, H. Sparse graph regularization for robust crop mapping using hyperspectral
remotely sensed imagery with very few in situ data. ISPRS J. Photogramm. Remote Sens. 2017, 124, 1–15.

46. Xue, Z.; Du, P.; Li, J.; Su, H. Sparse Graph Regularization for Hyperspectral Remote Sensing Image
Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2351–2366.

47. Golub, G.H.; Hansen, P.C.; O’Leary, D.P. Tikhonov regularization and total least squares. SIAM J. Matrix
Anal. Appl. 1999, 21, 185–194.

48. Bioucas-Dias, J.M.; Figueiredo, M.A.T. Alternating direction algorithms for constrained sparse regression:
Application to hyperspectral unmixing. In Proceedings of the 2010 2nd Workshop on Hyperspectral Image
and Signal Processing: Evolution in Remote Sensing (WHISPERS), Reykjavik, Iceland, 14–16 June 2010;
pp. 1–4.

49. Boykov, Y.; Veksler, O.; Zabih, R. Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern
Anal. Mach. Intell. 2001, 23, 1222–1239.

50. Li, J.; Bioucas-Dias, J.M.; Plaza, A. Hyperspectral Image Segmentation Using a New Bayesian Approach
With Active Learning. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3947–3960.

51. Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 3rd ed.; Prentice Hall:
Upper Saddle River, NJ, USA, 2005.

52. Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press:
Boca Raton, FL, USA, 2008.

53. Foody, G.M. Thematic map comparison: Evaluating the statistical significance of differences in classification
accuracy. Photogramm. Eng. Remote Sens. 2004, 70, 627–633.

54. Pati, Y.C.; Rezaiifar, R.; Krishnaprasad, P.S. Orthogonal Matching Pursuit-Recursive Function Approximation
with Applications to Wavelet Decomposition. In Proceedings of the 27th Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, USA, 1–3 November 1993; pp. 40–44.

55. Hyperspectral Remote Sensing Scenes. Available online: http://www.ehu.es/ccwintco/index.php/
Hyperspectral_Remote_Sensing_Scenes (accessed on 25 November 2016)

56. Roux, N.L.; Schmidt, M.; Bach, F. A stochastic gradient method with an exponential convergence rate for
finite training sets. arXiv 2012, arXiv:1202.6258.

57. Chapelle, O.; Schölkopf, B.; Zien, A. Semi-Supervised Learning; MIT Press: Cambridge, MA, USA, 2006.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Sparse Representation
	Dictionary Learning for Classification
	Related Work

	Proposed Method
	Model Assumption
	Optimization
	Initialization
	Variables Updating

	Classification

	Experimental Results and Discussion
	Experimental Settings
	Hyperspectral Datasets
	Experiments with AVIRIS Indian Pines Dataset
	Experiments with ROSIS University of Pavia Dataset
	Experiments with AVIRIS Salinas Dataset

	Conclusions
	

