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Abstract: Hyperspectral image (HSI) classification aims at assigning each pixel a pre-defined class
label, which underpins lots of vision related applications, such as remote sensing, mineral exploration
and ground object identification, etc. Lots of classification methods thus have been proposed for
better hyperspectral imagery interpretation. Witnessing the success of convolutional neural networks
(CNNs) in the traditional images based classification tasks, plenty of efforts have been made to
leverage CNNs to improve HSI classification. An advanced CNNs architecture uses the kernels
generated from the clustering method, such as a K-means network uses K-means to generate the
kernels. However, the above methods are often obtained heuristically (e.g., the number of kernels
should be assigned manually), and how to data-adaptively determine the number of convolutional
kernels (i.e., filters), and thus generate the kernels that better represent the data, are seldom studied
in existing CNNs based HSI classification methods. In this study, we propose a new CNNs based
HSI classification method where the convolutional kernels can be automatically learned from the
data through clustering without knowing the cluster number. With those data-adaptive kernels,
the proposed CNNs method achieves better classification results. Experimental results from the
datasets demonstrate the effectiveness of the proposed method.

Keywords: hyperspectral image classification; automatic cluster number determination; adaptive
convolutional kernels

1. Introduction

Different from traditional images (e.g., RGB image), hyperspectral image (HSI) contains a
continuous spectrum at each pixel, which is beneficial for identifying different imaged land covers.
With such abundant spectral information, hyperspectral image (HSI) classification that aims at
assigning each pixel a pre-defined class label has facilitated various applications, such as mineral
exploration, ground object identification, survey of agriculture and monitoring of geology, etc.
Therefore, plenty of efforts have been made in HSI classification. According to the feature utilized,
HSI classification methods can be roughly divided into hand-crafted feature based methods and the
deep learning feature based methods. A detailed review can be seen from Section 2. For hand-crafted
feature based methods, HSI is often represented by the features designed manually [1–7]. However,
due to their shallow structure, the representation ability of such features is limited, especially for
HSIs which often exhibit high nonlinearity aroused by the high-dimensionality and mixture of pixels.
On the contrary, deep learning feature based methods can automatically extract features from training
data with deep architectures. It has been proved that those deep features perform well in representing
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the complicated nonlinearity of data, which has promoted the development of deep learning feature
based HSI classification methods in recent years [8–12].

Since the convolutional kernels should be updated through the network training, traditional
deep learning based methods exhaust much training time. To address this problem, an advanced
CNNs architecture has been proposed recently, which adopts the kernels pre-learned from clustering
the training data without updating them in the training process any more. One typical method is
the K-means Net proposed in [13], where each CNNs kernel is first learned from a specific cluster
obtained by conducting the K-means algorithm on training data. Nevertheless, the cluster number K
(i.e., the number of kernels in CNNs) of K-means Net should be assigned empirically, which limits
the representational power of CNNs. Specifically, a different number K of kernels designed manually
in the convolutional layer will change the structure of CNNs and thus influence the output of CNNs.
In addition, the number K is expected to be adaptive to different images and tasks. Therefore, how to
data-adaptively choose a proper number of kernels is crucial for representing data characteristics with
CNNs. However, most of the existing CNNs based HSI classification methods fail to pay sufficient
consideration to this problem.

In this study, we propose a MCFSFDP based CNNs framework for HSI classification. First,
inspired by clustering by fast search and find of peaks (CFSFDP) [14], a novel clustering method,
named modified clustering by fast search and find of peaks (MCFSFDP), is proposed to data-adaptively
learn a specific number of kernels from training data. The convolution kernels can be automatically
determined by the center of each cluster and the inter-cluster margin, which guarantees the pre-learned
kernels to be suitable for the data structure. Then, the CNNs framework with those pre-learned
convolutional kernels is employed to classify each pixel in the HSI. Extensive experimental results
demonstrate that the proposed method outperforms several state-of-the-art CNNs based methods in
classification accuracy.

In summary, the proposed CNNs framework has two key advantages: (1) a specific number of
convolutional kernels can be data-adaptively learned from training data, which can well represent the
data characteristics; and (2) the MCFSFDP based CNNs framework is effective for HSI classification.

2. Related Work

Based on the feature adopted in classification of HSI, the HSI classification method can be roughly
divided into two categories, including the hand-crafted feature based methods and the deep learning
feature based methods.

2.1. Hand-Crafted Feature Based Methods

Linear features extracted by principal component analysis (PCA) [15] and partial least squares
(PLS) [16] are applied to classify the HSI data. The kernel methods are further developed to exploit
the nonlinear feature of HSI [17]. To depict the spatial texture of image, the wavelet transform (WT)
methods [18,19] have been widely used, which often show different scales and perform effectively
for classification in the high spatial resolution remotely sensed (HSRRS) data. Considering the
complicated spatial correlation, some Gaussian Markov Random Field (GMRF) [20,21] methods are
proposed to model such correlation within a graph structure. In [22], a spatial feature index that
measured the gray similarity distance in every direction is used to describe the shape feature in
local area that is surrounding a pixel in HSI. An adaptive mean-shift (MS) analysis framework [2] is
proposed for object extraction and classification of HSI over urban areas, which is able to obtain an
object-oriented representations of HSI data. Li et al. [3] integrate the spectral and spatial information
in a Bayesian framework, which utilizes a Multinomial Logistic Regression (MLR) algorithm to learn
the posterior probability distributions from the spectral information. In addition, this method uses
subspace projection to better characterize noise, highly mixed pixels and contextual information. In [4],
a mathematical morphology (MM) based method is utilized to process the HSI data. In this approach,
opening and closing morphological transforms are used to isolate bright (opening) and dark (closing)
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structures in images, where bright/dark means brighter/darker than the surrounding features in the
images. To model different kinds of structural information, morphological attribute profiles (APs) are
adopted to provide a multi-level characterization for an image created by the sequential application of
morphological attribute filters [23]. Based on Gray Level Co-occurrence matrix (GLCM), Zortea et al.
attempt to extract the contextual information of images by concatenating the spectral features used
for classification [1]. To improve the classification result of HSI, the Edge-Aware Filtering (EAF)
and Edge-Preserving Filtering (EPF) methods are proposed in [24,25]. Based on the EPF method,
a spectral-spatial classification framework was proposed in [25], which can significantly enhance the
classification accuracy. Kang et al. propose combining a recursion with image fusion to enhance the
image classification accuracy [26]. Recently, the Bag-of-Words (BOW) model has shown a promising
way to handle the remote sensing imagery classification problem. In the BOW model, images can
be represented by the frequency of visual words that are constructed by quantizing local features
with a clustering method, such as K-means and so on [27,28]. Due to the capacity of extracting the
handcrafted local features, such as local structural points, color histogram and texture features [29,30],
BOW based methods present good performance. Manifold regularized kernel logistic regression (KLR)
are proposed to solve multi-view image classification [31]. To integrate different levels of features for
saliency detection, Wang et al. [32] propose a multiple-instance learning based framework that fuses the
low-level, mid-level, and high-level features into a unified model. While effective, the trepresentation
capacity of the manual feature extraction based methods is limited.

2.2. Deep Learning Feature Based Methods

Recently, with the development of deep learning technology, lots of methods based on deep
learning have been developed for image classification, such as deep brief network (DBN) and
stacked auto-encoder (SAE). The DBN and SAE are unsupervised learning methods that are also
used for spectral-spatial classification of hyperspectral data without using the label information [9,33].
The concept of deep learning is introduced into the hyperspectral data classification for the first time [9].
The Canonical Correlation Analysis Network is useful for multi-view image classification [34]. With
the development of convolutional neural networks (CNNs) [35], which has been widely applied to
the image processing and achieved spectacular effects, more and more deep CNNs frameworks have
emerged, such as AlexNet [36], VGGNet [37], GoogLeNet [38] and ResNet [39], which can provide
results comparable with human beings in image classification and recognition tasks. Those methods
can automatically learn features from the training data, which can replace the manually-engineered
features, and have shown significant effects on HSI classification [8–10]. For example, Li et al. [40]
applied 3D-CNNs for spectral-spatial feature extraction and classification, where 3D kernels were used
to extract the feature from HSI cube without any preprocessing or post-processing. In [41], the transfer
learning method for HRRS scene classification is used for transferring features from successfully
pre-learned CNNs. Different from the CNNs methods, the convolutional kernels are updated in the
training process, and the kernels in PCA-Net [42] and K-means Net are pre-learned before the network
training and don’t need to be updated in the network training. In addition, the kernels come from
data directly. PCA-Net [42] adopts the principle components of training data as multistage filter banks,
while K-means Net learns the kernels by clustering the training data. In this study, we mainly focus on
the K-means Net. Although K-means Net can be directly applied to the classification and reduces the
training time by employing the pre-learned kernels, it is difficult to determine the number of kernels
that is crucial for the performance. To address this issue, we attempt to adaptively generate a specific
number of kernels from the training data of CNNs framework.

3. MCFSFDP Based CNNs

The traditional CNNs framework contains the convolutional layer, fully connected layer and a
classification layer. The convolution layer is updated through the error feedback process, which is
different from the pre-learned convolutional kernels based CNNs framework.
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The proposed MCFSFDP based CNNs method includes three major modules: (1) data
pre-processing module, which extracts patches from block samples; (2) MCFSFDP based kernel learning
module, which learns the convolutional kernels from those extracted patches; and (3) classification
modules which utilize the learned convolution kernels.

The flowchart of our MCFSFDP based CNNs method is shown in Figure 1.

Remote Sens. 2017, 9, 618  4 of 15 

 

learning module, which learns the convolutional kernels from those extracted patches; and (3) 
classification modules which utilize the learned convolution kernels. 

The flowchart of our MCFSFDP based CNNs method is shown in Figure 1. 

 
Figure 1.The flowchart of the MCFSFDP based CNNs method. 

3.1. Data Pre-Processing 

In this study, we follow the standard data pre-processing principle in K-means Net [13]. 
Specifically, a HSI used in this classification task is denoted by R . Though HSI is 3D data, it also can 
be seen as a collection of 2D images (i.e., images from different bands). Here, we denote the HSI as 
2D form. First, we randomly select M  pixels from R , and then extract M  corresponding blocks 

1{ }Mi iB =  with a size of m m×  as samples, where each block is centered at each selected pixel. These 
extracted M  samples are roughly divided into three parts, namely, training samples, validation 
samples and testing samples. The property of center block pixel is described by all the pixels in the 
block. Then, 1{ }Mi iB =  are put into the network and the center pixel labels of block iB  are used as the 
ground truth for training. 

In addition, we randomly extract N  patches 1{ }Nj jP =  with a size of n n×  from TM  training 
samples, TM  denotes the number of training samples, where TM M<  and n m< . The extracted 

N  patches 1{ }Nj jP =  are used for learning the convolutional kernels with a size of n n×  via 
MCFSFDP. The producing process of the block (sample) and patch is shown in Figure 2. 

 
Figure 2. The block (sample) is extracted from image R and the patch is extracted from block, respectively. 

3.2. MCFSFDP Based CNNs Kernels Learning 

To obtain the kernels with those cropped patches, a suitable clustering method is necessary. 
Lots of clustering methods have been proposed, among which clustering by fast search and find of 
peaks (CFSFDP) [14], is a typical state-of-the-art method. The reason for partial success of CFSFDP 
on clustering is based on the idea that “cluster centers are characterized by a higher density than 
their neighbors and by a relatively large distance from points with higher densities” and the cluster 
centers can be determined through two thresholds of distance and density [14]. 

Though CFSFDP has shown its power for clustering, we find that when we apply it directly to 
generate the kernels for CNNs, the generated kernels are not always optimal for hyperspectral 
image classification tasks. This phenomena is observed from the experimental results (a similar 
conclusion also can be seen from the results in Section 4.3.1). In our opinion, we consider kernels 
(filters) as the standards for comparing the samples, which also show the evaluation standards for 
determining which cluster they belong to. Since the inter-cluster points are difficult to classify, we 
should also select several inter-cluster points with representations as the clusters (kernels). To 
address this problem, we propose a new clustering method based on CFSFDP, which only uses 

Figure 1. The flowchart of the MCFSFDP based CNNs method.

3.1. Data Pre-Processing

In this study, we follow the standard data pre-processing principle in K-means Net [13].
Specifically, a HSI used in this classification task is denoted by R. Though HSI is 3D data, it also
can be seen as a collection of 2D images (i.e., images from different bands). Here, we denote the HSI as
2D form. First, we randomly select M pixels from R, and then extract M corresponding blocks {Bi}M

i=1
with a size of m×m as samples, where each block is centered at each selected pixel. These extracted M
samples are roughly divided into three parts, namely, training samples, validation samples and testing
samples. The property of center block pixel is described by all the pixels in the block. Then, {Bi}M

i=1 are
put into the network and the center pixel labels of block Bi are used as the ground truth for training.

In addition, we randomly extract N patches
{

Pj
}N

j=1 with a size of n × n from MT training
samples, MT denotes the number of training samples, where MT < M and n < m. The extracted N
patches

{
Pj
}N

j=1 are used for learning the convolutional kernels with a size of n× n via MCFSFDP. The
producing process of the block (sample) and patch is shown in Figure 2.
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3.2. MCFSFDP Based CNNs Kernels Learning

To obtain the kernels with those cropped patches, a suitable clustering method is necessary. Lots
of clustering methods have been proposed, among which clustering by fast search and find of peaks
(CFSFDP) [14], is a typical state-of-the-art method. The reason for partial success of CFSFDP on
clustering is based on the idea that “cluster centers are characterized by a higher density than their
neighbors and by a relatively large distance from points with higher densities” and the cluster centers
can be determined through two thresholds of distance and density [14].

Though CFSFDP has shown its power for clustering, we find that when we apply it directly to
generate the kernels for CNNs, the generated kernels are not always optimal for hyperspectral image
classification tasks. This phenomena is observed from the experimental results (a similar conclusion
also can be seen from the results in Section 4.3.1). In our opinion, we consider kernels (filters) as the
standards for comparing the samples, which also show the evaluation standards for determining which
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cluster they belong to. Since the inter-cluster points are difficult to classify, we should also select several
inter-cluster points with representations as the clusters (kernels). To address this problem, we propose
a new clustering method based on CFSFDP, which only uses distance threshold to generate the kernel
centers. The proposed method differs from the traditional CFSFDP in two aspects: (1) CFSFDP
simultaneously uses the points with a large distance and high density to determine the cluster center,
which easily excludes the outlier points into the generation of cluster centers; while the proposed
MCFSFDP method only uses distance threshold to generate the cluster center, the cluster centers can be
generated from either outlier points (with only large distance) or points of density; (2) the number of
clusters via CFSFDP is determined ‘semi-automatically’, i.e., an extra frame needs to be introduced to
help determine the number of clusters, while the number of clusters can be automatically determined
through the proposed method. We give the details of the proposed method as follows.

The same as the CFSFDP algorithm in [14], we assume that the cluster centers are characterized
by a higher density than their neighbors and by a relatively large distance from points with
higher densities.

Following this idea, we firstly reshape each patch Pj into a column vector as a data point j with a
size of 1× n2. For each point j, we compute two values: its local density ρj and its distance δj from the
point with higher density, where, if the point j has the highest density, δj denotes the largest distance
between j and other points.

Both of these values depend only on the Euclidean distances djk between any pair of data points
j and k. The local density ρj of data j is defined as

ρj = ∑
k

χ(djk − dc), (1)

where χ(x) = 1 if x < 0 and χ(x) = 0 otherwise, and dc is a cut-off distance. Basically, ρj is equal to
the number of points that are closer than dc to point j. δj is evaluated through computing the minimum
distance between the point j and any other point with higher density in Equation (2):

δj = min
k:ρk>ρj

(djk) . (2)

For the point with the highest density, we usually take δj = maxk(djk). Note that δj is much larger
than the typical nearest neighbor distance only for points that are local or global maxima in the density.
Thus, the cluster centers are recognized as points for which the value of δj is anomalously large and
the value of ρj is higher than a value density at the same time. To show the distance and density of
each point intuitively, we give the decision graph of 10,000 patches with a size of 10× 10 from the real
Indian pines dataset in Figure 3.
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Different from choosing cluster centers in CFSFDP [14], we use the MCFSFDP algorithm to learn
the kernels adaptively. Firstly, we choose the distance δ as the only threshold for choosing kernels
from the decision graph in MCFSFDP.

To adapt the kernels and choose the number of kernels, we select the optimal distance threshold
value δA as the following steps:

numv = f (δv), (3)

conv = [ f (δv+1)− f (δv)]/(δv+1 − δv), (4)

quov =|conv/conv+1|. (5)

where, in Equation (3), δv denotes the value of distance that contains points and f (δv) gives the
mapping relationship of the number of points whose distances are equal or larger than δv, as shown
as Figure 4a. In Equation (4), where δv+1 ≥ δv, conv denotes the differential of f (δv), which is an
intermediate result between Equations (3) and (5). Equation (5) denotes the variation quantity of the
number of points with δv, shown as Figure 4b.

δA denotes the adaptive distance threshold, and the points whose distances are larger than δA are
chosen as CNN kernels. δA is a critical point that must satisfy the number numv and numv+1 of points
are stable (in other words, they have a similar quantity), at the same time, the value |conv/conv+1| is
larger than the value |conv+1/conv+2|. In this time, δv is selected as the adaptive distance threshold δA.

In other words, to determine the adaptive distance threshold δA intuitively, from Figure 4a, we can
find the value region δv (0.25–0.30) from curve 1 when numv begins to approach to 0; as can be seen
from Figure 4b, conv with the distance value δv in region (0.25–0.30) has a local maxima at δv = 0.28.
The distance δv (0.28) that belongs to the region (0.25–0.30) is confirmed as the adaptive threshold
distance as δA. In conclusion, by observing Figure 4, the adaptive distance threshold δA is determined
as 0.28 on the Indian Pines dataset.
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Figure 4. The curve for determining the adaptive distance with patches with a size of 10 × 10 the on
Indian pines dataset. (a) shows the curve of point-number over distance δv; (b) gives the curve of
quotients of differential over distance δv.

Finally, the points j with the distance value δj > δA are adaptively chosen as the kernels and thus
the number of kernels is also adaptively determined through the threshold δA. Those chosen points
are then reshaped to patches with a size of n× n as the convolutional kernels in the CNNs framework.
The CNNs with the pre-learned adaptive kernels are called MCFSFDP Net. The pre-learned kernels
are denoted as wk in the following sections.

3.3. Convolutional Neural Networks

With the pre-learned kernels wk, a convolutional neural network such as [13] is designed for
per-pixel level HSI classification. This CNNs structure consists of an input layer, a convolutional layer,
a pooling layer, a fully connected layer and a soft-max layer, as shown in Figure 5.
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There are k kernels in the convolutional layer. Each feature map is calculated by taking the
dot product between the k-th kernel wk of size n× n, w ∈ Rn×n×k, and local context area x of size
m×m with c number of channels, x ∈ Rm×m×c. The feature map corresponding with the k-th filter
f ∈ R(m−n+1)×(m−n+1) is calculated as:

f k
ij = σ(∑

c

n−1

∑
a=0

n−1

∑
b=0

wk
abcxc

i+a,j+b), (6)

where σ is the rectified linear unit (ReLU). The kernels were pre-trained using the MCFSFDP algorithm.
The maximum pooling over a local non-overlapping spatial region is adopted to down-sample the

convolutional layer. The pooling layer for the k-th filter, g ∈ R(m−n+1)/p×(m−n+1)/p, is calculated as:

gk
ij = max( f k

1+p(i−1),1+p(j−1), . . . , f k
pi,1+p(j−1), . . . , f k

1+p(i−1),pj, . . . , f k
1+pi,pj). (7)

The k feature maps are reshaped to the column vectors and all the column vectors are connected
with a fully connected auto-encode unit. The autoencode unit is used to process the connected column
vector and represented the feature of the column vector. The output results of the hide layer in the
auto-encode unit were used to connect the classification layer.

The last CNNs step is a soft-max layer used for final classification.

4. Experiments and Analysis

Three datasets were utilized to validate the feasibility and effectiveness of the proposed CNNs
based MCFSFDP method (named as MCFSFDP Net) in HSI classification. In the following sections,
dataset and experimental settings are described firstly, and then the effectiveness and the superiority
of the proposed method are tested.

4.1. Datasets

To find images with less categories and obvious discriminations between categories, we firstly
select an image dataset with a size of 256× 256. The image of this dataset has been manually labeled
as three categories, including mountains, sky and roads. One hundred samples with a size of 25× 25
from each category that were extracted from this image. We randomly choose 210 context area samples
for training, 30 samples for validation and 60 other samples for testing. The details of selected image
samples were given in Table 1.
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Table 1. Ground truth classes and their respective sample numbers in Dataset 1.

Class
Samples

Training Validation Testing

Mountain 70 10 20
Sky 70 10 20

Road 70 10 20

In order to evaluate the proposed method on complex data, Dataset 2 includes the benchmark
Indian Pines image, which is HSI data captured by the airborne visible imaging spectrometer (AVIRIS)
sensor with a moderate spatial resolution of 20 m over the Indian Pines test site in northwestern
Indiana in 1992. As shown in Figure 6, this image contains145 × 145 pixels and 224 spectral bands,
whose wavelength ranges from 0.4 to 2.5 um. The number of bands of corrected data was reduced to
200 (extracted the 1–200 bands). In addition, 6476 image context area samples with a size of 19× 19
were extracted. Among them, 3238, 647 and 2591 samples were used for training, validation and
testing, respectively. The details of each category of image samples were given in Table 2.
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Indian Pines dataset, where the white area denotes the unlabeled pixels.

Table 2. Groundtruth of classes and their respective sample numbers on Indian Pines scene.

Class Samples

Number Classes Total Training Validation Testing

1 Alfalfa 46 23 4 19
2 Corn-notill 1288 636 132 520
3 Corn-mintill 63 29 7 27
4 Corn 35 17 3 15
5 Grass-pasture 180 90 14 76
6 Grass-trees 730 342 84 304
7 Grass-pasture-mowed 28 16 1 11
8 Hay-windrowed 94 45 8 41
9 Oats 20 10 2 8
10 Soybean-notill 807 406 71 330
11 Soybean-mintill 2067 1019 215 833
12 Soybean-clean 227 124 22 81
13 Wheat 204 107 28 69
14 Woods 560 307 44 209
15 Buildings-Grass-Trees-Drives 73 38 9 26
16 Stone-Steel-Towers 54 29 3 22

Total 6476 3238 647 2591
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The third Dataset 3 includes the benchmark Pavia University image, which is HSI data captured
by a ROSIS sensor with a moderate spatial resolution of 1.3 m over the flight campaign over Pavia,
northern Italy. As shown in Figure 7, this image contains 610× 610 pixels and 103 spectral bands. The
number of bands was reduced to 100 (extracted the 1–100 bands). Furthermore, 34,400 image context
area samples with a size of 11× 11 were extracted. Among them, 17,200, 3440 and 13,760 samples were
used for training, validation and testing, respectively. The details of each category of samples were
given in Table 3.
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Table 3. Groundtruth of classes and their respective sample numbers in the Pavia University scene.

Class Samples

Number Classes Total Training Validation Testing

1 Asphalt 5446 2718 580 2148
2 Meadows 12,695 6307 1320 5068
3 Gravel 1314 674 126 514
4 Trees 2709 1329 241 1139
5 Painted metal sheets 1345 688 153 504
6 Bare Soil 5029 2517 453 2059
7 Bitumen 1330 686 120 524
8 Self-Blocking Bricks 3630 1810 362 1458
9 Shadows 902 471 85 346

Total 34,400 17,200 3440 13,760

4.2. Experimental Parameter Settings

Ten thousand patches were randomly extracted from the training samples for learning kernels.
For each dataset, the sample (blocks) size and the number of patches should be maintained consistently
in different pre-learned CNNs frameworks.

The CNNs framework that is shown in Figure 5 uses one convolutional layer, one pooling layer,
one auto-encode layer and a classifier. In our algorithm, the pooling layer adopted the non-overlap
rule, the number of neurons in the hide layer of auto encode was set to 100 and the maximum iterations
for training the classifier was 400. The learning rate is 0.0001 and momentum is 1. The batch sizes on
the three datasets are chosen as 10, 50 and 200, respectively.

The codes are running on the computer with Intel Xeon E5-2678 V3 2.50 GHz × 2 (Intel, Santa
Clara, CA, USA), NVIDIA Tesla (NVIDIA, Santa Clara, CA, USA) K40c GPU × 2, 128 GB RAM, 120 GB
SSD and Matlab 2016a (MathWorks, Natick, MA, USA). The gradient is computed via batch gradient
descent, which is not computed by GPU.

The average test accuracy is calculated on 10 independent Monte Carlo runs.
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4.3. Experimental Results

4.3.1. Effectiveness of the Kernels Learned by MCFSFDP

The aim of this experiment is to validate the effectiveness of the kernels learned by MCFSFDP.
To this end, we compared those kernels with those learned as the cluster center obtained by CFSFDP
algorithm. Those two kinds of kernels were then integrated into the same CNNs framework for HSI
classification on Dataset 1. To obtain fair comparison results, both of the numbers of kernels in those
two methods were fixed at 49. The kernel size was set to 14× 14 and the pooling size was designed
as 4× 4. The average testing classification accuracy of those two methods was shown in Table 4.

Table 4. The testing accuracy compared with learned 49 kernels via CFSFDP and MCFSFDP-M on Dataset 1.

Methods CFSFDP Net MCFSFDP Net

Accuracy (%) 81.67 ± 0.5904 95.00 ± 0.5887

It reveals that the kernels learned by the MCFSFDP are more effective than the kernels learned by
the CFSFDP.

4.3.2. Effectiveness of the Kernels Number Determined by MCFSFDP

To demonstrate the effectiveness of the kernels number determined by MCFSFDP, we compared
MCFSFDP with its variants for classification in each dataset. Those variants shared the same CNNs
architecture and the kernel learning scheme excepted choosing the kernels number manually. Dataset 1,
Dataset 2 and Dataset 3 were used in the experiment. For each dataset, the kernel size and the pooling
size can be found in Table 5.

Table 5. The chosen block size, kernel size and pooling size of each dataset.

Dataset Dataset 1 Dataset 2 Dataset 3

Block Size 25 × 25 19 × 19 11 × 11
Kernel Size 10 × 10 6 × 6 2 × 2
Pooling Size 4 × 4 7 × 7 2 × 2

We report the testing classification accuracy of all these methods on each dataset in Tables 6–8,
respectively. Each variant is denoted as MCFSFDP-M Net followed with a specific number which
indicates the kernel number chosen manually. Similarly, the number that followed MCFSFDP Net
represents the kernel number automatically determined by the proposed method.

Table 6. The testing accuracy of MCFSFDP-M Net compared with MCFSFDP Net on Dataset 1.

Methods MCFSFDP-M
Net-20

MCFSFDP-M
Net-25

MCFSFDP-M
Net-41

MCFSFDP-M
Net-55

MCFSFDP
Net-35

Accuracy (%) 93.33 ± 0.5887 95.00 ± 0.5904 95.00 ± 0.5904 95.00 ± 0.5904 96.67 ± 0.5887
Distance threshold 0.19 0.18 0.16 0.15 0.17
Number of kernels 20 25 41 55 35

Table 7. The testing accuracy of MCFSFDP-M Net compared with MCFSFDP Net on Dataset 2.

Methods MCFSFDP-M
Net-14

MCFSFDP-M
Net-24

MCFSFDP-M
Net-31

MCFSFDP-M
Net-83

MCFSFDP-M
Net-151

MCFSFDP
Net-50

Accuracy (%) 95.29 ± 0.0870 96.51 ± 0.4146 97.03 ± 0.1940 97.07 ± 0.3434 96.82 ± 0.1457 97.84 ± 0.2249
Distance threshold 0.27 0.26 0.25 0.23 0.22 0.24
Number of kernels 14 24 31 83 151 50
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Table 8. The test accuracy of MCFSFDP-M Net compared with MCFSFDP Net on Dataset 3.

Methods MCFSFDP-M Net-19 MCFSFDP-M Net-42 MCFSFDP-M Net-152 MCFSFDP Net-78

Accuracy (%) 88.98 ± 0.2651 89.32 ± 0.1908 89.54 ± 0.1002 90.58 ± 0.1477
Distance threshold 0.08 0.07 0.05 0.06
Number of kernels 19 42 152 78

In Table 6, the proposed method determines the kernel number as 35. The manually chosen kernel
number in other variants are 20, 25, 41 and 55, respectively. The accuracy, distance threshold and
the number of kernels for each method are shown in different rows. It can be seen that the proposed
method shows the best classification accuracy. Similar phenomenon arises in Tables 7 and 8. Therefore,
we can conclude that the proposed method is able to seek a good kernel number for different datasets.

4.3.3. Performance Evaluation of MCFSFDP Net

In this part, the proposed method was compared with three state-of-the-art pre-learned kernels
based CNNs methods, including K-means Net [13], PCA-Net [42] and Random Net. For fair
comparison, the same CNNs architecture was adopted by all comparison methods. The number
of kernels for K-means Net, PCA-Net and Random Net was set to 50, while the proposed method
determines the number of kernels automatically. For each dataset, the kernel size and the pooling size
can be found in Table 9.

Table 9. The testing accuracy of different CNNs methods compared with MCFSFDP Net on Dataset 1.

Methods K-Means Net-50 PCA Net-50 Random Net-50 MCFSFDP Net-35

Accuracy (%) 93.33 ± 0.5887 90.00 ± 1.8175 95.00 ± 1.8175 96.67 ± 0.5887

It reveals that the proposed algorithm can produce more accuracy for pixel classification than
those three types of pre-learned kernels based CNNs methods on this dataset as shown in Table 9.
Moreover, the proposed MCFSFDP Net with 35 kernels that has less computational complexity than
comparison methods with 50 kernels in the training process.

The average testing classification accuracy of our proposed algorithm, K-means Net, PCA-Net
and Random Net on Dataset 2 was given in Table 10. The results obviously show that the proposed
MCFSFDP Net obtains better accuracy than those three types of pre-learned kernels based CNNs
methods, which is consistent with the results obtained from Dataset 1.

Table 10. The testing accuracy of different CNNs methods compared with MCFSFDP Net on Dataset 2.

Methods K-Means Net-50 PCA Net-50 Random Net-50 MCFSFDP Net-50

Accuracy (%) 95.02 ± 0.3343 97.30 ± 1.1916 97.12 ± 0.6195 97.84 ± 0.2249

The average classification accuracy of our proposed method compared with another three kernels
pre-learned based CNNs on the Pavia University image was presented in Table 11. The results show
that our proposed CNNs method is more accurate than those three types of pre-learned kernels based
CNNs methods. Even if the proposed method needs more kernels number to perform the better
classification result.

Table 11. The testing accuracy of different CNNs methods compared with MCFSFDP Net on Dataset 3.

Methods K-Means Net-50 PCA Net-50 Random Net-50 MCFSFDP Net-78

Accuracy (%) 89.77 ± 0.3399 90.14 ± 0.2652 90.47 ± 0.5113 90.58 ± 0.1477
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5. Discussion

5.1. Effect ofthe Number of Kernels

In the MCFSFDP-M Net, the number of kernels influences the pixel-level classification. Figure 8
shows the classification accuracy achieved with different numbers Ak that were manually selected via
MCFSFDP on Dataset 1, Dataset 2 and Dataset 3.

Figure 8a shows the classification results with the variation of kernel numbers Ak on each kernel
size n× n on Dataset 1. The accuracy of MCFSFDP-M Net computation cannot be enhanced when the
kernel number Ak was increased. Figure 8b shows the highest accuracy on Dataset 2. While the kernel
number is manually chosen via MCFSFDP, the accuracy can get a high point in the number range of
the kernels, as the adaptive kernels learned through the MCFSFDP method. It demonstrates again
that the accuracy cannot be enhanced with the increased kernel number on Dataset 3, as shown in
Figure 8c.
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Figure 8. The classification accuracy influence with the number of kernels. (a) the classification
accuracy with the increased number of kernels with different kernel size on Dataset 1;
(b) the classification accuracy with the increased number of kernels with different kernel size on
Dataset 2; (c) the classification accuracy with the increased number of kernels on Dataset 3.

5.2. Effect of the Kernel Size

In our proposed MCFSFSP based CNN method, the kernel size has a major impact on the pixel
classification performance. Table 12 gives the average classification accuracy obtained by using
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different kernel size. It shows that the highest classification accuracy was achieved when kernel size
was set to 10 × 10 and 6 × 6 on Dataset 1 and 6 × 6 on Dataset 2.

Table 12. The average classification accuracy obtained by using different kernel size.

Dataset Dataset 1 Dataset 2

Pooling Size 4 × 4 4 × 4 4 × 4 5 × 5 7 × 7
Kernel Size 14 × 14 10 × 10 6 × 6 10 × 10 6 × 6

Number of Kernels 15 35 24 32 50
Distance Value 0.22 0.17 0.17 0.28 0.24
Accuracy (%) 95 96.67 96.67 95.33 97.84

6. Conclusions

In this paper, we propose a novel CNNs classification framework for HSIs, which can
data-adaptively learn a specific number of kernels from the training data. In particular, this model
adopts the MCFSFDP algorithm to cluster the training data, and then the convolutional kernels can
be determined automatically by the cluster center and inter-cluster margin. With those pre-learned
kernels, a CNNs framework is developed for classifications. We have compared the proposed CNNs
framework against three state-of-the-art deep learning methods with pre-trained kernels on three
datasets. The experimental results demonstrate the superiority of the proposed CNNs framework in
classification accuracy. Moreover, we validate that the proposed method is able to seek a good kernel
number for a specific dataset. These adaptively learned kernels can help us understand the complexity
of data and adjust the CNNs architecture for good feature extraction.

In terms of future research, we will exploit a multi-layer architecture via MCSFDP based CNNs to
enhance the classification accuracy with less samples.
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