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Abstract: This work discusses an operational method for actual evapotranspiration (ET) retrieval
from remote sensing, considering a minimum quantity of ancillary data. The method consists in a
graphical approach based on the Priestley-Taylor (PT) equation, where the dry soil and non-limiting
water conditions are defined by land surface temperature (LST) and vegetation index (VI) space, both
retrieved from remote sensing. Using ET tower flux measurements and Landsat 5 TM images of an
irrigation scheme in southeast Spain, a sensitivity analysis of ET spatial distribution was performed
for the period 2009–2011 with respect to: (i) the shape (trapezoidal or rectangular) of the LST-VI space;
and (ii) the value of the PT coefficient, α. The results from ground truth validation were satisfactory,
both shapes providing similar performances in estimating ET, with root mean square error ~30 W/m2

and relative difference ~10% with respect to tower-based measurements. Importantly, the best fit
with ground data was found for α close to 1, a somewhat different value from the commonly used
value of 1.27, indicating that substantial error might arise when using the latter value. Overall, our
study underlines the importance of a more precise knowledge of the actual value of α coefficient
when using ET retrieval methods based on the LST-VI space.

Keywords: semiarid areas; Priestley-Taylor coefficient; sensitivity analysis; Landsat; actual
evapotranspiration; irrigation water applied; Spain

1. Introduction

Remote sensing (RS) techniques, information technology and geospatial methods are potentially
useful to analyze the spatial distribution of land evapotranspiration (ET) in agricultural regions [1].
This information is highly valuable for implementing water management practices, such as precision
irrigation and fertilization that will optimize inputs, improve yields and promote sustainable
agricultural practices [2]. Such RS-based tools are especially welcome in semiarid areas where
water shortages are a major obstacle to agricultural production, economic welfare and sustainable
development [3–5].

This is the case of the Segura River Basin (SRB), a highly productive agricultural region of
southeast Spain, with the highest agricultural water demand and the lowest percentage of renewable
water resources of all Spanish basins [6]. Cultivated lands represent 43% of its area, with one-third
of the surface under irrigation (more than 269,000 ha). The water from non-conventional resources
(water transfer, desalination and reuse) accounts for more than 65% of the total available [6] with
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the consequent higher costs than conventional resources. In this context, accurate estimations of
crop water consumption (i.e., ET) are crucial to optimize water allocation, save water and reduce
irrigation-related costs.

The ET-retrieval methods can be classified into two main groups. The first one is based on the
so-called “residual” method, which determines the latent heat flux as the residual term of the surface
energy balance (SEB) [7].

λE = Rn − G − H, (1)

where the different fluxes, expressed in W·m−2, are net radiation (Rn), latent heat flux (λE, with λ =
latent heat of vaporization in J·g−1 and E = actual evaporation in g·m−2·s−1), sensible heat flux (H)
and soil heat flux (G). Several variants of the residual method are: (i) the simplified method SM [8,9];
(ii) the SEBAL model (Surface Energy Balance Algorithm for Land [10,11]); and (iii) the TSEB model
(Two Source Energy Balance [12–14]). Such algorithms are currently used because of their relative
simplicity, but require ancillary ground data (such as air temperature and wind speed), and their
extrapolation from the meteorological stations to other pixels [15]. In semiarid regions, the high values
of the sensible heat flux (H) make the method very sensitive to small errors in the estimation of H.

The second group is formed by the so-called “graphical methods”, based on the interpretation
of the land surface temperature (LST) vs. vegetation index (VI) scatterplot. This method was
first suggested by [16], and later successfully applied to retrieve ET from remote sensing data [17].
The LST-VI space usually presents a geometrical shape (typically, triangular, trapezoidal or rectangular),
whose boundaries can be interpreted in terms of evaporative limits [18]. The upper limit (“dry” or
“warm” edge) corresponds to null ET, while the lower limit (“wet” or “cold” edge) represents the
maximum ET in the region. A commonly used assumption is that the pixels of the “wet” edge of the
LST-VI space correspond to areas with ET equal to the “wet areal evaporation” (Ew), defined as the
evaporation of a well-moist surface under conditions of minimal regional advection [19]:

λEw = α

[
∆

∆ + γ

]
(Rn − G), (2)

where ∆ (Pa·K−1) is the slope of the saturated vapor pressure curve at the prevailing Tair, γ is
the psychrometric constant (Pa·K−1) and α is the Priestley-Taylor coefficient (PT, dimensionless).
The position of the pixel in the LST-VI space with respect to the dry and wet edge allows the
determination of the evaporative fraction, EF, defined as the ratio of latent heat flux λE to available
energy, A, as follows:

EF = λE/A (3)

with A = Rn − G. Equation (3) indicates that, besides EF, the estimation of λE requires the assessment
of two other fluxes, Rn and G. Compared to the residual method, the graphical method presents
the important advantage of including the valuable information contained in the vegetation index,
an indicator of vegetation cover and health status. Nevertheless, the use of vegetation indices is
considered for most SEB approaches.

Different drawbacks of the graphical methods were analyzed [20,21]. Therefore, several
shortcomings affect the accuracy and reliability of the method. One of them is the uncertainty on the
true value of the Priestley-Taylor coefficient (α). A generally accepted value for α is 1.27 [19], although
it is recognized that α depends on the characteristics and vegetation cover of the surface. In particular,
the authors of [22] found that α could range from 0.9 to 1.5, depending among others on the resistance
to water vapor transfer (rs) of the vegetated surface. In semiarid regions, values of α were assumed
substantially higher than the standard value of 1.27. The authors of [21] considered values of α between
1.6 and 1.8, in two shrublands of south Spain due to local conditions of strong advection. Globally,
most authors considered α equal 1.27, in their studies in four sites in North America (e.g., [23]); in a
semi-arid area of East Asia [5]; and in West African countries [24]. According to [25], the main factors
related with α are the atmospheric vapor pressure deficit, soil moisture content, wind run, atmospheric
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stability condition and the turbulent sensible heat flux. The α value could present systematic variations
with the time of the day and season of the year [22,26], and with the soil moisture content [27,28].
To the best of our knowledge, a sensitivity analysis of the method results to α value selection has not
been yet performed.

A second shortcoming is the inherent uncertainty in the determination of the dry and wet edges,
deriving from the more or less arbitrary selection of the geometrical shape and limits. With the aim
to reduce the dose of subjectivity and ambiguity in the application of the method, [20] analyzed the
impact of end-member selection on the performance and mechanism for error propagation in the
spatial variability of fluxes, highlighting that the choice of the shape lead to significant distortions in
the spatial distributions of the surface fluxes.

One of the main objectives of the present work is to validate a spatio-temporal distributed method
of crop evapotranspiration retrieval from remote sensing, considering a minimum quantity of ancillary
data. The selected method for ET assessment corresponds to a graphical approach based on the
Priestley-Taylor equation, where the dry soil and non-limiting water conditions are defined from the
space conformed by land surface temperature (LST) and vegetation index (VI) both retrieved from
remote sensing.

In the graphical approach, we have to fix the Priestley-Taylor coefficient (α). The α parameter
corresponds to well-watered conditions, and it could differ among crops/vegetation types because
of a differentiated response to climatic stress. Citrus crops are well-known for their strong stomatal
closure in response to vapor pressure deficit (VPD), therefore diminishing substantially the advective
term of the Penman–Monteith (PM) equation (which includes the aerodynamic resistance and VPD),
even when the crop is well-watered. As Equation (2) is a simplified form of the PM equation, this
suggests a value of α lower than 1.27 for crops such as citrus which exert a strong stomatal control on
water loss. Therefore, with this focus, the assessment of sensitivity to the Priestley-Taylor coefficient
is a crucial objective to derive accurate spatial distributions of ET. The evaluation of influence of the
LST-IV space edges on the ET spatial distribution is the other main objective of the work. To reach
these aims, several Landsat 5 TM images were considered for the period 2009–2011, as well as ET
tower flux measurements as ground truth in an agricultural irrigated region of southeast of Spain.

2. Materials and Methods

2.1. Study Area

The study area is located in the Segura River Basin, southeast of Spain (Figure 1a), with an
extension approximately to half of one satellite Landsat image (199-34 scene). Nevertheless, our
analysis focuses on the irrigation scheme of Campo de Cartagena (CRCC). Figure 1a corresponds
to a false-color mosaic of Landsat images for the study area (red color for vegetated surfaces, and
intense red color for irrigated lands). Figure 1b presents the location of the two citrus farms (SPOT
image, mosaic 2012), where surface fluxes were monitored by means of the eddy-covariance technique
(EG flux tower, Figure 1c).

The Segura River Basin is subject to a Mediterranean climate with strong contrasts, frequent
droughts, torrential rainfall and high air temperatures in summer [29]. The extreme heat, insolation,
and irregularity of precipitation resemble a sub-desert climate due to the prolonged anticyclonic
situation, which gives a stable hot and dry sunny weather. It can be considered that the climate of the
study area is semiarid, but somewhat tempered by the presence of irrigated crops.

The Campo de Cartagena basin is a flat region with a gentle slope of around 1%. It is surrounded
by small mountain ranges, and in the east it is open to the Mediterranean Sea through a hypersaline
coastal lagoon, the Mar Menor. The main climatic characteristics correspond to a mean annual
temperature of 18 ◦C, an average annual precipitation of 300 mm (distributed into a few intensive events
which take place mainly in spring and autumn seasons), and an average potential evapotranspiration
of 1275 mm/year [30].
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Figure 1. Study area: (a) Segura River Basin false-color mosaic of Landsat, natural pseudo-color 
(June 2011), extension of study (boundary of scene 199-34) and area of analyses (Campo de 
Cartagena); (b) SPOT image of farms (mosaic of 2012 year); and (c) eddy-covariance flux tower. 
Coordinate system: ETRS89 UTM Zone 30N.  

The Campo de Cartagena basin is a flat region with a gentle slope of around 1%. It is 
surrounded by small mountain ranges, and in the east it is open to the Mediterranean Sea through a 
hypersaline coastal lagoon, the Mar Menor. The main climatic characteristics correspond to a mean 
annual temperature of 18 °C, an average annual precipitation of 300 mm (distributed into a few 
intensive events which take place mainly in spring and autumn seasons), and an average potential 
evapotranspiration of 1275 mm/year [30]. 

Land use is dominated by agriculture (see Figure 2). Water requirements are satisfied by 
groundwater pumped from aquifers, surface water resources from the inter-basin Tajo-Segura 
Water Transfer (since 1979 provides more than one-third of the total water demand), with water 
from seawater desalination plants and brackish groundwater [30]. 

2.2. Ground Data 

To validate the estimates of the ET remote sensing retrieval algorithm, in situ measurements of 
λET, H, Rn and G were performed simultaneously in the two commercial citrus orchards located in 
the CRCC. The farms (Figure 1b) correspond to:  

• Farm A (37 ha) with 6-year old orange trees (Citrus sinensis var. Navelate) planted at a tree 
spacing of 4.5 m × 3 m, and Leaf Area Index (LAI) ≈ 3. This value corresponds to field LAI. 

• Farm B (16 ha) with 30-year old orange trees (Citrus sinensis var. Navelate) planted at a tree 
spacing of 6 × 4 m, and high LAI ≈ 4 to 5. The field LAI was higher at Farm B than at Farm A, 
because of the large crown area of the adult trees, compared to the much smaller crown area of 
the young trees. Therefore, fraction cover was about 0.70–0.75 at Farm B and 0.35–0.45 at Farm 
A. 

Figure 1. Study area: (a) Segura River Basin false-color mosaic of Landsat, natural pseudo-color (June
2011), extension of study (boundary of scene 199-34) and area of analyses (Campo de Cartagena);
(b) SPOT image of farms (mosaic of 2012 year); and (c) eddy-covariance flux tower. Coordinate system:
ETRS89 UTM Zone 30N.

Land use is dominated by agriculture (see Figure 2). Water requirements are satisfied by
groundwater pumped from aquifers, surface water resources from the inter-basin Tajo-Segura Water
Transfer (since 1979 provides more than one-third of the total water demand), with water from seawater
desalination plants and brackish groundwater [30].

2.2. Ground Data

To validate the estimates of the ET remote sensing retrieval algorithm, in situ measurements of
λET, H, Rn and G were performed simultaneously in the two commercial citrus orchards located in the
CRCC. The farms (Figure 1b) correspond to:

• Farm A (37 ha) with 6-year old orange trees (Citrus sinensis var. Navelate) planted at a tree spacing
of 4.5 m × 3 m, and Leaf Area Index (LAI) ≈ 3. This value corresponds to field LAI.

• Farm B (16 ha) with 30-year old orange trees (Citrus sinensis var. Navelate) planted at a tree
spacing of 6 × 4 m, and high LAI ≈ 4 to 5. The field LAI was higher at Farm B than at Farm A,
because of the large crown area of the adult trees, compared to the much smaller crown area of
the young trees. Therefore, fraction cover was about 0.70–0.75 at Farm B and 0.35–0.45 at Farm A.
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Figure 2. Land cover map of CRCC. Coordinate system: ETRS89 UTM Zone 30N.  

The two orchards were irrigated to satisfy 100% of the standard crop evapotranspiration, ETc, 
throughout the whole year. ETc was estimated as the product of reference evapotranspiration, ETo, 
and the crop coefficient for orange trees from the FAO Penman–Monteith method [31]. 

The monitored variables (Figure 1c) were:  

• at 1.5 m above the tree crowns air temperature (Tair) and relative humidity, solar radiation (RG, 
Kipp & Zonen pyranometer CMP3, Delft, the Netherlands) and crown temperature (Tc, Apogee 
infrared thermometer (IRT), Logan, UT, USA); 

• Soil heat flux was measured by means of heat flux plates (REBS, model HFT-3.1, Seattle, WA, 
USA) buried 5 mm below the surface, near to drippers (wet bulbs) and in the middle of the rows 
(dry soil)]; and 

• The turbulent energy fluxes, H and λE, were measured at 1.5 m above the trees by an 
eddy-covariance system comprising a Campbell Scientific Inc. (Logan, UT, USA) CSAT-3 sonic 
anemometer measuring high-frequency (10 Hz) three-dimensional wind speed and a LICOR 
(Lincoln, NE, USA) LI-7500 open path infrared gas analyzer measuring CO2 and H2O mixing 
ratios in absolute mode at 10 Hz.  

The lack of closure in the surface energy balance equation was checked by comparing for each 
30 min measurement the difference between available energy (A = Rn − G) and the sum of the EC 
fluxes (λE + H). On a daily average, the sum was found 15% to 20% lower than A, the difference 
being small in the morning (~5% to 10% at overpass time) and somewhat higher (up to 20–25%) in 
the mid afternoon. To account for the lack of closure, we applied the correction proposed by [32], 
assuming that the Bowen ratio was kept unchanged. 

A simplified footprint analysis [33] was used to estimate the relative contribution of a given 
area within the plot to the total measured flux. The analysis indicated that more than 90% of the 
measured λE came from an upwind area less than 160 m away from the measurement tower. As the 
minimum fetch was close to 200 m (south sector), we did not apply footprint corrections according 
to the wind direction. 

 

Figure 2. Land cover map of CRCC. Coordinate system: ETRS89 UTM Zone 30N.

The two orchards were irrigated to satisfy 100% of the standard crop evapotranspiration, ETc,
throughout the whole year. ETc was estimated as the product of reference evapotranspiration, ETo, and
the crop coefficient for orange trees from the FAO Penman–Monteith method [31].

The monitored variables (Figure 1c) were:

• at 1.5 m above the tree crowns air temperature (Tair) and relative humidity, solar radiation (RG,
Kipp & Zonen pyranometer CMP3, Delft, the Netherlands) and crown temperature (Tc, Apogee
infrared thermometer (IRT), Logan, UT, USA);

• Soil heat flux was measured by means of heat flux plates (REBS, model HFT-3.1, Seattle, WA,
USA) buried 5 mm below the surface, near to drippers (wet bulbs) and in the middle of the rows
(dry soil)]; and

• The turbulent energy fluxes, H and λE, were measured at 1.5 m above the trees by an
eddy-covariance system comprising a Campbell Scientific Inc. (Logan, UT, USA) CSAT-3 sonic
anemometer measuring high-frequency (10 Hz) three-dimensional wind speed and a LICOR
(Lincoln, NE, USA) LI-7500 open path infrared gas analyzer measuring CO2 and H2O mixing
ratios in absolute mode at 10 Hz.

The lack of closure in the surface energy balance equation was checked by comparing for each
30 min measurement the difference between available energy (A = Rn − G) and the sum of the EC
fluxes (λE + H). On a daily average, the sum was found 15% to 20% lower than A, the difference being
small in the morning (~5% to 10% at overpass time) and somewhat higher (up to 20–25%) in the mid
afternoon. To account for the lack of closure, we applied the correction proposed by [32], assuming
that the Bowen ratio was kept unchanged.

A simplified footprint analysis [33] was used to estimate the relative contribution of a given
area within the plot to the total measured flux. The analysis indicated that more than 90% of the
measured λE came from an upwind area less than 160 m away from the measurement tower. As the
minimum fetch was close to 200 m (south sector), we did not apply footprint corrections according to
the wind direction.
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2.3. Remote Sensing Data and Other Data

2.3.1. RS Data

Landsat 5 TM images present an adequate spatial resolution to address water management issues
at farm-scale. The images were downloaded from the server of the Spanish National Remote Sensing
Programme (PNT), coordinated by the National Geographic Institute (IGN) with re-sample of 25 m by
cubic convolution method (or nearest neighbor algorithm in some cases) [34]. A total of 10 images
from September 2009 to June 2011 were processed and used to validate with ground truth. The images
were geometrically corrected to the ETRS-89 geodetic reference system. The Landsat 5 TM images
present six multispectral bands with a spatial resolution of 30 m, with the exception of thermal infrared
band (120 m), and spatial resolution of 16 days. The corresponding images of atmospheric water vapor
content, provided by the product MOD05_L2 from the MODIS Terra platform, were used to correct the
Landsat Thermal-Infrared data from atmospheric effects. Table 1 presents the dates and seasons of the
used images, and the irrigation conditions.

Table 1. Details of the used images and irrigation conditions.

Date Season

Irrigation Conditions

Farm A Farm B
wfv (m3·m−3) wfv (m3·m−3)
Mean ± Std Mean ± Std

10/09/2009 Summer 0.361 ± 0.013 0.453 ± 0.002
08/05/2010 Spring 0.440 ± 0.036 0.385 ± 0.002
24/05/2010 Spring 0.432 ± 0.037 0.390 ± 0.003
11/07/2010 Summer 0.400 ± 0.021 0.425 ± 0.002
27/07/2010 Summer 0.427 ± 0.023 0.465 ± 0.002
29/09/2010 Autumn 0.450 ± 0.036 0.477 ± 0.001
16/11/2010 Autumn 0.474 ± 0.013 0.454 ± 0.001
02/12/2010 Autumn 0.447 ± 0.037 0.471 ± 0.002
04/02/2011 Winter 0.436 ± 0.054 0.463 ± 0.002
28/06/2011 Summer 0.321 ± 0.022 0.307 ± 0.019

wfv: water fraction by volume (m3·m−3).

2.3.2. Land Cover

A detailed spatial distribution of land cover was used to eliminate outliers. The data were
provided by the Spanish Land Cover Information System (SIOSE system) at a scale of 1:25,000, which
categorizes the Earth surface according to their biophysical properties (e.g., urban use, crops, forest,
etc.) and characterizes the territory (e.g., industrial use, commercial use, etc.).

As it is presented in Figure 2, agriculture is the main land use, in particular irrigated intensive
agriculture. The main irrigated crops are horticultural crops (lettuce, broccoli, melon, and others) and
citrus trees (oranges and lemons), where the drip is the primary irrigation method (90%) due to water
scarcity and the requirement of water conservation. On the other hand, the most representative rainfed
crops (covers only ≈ 6%) are almond, winter cereals, and olive.

A method to filter the SIOSE data was applied to identify the areas without vegetation (e.g.,
beaches, bare soils, fired areas, etc.), artificial covers (e.g., parking areas, urbanized areas, etc.), and
water (lakes, sea, etc.). We decide to filter the water category for these reasons: (i) water bodies present
NDVI <0, in our algorithm we look for the wet edge for NDVI >0.5; and (ii) in the studied semi-arid
area, the water bodies are very small reservoir only used to store water for irrigation.

The authors of [35] indicated that tuning end-members for land cover could minimize error
between observed and estimated values.
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2.3.3. Other Data

Additional processed information were:

• Air temperature data (Tair) from meteorological stations (maximum and minimum daily) to assess Tair
at satellite overpass time (10:30 a.m.). A multivariate regression technique based on meteorological
data and spatial covariates was applied to the spatial distribution of maximal and minimal
temperatures according to the methodology proposed by [36,37]. The explanatory variables were
elevation, latitude, longitude, and the distance to the sea. Then, the Tair at the satellite time overpass
was obtained by a model proposed by [38] in which its diurnal rhythm is given by a sinusoidal
progression during daytime, and a decreasing exponential curve during the night.

• DEM and spatial distribution of monthly average of Linke turbidity [39] generated in the SoDa
project [40] to estimate downward longwave radiation (S) at satellite overpass time according to a
solar radiation model proposed by [41], integrated into the GIS-Open source [42] which simulates
its three components: direct solar radiation, diffuse sky radiation and reflected radiations. Spatial
variation of solar radiation due to terrain and terrain-shadowing effects are also included in the
model. The required inputs of the model are map elevations and topographic attributes (slope
and aspect maps), Linke atmospheric turbidity, surface albedo, day of year, solar declination, and
satellite overpass time.

With these variables mentioned above, we attempt to model the different meteorological
conditions over such large area.

2.4. Data Processing

2.4.1. Radiometric and Topographical Corrections

The radiometric, optical, topographical, emissivity, and thermal-infrared atmospheric corrections
of Landsat images were performed following the specifications in [34]. Cloud masks were also applied.

From these corrected data, the values of the inputs required for the ET-retrieval algorithm were
derived: LST, NDVI, vegetation fraction cover (fc), albedo and emissivity (ε). For clarification, Scheme 1
presents a simplified diagram of implemented processes.
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2.4.2. ET-Retrieval Algorithm

Estimation of Biophysical Variables

The surface albedo was estimated as follows [43]:

a = 0.2212 · ρTM1 + 0.2569 · ρTM2 + 0.1787 · ρTM3

+0.2295 · ρTM4 + 0.0815 · ρTM5 + 0.0322 · ρTM7

(4)

where ρTMi (i = 1 to 7) are the reflectance values in the bands 1 to 7 of Landsat TM.
NDVI [44] is a well-known indicator, strongly related to the fraction of photosynthetically active

radiation (fPAR), and hence is closely associated with vegetation activity or greenness [45,46].
The estimation of the fc is necessary for the assessment of other variables involved in the images

correction, such as emissivity and thermal-infrared atmospheric corrections. We assumed that fc was
related to NDVI following the relationship [47]:

fc =

(
NDVI − NDVIs

NDVIv − NDVIs

)2 i f NDVI < NDVIs fc = 0
i f NDVI > NDVIv fc = 1

(5)

where NDVIs and NDVIv refer to soil and vegetation NDVI, respectively. Following [48], we fixed
values of NDVIv = 0.5 and NDVIs = 0.2, according to the technical document for processing high
resolution images of PNT [34]

Surface emissivity was calculated by considering NDVI in three different cases [49]:

ε = 0.979− 0.035ρTM3 DNVI < 0.2
ε = 0.0968+ 0.004 fc 0.2 ≤ NDVI ≤ 0.5
ε = 0.99 NDVI > 0.5

(6)

where ρTM3 is the band 3 reflectance of Landsat (visible-red), and fc is the vegetation fraction cover,
following the specifications of [34].

The algorithm used is a revision single-channel (SC) algorithm developed by [50], which was
particularized to the thermal-infrared (TIR) channel (band 6) to Landsat 5 TM sensor

LST = γ
[
ε−1(ψ1Lsen + ψ2) + ψ3

]
+ δ (7)

where Lsen is the spectral radiance at the sensor’s aperture (W·m−2·sr−1·µm−1), ε is the surface
emissivity; γ and δ are two parameters dependent on the Planck’s function; and ψ1, ψ2, ψ3 are
atmospheric momentum transport coefficients. Coefficients to estimate the atmospheric functions are
identified from the database of TIGR61 [50]. The product MOD05_L2 provided by the TERRA-MODIS
sensor is used to estimate the atmospheric water vapor content.

Interpretation of LST vs. NDVI Space

As suggested by [51], we used the difference DT = LST − Tair instead of the absolute value of LST.
The geometrical envelope of the pixels in the DT-NDVI space is generally considered to fall within the
three following cases (Scheme 2):

• Case 1: Triangular shape, as it was used by [17,18];
• Case 2: Trapezoidal shape (e.g., [21,52]); and
• Case 3: Rectangular shape (e.g., [53]).
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For all images of the CRCC area, the DT-NDVI space was far from matching a triangular shape.
Therefore, the automatically detection of end members (dry and wet edges) was performed considering
only the trapezoidal and rectangular shapes.

ET Estimation

The graphical method based on an interpolation of the Priestley-Taylor formula (Equation (2)),
was used to assess the spatio-temporal distribution of ET. The pixels of the DT-NDVI space were
assumed to have ET equal to:

λET = ϕ

[
∆

∆ + γ

]
(Rn − G) (8)

with ϕ given by:

ϕ = ϕmax
DTmax − DTobs
DTmax − DTmin

(9)

where ϕmax = α (fully wet surface). According to [17], the maximum and minimum values of DT
(DTmax and DTmin) corresponded to ϕ = 0 and ϕ = ϕmax, respectively; and DT values were assumed to
scale linearly with the evaporative fraction, EF. In Scheme 2 for a pixel “i” with an observed DTobs, ϕ

was obtained by the ratio between “l” (DTmax − DTobs) and “n” (DTmax − DTmin). Equation (9) implies
that the evaporative fraction is equal to:

EF = ϕ

[
∆

∆ + γ

]
(10)
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Once ϕ, and thus EF (Equation (3)) was obtained, the next step was the estimation of the available
energy A = Rn − G, at each overpass time. The net radiation at the surface was derived from the
following equation [54]:

Rn = (1− a) · S + Ld − Lup (11)

where S is downward shortwave radiation, a is surface albedo, and Ld and Lup are downward and
upward longwave radiation, respectively.

The net longwave radiation Ln = Ld − Lup was calculated as [55]:

Ln = Ld − Lup = σεsεaT4
air − σεsLST (12)

where σ is Stefan–Boltzmann constant (5.67 × 10−8 Wm−2·K−4), Tair (Kelvin) at screen level, εs is
surface emissivity, and εa is the apparent emissivity of the sky, calculated from the empirical equation
proposed by [56].

εa = 9.2× 10−6Tair
2 (13)

Ground Heat Flux

The usual approach to estimate G is to consider that as a constant fraction of Rn (β = G/Rn) [57].
In the present work, G was obtained from a direct relationship linking β to the evaporative fraction
(EF) applying the approach proposed by [24].

β = a + b · EF (14)

with a = 0.23 and b = −0.22.

2.4.3. Automatic Determination of End-Members

In the present work, a modified method of the original one proposed by [5] was applied to
automatically identify the wet and dry edges. The edges were identified by filtering out the spurious
pixels, and applying an iterative method which minimizes the root mean square error (RMSE).
An automatic algorithm was implemented to identify the maximum and minimum subset pixels
to identify the end-members. In summary, the algorithm presents the following steps: (i) The range of
NDVI is divided in M intervals (M ≤ 20) and each interval into N subintervals (N ≥ 5). (ii) The DT
average (DTaver) and standard deviation (σ) of each subinterval is calculated as an initial state. Then,
for each subinterval the maximum and minimum DT is identified. (iii) The subinterval is omitted
if DT is less than (DTaver-σ), recalculating the new average value and σ. (iv) DTaver is taken as the
maximum or minimum DT for this given interval. (v) A linear regression of DT and NDVI values is
performed, assessing the Root Mean Square Error (RMSE). The interval will be omitted if DT is less
than DTc (calculated with coefficients a’ + b’ obtained from the linear regression) minus 2 times RMSE.
(vi) A subset of average DT (end-members maximum o minimum) for each interval is obtained.

Once the subset of end-members were identified, the wet and dry edges of the trapezoidal and
rectangular domains were defined applying the following methodology:

• Pixels with a dominant soil fraction, NDVI < 0.3 were omitted to define the dry edge. In the case
of wet edge, only pixels with complete vegetation cover values (NDVI > 0.5) were considered [21],
as presented in Scheme 2.

• In the case of trapezoidal shapes, the dry edge is defined by linear adjustment to maximum
end-members, and the wet edge is considered a constant value equal to average of minimum
end-members (wet edge and dry edge 2 in Scheme 2).

• For rectangular shapes, the dry edge is estimated as a constant equal to higher value of maximum
of maximum subset, with NDVI > 0.3. The dry edge is equally considered as a constant equal
to the lower value of minimum end-members with NDVI >0.5 (wet edge and dry edge 3 in
Scheme 2).
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2.5. Performance Analysis

According the recommendations of various authors [35,58–60], the root mean square error (RMSE)
(Equation (15)), mean absolute error (MAE) (Equation (16)) and mean absolute percent error (MAPE)
(Equation (17)) were used to assess the model performance during the evaluation process.

RMSE =

√√√√√ n
∑

i=1
(Ei −Mi)

2

n
(15)

MAE =
1
n

n

∑
i=1
|Ei −Mi| (16)

MAPE =
100
〈M〉

(
1
n

n

∑
i=1
|Ei −Mi|

)
(17)

where Ei and Mi are paired model estimates/predictions and measured/observed variables,
respectively, while n is the number of data points, and M is the mean value of the observed variable.

3. Results

3.1. Predicted vs. Ground Truth Values

Table 2 presents the values of NDVI and fc assessed from satellite images for the ten overpass
dates, for the pixel of ET tower flux measurement in Farms A and B, respectively. Higher values of
NDVI were observed in Farm B in comparison with Farm A, a logical result considering the greater
LAI of Farm B (LAI ≈ 5) with respect to Farm A (LAI ≈ 3). If the total surface of the farms is considered.
The mean value of NDVI ranged from 0.48 to 0.57 in Farm B, and from 0.30 to 0.50 in Farm A.

Table 2. Values of NDVI and fc assessed from the satellite images for the pixel of ET tower flux
measurement in Farms A and B (F), respectively.

Date F NDVI fc

10/09/2009
A 0.34 0.24
B 0.54 1.00

08/05/2010
A 0.44 0.64
B 0.60 1.00

24/05/2010
A 0.46 0.74
B 0.54 1.00

11/07/2010
A 0.41 0.48
B 0.56 1.00

27/07/2010
A 0.43 0.53
B 0.63 1.00

29/09/2010
A 0.48 0.74
B 0.59 1.00

16/11/2010
A 0.42 0.55
B 0.55 1.00

02/12/2010
A 0.54 1.00
B 0.61 1.00

04/02/2011
A 0.47 0.82
B 0.52 1.00

28/06/2011
A 0.48 0.89
B 0.62 1.00

The comparison between estimated and observed values of LST and Rn at overpass time indicated
that the retrieval method for these variables provided accurate estimates (Figure 3a,b). In particular,
Rn, which is the basic variable required for the quantification of ET (Equation (9)) was estimated
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with a MAPE value of 15% (Figure 3b), a rather satisfactory result. According to [61], the slight
underestimation of LST values could be justified by the procedure for the estimation of emissivity
from NDVI.
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(a) LST; and (b) Rn.

3.2. Sensitivity of EF to α

In order to identify the proper α value for the study area, we searched for the value of α which
minimizes the RMSE between the observed and estimated values of EF. It was done considering the
sensitivity to DTmin and DTmax. The actual fully wet conditions are observed due to irrigation, while
DTmax represents the areas at “barely” fully stress. The edges were identified from the error of EF to α

range (0.7, 1.3) selection, with an increment of 0.1 for both shapes—trapezoidal (TR) and rectangular
(RC). The results of the analysis are presented in Figure 4. The results were similar for both farms,
indicating that RMSE was minimized for α close to 1.1 in the case of the TR shape, and to 1.0 for the
RC shape.

In Figure 4a, the wet and dry edges are estimated for the whole range of NDVI (by all DTmax

and DTmin values). In Figure 4b, the DTmin values are considered for NDVI > 0.5 (from Scheme 2,
it corresponds to wet edge 2 TR shape or wet edge 3 RC shape), and the dry edge is estimated across the
whole range of NDVI (all DTmax values are considered) Then, in Figure 4c, DTmax values are omitted
with dominant soil fraction NDVI < 0.3 (from Scheme 2, it corresponds to dry edge 2 TR shape and dry
edge 3 RC shape), and the wet edge is estimated across the whole range of NDVI (all DTmin values
are considered). Finally, Figure 4d represents the situation when the restrictions defined in Scheme 2
are considered.

Considering all range of NDVI values, the smallest errors are close to 1.1–1.2. Figure 4c show a
light dismiss compared to Figure 4a, with smaller errors close to 1–1.1. Nevertheless, the more relevant
restriction is related to the wet edge (Figure 4b), showing values close to 1. Finally, the best results
indicated that RMSE was reduced for α close to 1.1 in the case of the TR shape, and to 1.0 for RC shape
(Figure 4d).

We consider the latest approach over others because we obtain the best error, in concordance
with [21]. On the other hand, factors such as the spatial resolution and the small size of farms lead us
to seek more reliability in our results omitting pixels contaminated by other land covers.
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rectangular shapes indicate that the mean value of EF for both shapes were rather close (Figure 5a,b). 
The reason for the presence of clear outliers could be that, even though clouds and cirrus were 
filtered, the imperfect cleaning of shadows could produce anomalous values of reflectances. When 
comparing the boxplots of the two shapes, a lower number of outliers for the rectangular shape 
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Figure 4. Sensitivity of EF to α range (0.7, 1.3) with an increment of 0.1 for trapezoidal shape (TR)
and rectangular shape (RC). Black dots and triangles represent MAPE and RMSE, respectively, in the
following cases: (a) across the complete range of NDVI values; (b) considering pixels with NDVI values
>0.5 to wet edge (wet edge 2 or 3 in Scheme 2); (c) the complete range of NDVI to dry edge omitting
pixel with dominant soli fraction NDVI < 0.3 to dry edge (dry edge 2 or 3 in Scheme 2); and (d) all
range of NDVI in wet edge dry and wet edge 2 or 3, depending on pattern to study.

The boxplots of EF obtained with α = 1 and α = 1.3 in the case of both trapezoidal and rectangular
shapes indicate that the mean value of EF for both shapes were rather close (Figure 5a,b). The reason
for the presence of clear outliers could be that, even though clouds and cirrus were filtered, the
imperfect cleaning of shadows could produce anomalous values of reflectances. When comparing the
boxplots of the two shapes, a lower number of outliers for the rectangular shape (Figure 5b) than for
the trapezoidal one (Figure 5a) can be observed.
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3.3. Sensitivity of EF Spatial Pattern to Space Shape

Table 3 presents the edges identified by the developed algorithm for trapezoidal and rectangular
shapes, considering DT and LST to define the edges. A decrease in the shape of approximately 20 ◦C
(between LST and DT) is identified, especially in summer months, due to the effect of maximum
temperature in these months. However, for winter months, the decrease is less relevant.

Table 3. Dry and wet edge for trapezoidal (TR) and rectangular (RC) shapes, where a and b are
the regression coefficients of the dry edge for LST and DT, respectively, of dry edge, while a’ is the
regression coefficient for DT of wet edge.

Date Shape
Dry Edge Wet Edge

a LST b LST a DT b DT a’ LST a’ DT

10/09/2009
TR 47.7 −11.2 23.46 −15.9 15.24 −14.6
RC 44.45 18.6 15.24 −14.6

08/05/2010
TR 42.6 −16.0 23.3 −11.9 10.4 −15.1
RC 38.2 20.7 10.4 −15.1

24/05/2010
TR 48.2 −20.5 28.5 −22.9 18 −5.9
RC 45.7 23.9 18 −5.9

11/07/2010
TR 51.3 −17.5 24.2 −17.9 27.3 −5.3
RC 47 19.8 27.3 −5.3

27/07/2010
TR 51.3 −17.5 21 −17.5 15.8 −12.6
RC 44.4 16.9 15.8 −12.6

29/09/2010
TR 38.1 −11.2 23.3 −22.7 11.5 −9.7
RC 35.2 17.6 11.5 −9.7

16/11/2010
TR 40.3 −29.0 29.3 −33.2 9.7 −6.0
RC 23.8 21.6 9.7 −6.0

02/12/2010
TR 41.6 −38.6 25.8 −34.1 4.1 −8.6
RC 24.6 16.5 4.1 −8.6

04/02/2011
TR 41.5 −38.6 36.4 −47.7 7.8 −6.6
RC 30.8 22.2 7.8 −6.6

28/06/2011
TR 60.1 −17.2 35.0 −22.3 29.3 −7.5
RC 54.94 28.12 29.3 −7.5

To evaluate the influence of Tair in the results, the errors were quantified for each method (Table 4)
considering LST and DT, respectively. In Table 4, considering α = 1.27, the errors were reduced around
20% with the inclusion of Tair. These results accord with those obtained by [51].

Table 4. Influence of Tair in the Triangle method for α = 1.27.

LST DT

F R2 RMSE
(W/m2)

MAE
(W/m2)

MAPE
% R2 RMSE

(W/m2)
MAE

(W/m2)
MAPE

%

TR
A 0.81 84.87 70.18 44.27 0.80 45.26 36.65 19.82
B 0.91 91.49 83.05 51.27 0.85 58.98 53.37 29.90

RC
A 0.82 86.99 77.15 46.47 0.80 54.19 44.18 22.98
B 0.91 103.13 94.00 54.18 0.85 78.52 66.45 33.79

Analyzing the edges defined by DT, only one image has a similar shape for both configurations,
with a slope of 10%, and the trapezoidal shape is more close to a rectangle shape. The other images
have slopes of 15–35% where the shape is more close to a trapezoid (degenerated triangle). Finally,
only one image can be considered as a triangular shape with a slope of approximately 50%. In most
cases, degenerated triangles, such as was defined by [20], are observed.

As noted above, α close to 1 was better performance; with this in mind, we analyze EF histograms,
represented in Figure 6. These were more concentrated for the trapezoidal shape in comparison
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with the rectangular shape. In general, the rectangular shape (Figure 6b,d,f,h) presents higher CV in
comparison with trapezoidal shape (Figure 6a,c,e,g).
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The relative differences between the spatial distributions of EF estimated for trapezoidal and
rectangular shape were calculated as: (EFTR − EFRC)/EFTR. For the whole irrigated area, the relative
differences were not higher than 20% (Figure 7).
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Zone 30N.

3.4. Results of ET

Finally, we compared the values of ET estimated for α = 1.0 and α = 1.3 to the observed ET
(Table 5). The value of 1.3 led to a systematic overestimation of ET (Figure 8a,b), while α = 1 provided
a much better fit (Figure 8c,d). We also found that the trapezoidal shape globally provided smaller
errors (MAE, MAPE and RMSE) in comparison with the rectangular shape, and that ET estimated
assuming a trapezoidal shape was less sensitive to the selection of the end members.
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In the case of comparing EF for both farms, the variations are small because these are well irrigated
crops. The low correlation with respect to the observed data, are justified because the method is not
precise enough to discriminate small variations of EF. For both farms, Table 6 presents the EF values for
each α selected value, and TR and RC shapes. The identified pattern in EF from Figure 5 is reproduced
by the results of Table 6 for α = 1 in comparison with α = 1.3: a decrease of the mean, and extreme
values as well as their variation.

Removing two winter days with values of observed EF (EFobs) too high with respect to the
remaining values—due to high experimental errors when evaporation and available energy were
low—the estimated values of EF (EFest) were in relatively good agreement with the observed ones
(Figure 9): for Farm A, the mean values for EFest and EFobs were 0.46 and 0.45, respectively, and for
Farm B, they were 0.49 and 0.44, respectively, with a relative RMSE of 15% in both cases, for α = 1.
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Table 5. Errors in the assessment of ET for the available satellite images: absolute error (AE), absolute
percentage error (APE), mean absolute (MAE), mean absolute percentage error (MAPE) and root mean
square error (RMSE). TR = trapezoidal space, RC = rectangular space.

Date

α = 1.3 α = 1

ET ET AE APE ET AE APE
W/m2 W/m2 W/m2 % W/m2 W/m2 %

F Tower TR RC TR RC TR RC TR RC TR RC TR RC

10/09/09
A 175.7 171.2 164.2 4.5 11.6 2.6 6.6 127.8 122.6 48 53.1 27.3 30.2
B 197.0 224.8 243.1 27.7 46.1 14.1 23.4 167.8 141.2 29.3 30 14.9 17.5

08/05/10
A 171.2 173 188.2 1.9 17 1.1 9.9 130 236.6 41.1 12.2 24 5.4
B 118.0 171.8 202.5 53.8 84.4 45.6 71.5 129.2 238.4 11.2 27.8 9.5 10.4

24/05/10
A 224.4 281.7 318.8 57.3 94.5 25.5 42.1 209.7 214.2 14.7 3.7 6.6 1.8
B 238.0 290.9 358.1 53 120.1 22.3 50.5 216.6 199 21.4 28.6 9 16.8

11/07/10
A 266.2 305.1 321.6 38.9 55.4 14.6 20.8 226.5 103.2 39.7 54.4 14.9 34.5
B 232.0 322 354.2 90 122.2 38.8 52.7 238.9 87.6 6.9 28.6 3 24.6

27/07/10
A 210.4 282.9 288.3 72.5 77.9 34.4 37 210.2 94.2 0.2 12.4 0.1 11.6
B 222.0 284 321 62 98.9 27.9 44.6 211 217.9 11 2.3 5 1.1

29/09/10
A 170.4 256.6 269.8 86.2 99.4 50.6 58.4 189.5 181.1 19.2 15.9 11.2 8.1
B 215.8 276.2 306 60.4 90.2 28 41.8 203.9 151.8 11.8 33.8 5.5 28.6

16/11/10
A 157.6 130.5 139.3 27.1 18.2 17.2 11.6 96.8 265.1 60.8 27.1 38.6 11.4
B 155.4 120 135.1 35.4 20.3 22.8 13.1 89.2 262.1 66.2 30.1 42.6 13

02/12/10
A 116.2 99.1 117.5 17 1.4 14.7 1.2 74.1 237.8 42 15.8 36.2 7.1
B 123.7 81 107.3 42.7 16.4 34.5 13.3 60.8 225.2 62.9 9.4 50.8 4.4

04/02/11
A 106.7 115.7 126.6 9 20 8.5 18.7 86.3 100.1 20.4 55.3 19.1 35.6
B 110.1 102.9 118.1 7.2 8 6.5 7.3 77 80 33.1 43.7 30.1 35.3

28/06/11
A 220.3 279.1 293.3 58.8 73.1 26.7 33.2 207.6 88 12.6 22.1 5.7 20.1
B 251.0 324.4 362.2 73.3 111.2 29.2 44.3 240.7 268 10.3 17 4.1 6.8

MAE
MAPE

A 37.3 46.8 19.6 24 29.8 25.3 18.3 15.4
B 50.6 71.8 27 36.2 26.4 27 17.4 17

RMSE A 47 58.7 34.9 30.7
(W/m2) B 55.3 83.4 33.6 30.2

Table 6. Influence of α selection in EF values.

α = 1.3 α = 1

F µ Σ Max. Min. µ σ Max. Min.

TR
A 0.57 0.10 0.73 0.39 0.44 0.07 0.56 0.30
B 0.55 0.11 0.74 0.37 0.43 0.08 0.57 0.29

RC
A 0.60 0.10 0.76 0.42 0.46 0.07 0.59 0.32
B 0.62 0.11 0.80 0.43 0.48 0.08 0.62 0.33
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4. Discussion of Results

4.1. Differences Induced by Space Shape

In the methods based on the analysis of the LST-VI space, the shape selection plays a critical role in
defining the position of the end-members, and therefore on the resultant value of ϕ, and consequently
EF and ET [20]. For this reason, our algorithm uses a statistic method based on iterative process to
avoid a misinterpretation of maximum and minimum values (it eliminates subjectivities); in addition,
we try to correct the overestimation of DTmin o DTmax taking into account the average values in each
interval of NDVI such as it was explained in Scheme 2. However, it is necessary to take into account
certain uncertainties in DT due to several sources of error: (i) LST bias [62], i.e., due to a lack of
correction of LST data by elevation [61], or by a noise component [63]; (ii) errors in the interpolation of
maximum and minimum temperature [35,36,64] and their residuals distribution [63]; (iii) due to the
assessment method of instantaneous temperature; and (iv) DT bias due in relation with the suitability
of image extension and resolution [20,21].

Nevertheless, as shown in Section 3.3, the obtained differences in our case of study are mainly
induced by the dry edge (dry edge 2 or dry edge 3 in Scheme 2), which is parallel to the NDVI axis in
the case of the rectangular shape, and decreased with NDVI in the trapezoidal shape. However, all
spatial patterns are degenerate triangles such as it was defined by [20] with the following differences:

• a lower number of outliers with the rectangular shape, because this shape allows to include within
its bounds a larger number of “valid” pixels than the trapezoidal shape; and

• for the same reason, the coefficient of variation, considering only the valid pixels, was higher in
the case of the rectangular shape.

Such differences due to the shape did not appear to affect to a large extent the resulting values of EF
and ET, as the values of RMSE and MAE were rather similar for both shapes, although the trapezoidal
shape was better adapted in the case of Farm A (Table 2) and therefore could be preferred. The authors
of [20] also found that the two shapes provided similar accuracy, advising for the rectangular form
whenever there was no clear indication that the space presents a trapezoidal trend. According to [65],
the rectangular form could be appropriate for large areas and coarse spatial resolutions.

4.2. Uncertainty Due to Rn

According to [66], the temperature and the influence of radiation are more important than the
scarcity water, being the energy available that controls the surface evaporation [61]. In the balance of Rn,
three variables have important influence: albedo, emissivity, and LST. For this reason, it is important to
highlight the bias in Rn due: (i) LST and hence emissivity [54,61]; and (ii) the use of surface reflectance
instead to calculate surface albedo according to [67]. Nevertheless, the spatial resolution of LST (120 m)
controls the accuracy of this method and hence the errors are balanced, so we obtain a good correlation of
Rn, and available energy between observed and estimated datasets (Figure 10).Remote Sens. 2017, 9, 611  21 of 25 
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4.3. Uncertainty Due to the Value of α

The value chosen for the parameter α has an important influence on the value of EF, hence of ET.
According to our results, a value of α = 1 resulted in the lowest errors for EF, and therefore provided the
best ET estimates. This may be explained by the fact that most of the wet edge of the LST-NDVI space
correspond to irrigated crops, which in the area are citrus and vegetable crops with a fairly high surface
resistance to water vapor transfer (rs). The authors of [22] clearly demonstrated that the control of
evaporation in vegetated lands depends strongly on the physiological characteristics of the vegetation,
in particular of the value of the surface resistance, rs. He showed that the α value at overpass time of
the satellite (10:00–11:00 a.m.) is close to 1 when rs is in the range of 150 to 250 s/m, which is the order
of magnitude of rs for citrus orchards similar to those growing in the studied area [68].

Obviously, such a difference of approximately 25% in the value of α resulted in a similar order of
error in the quantitative estimation of EF and ET (Figure 5a–d). Such a substantial error might cast
doubt on the overall robustness of the method, unless a reasonable estimate of α could be made for the
area under study. A solution could be to collect information—for instance from land use maps—of the
type of crop or vegetation mostly growing in the area, and of their mean surface resistance. From the
knowledge of the mean rs, a mean value of α could be derived [22] and used as a more realistic value
of the PT coefficient for ET retrieval.

4.4. Overall Accuracy

The results of the validation were satisfactory, with a mean RMSE of ~30 W/m2 for the two
selected shapes of the LST-NDVI space. The overall accuracy of our method was also similar to that
obtained in more recent studies, such as [21], or [20,52]. In particular, the latter authors stressed that
the error committed in the end-members selection could be high because of outliers. In our method,
we intended to minimize the number of outliers through two types of pretreatments:

• In a first step, filtering by land use types, eliminating by this way possible conflicts between land
use class and EF values [35] and avoiding erroneous positioning of the wet and dry edges

• In a second step, considering that the dry edge was determined by all pixels with NDVI > 0.3,
and the wet edge by all pixels with NDVI > 0.5 [21].

In addition, two other elements might have resulted beneficial to the overall precision

• The determination of G, by means of a robust formulation in function of EF, which implicitly
includes the effect of soil moisture and soil properties on soil heat flux [24].

• As it was demonstrated by other authors, the consideration of air temperature variation at
overpass satellite time [69,70] and the correction of by air temperature of [51], reduce the errors in
15–30%.

5. Conclusions

The present study underlines the importance of a more precise knowledge of the actual value of
the PT coefficient when using ET retrieval methods based on the LST-VI space. Both ET tower
flux measurements and Landsat 5 TM images of an irrigation scheme in the southeast Spain,
were considered.

The results of the sensitivity analysis of ET retrieval from remote sensing with respect to the shape
(trapezoidal or rectangular) of the LST-VI space, does not appear to affect substantially the overall
accuracy of the method. However, the relevant role of the variation of NDVI lead us to prefer TR shape
which presents less variability, hence more reliability than RC shape.

More critical is the choice of the value of the PT coefficient, which is likely to vary in a large range
around the standard value of 1.27. The α value has an important influence on the value of EF, hence
of ET. According to our results, a value of α = 1 resulted in the lowest errors for EF, and therefore
provided the best ET estimates. This may be explained by the fact that most of the wet edge of the
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LST-NDVI space correspond to irrigated crops, which in the area are citrus and vegetable crops with
a fairly high surface resistance to water vapor transfer (rs). The selected α value is the same for the
two field and the rest of citrus and vegetable crops with fairly high rs at overpass time of the satellite
(10:00–11:00 a.m.) The irrigated areas in such an arid region (with a precipitation of 250 to 300 mm per
year in the Campo de Cartagena) are those which present the maximum evaporation rate and therefore
the lowest land surface temperature.

The good results in ET retrieval from remote sensing, is mainly justified by the high correlation
between observed and estimated Rn datasets, and hence, available energy. However, the method is not
enough precise to discriminate small variations of EF, as it was demonstrated with evidences.

In conclusion, the proposed methodology using the PT equation presents several advantages in
comparison with the application of PM equation:

• two parameters should be fix in PM method (rs and aerodynamic resistance, ra) instead of one
parameter in PT equation;

• the order of magnitude of α (=ϕmax) is more or less identified and known, while much more
uncertain are the corresponding values for rs and ra of PM equation; and

• the air VPD should be known to calculate ET with the PM equation, therefore complicating the
retrieval process as it is very difficult to get correct estimates of the air humidity near the ground
from satellite data.

Finally, our study presents a simplified methodology to obtain a more accurate ET retrieval from
remote sensing, demonstrating its usefulness in comparison with other conventional methodologies.
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