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Abstract: The Scale-Invariant Feature Transform (SIFT) algorithm and its many variants have been
widely used in Synthetic Aperture Radar (SAR) image registration. The SIFT-like algorithms maintain
rotation invariance by assigning a dominant orientation for each keypoint, while the calculation
of dominant orientation is not robust due to the effect of speckle noise in SAR imagery. In this
paper, we propose an advanced local descriptor for SAR image registration to achieve rotation
invariance without assigning a dominant orientation. Based on the improved intensity orders,
we first divide a circular neighborhood into several sub-regions. Second, rotation-invariant ratio
orientation histograms of each sub-region are proposed by accumulating the ratio values of different
directions in a rotation-invariant coordinate system. The proposed descriptor is composed of the
concatenation of the histograms of each sub-region. In order to increase the distinctiveness of
the proposed descriptor, multiple image neighborhoods are aggregated. Experimental results on
several satellite SAR images have shown an improvement in the matching performance over other
state-of-the-art algorithms.
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1. Introduction

Synthetic Aperture Radar (SAR) image registration is the fundamental task of many image
applications, such as image fusion, image mosaicking, change detection, and so on. Because
of the extensive use of SAR images, SAR image registration becomes increasingly important.
The registration algorithms can be roughly divided into two categories: intensity-based and
feature-based. Affected by speckle noise and different imaging conditions, the intensity and geometric
information of the same ground scene in SAR images differ widely. Consequently, feature-based
methods with some particular invariance may be more suitable than intensity-based ones for SAR
image registration [1].

Most of the feature-based methods consist of three steps: keypoints’ detection, keypoints’
matching and transformation model estimation. First, feature-based methods detect significant
points that correspond to distinctive points of the same scene in two images, such as corner points,
line intersections and centroid pixels of close-boundary regions [2,3]. Second, each feature point
from one image (called the reference image) is matched with the corresponding point of the other
image (called the sensed image) by various feature descriptors or similarity measures along with
spatial relationships among the keypoints, such as the famous Scale-Invariant Feature Transform
(SIFT) descriptor [4], shape context [5] and spectral graph [6]. Third, due to the complex nature of
SAR images, the matched keypoints often result in a high number of false matches, which have a
significant impact on determining the transformational model [7]. Therefore, robust algorithms are
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applied to remove outliers, such as RANdom SAmple Consensus (RANSAC) [8] and A Contrario
RANdom SAmple Consensus (AC-RANSAC) [9]. Then, a transformation model is estimated using the
correctly-matched keypoints.

Among the feature-based methods, SIFT-like algorithms are the most widely-used techniques
due to the efficient performance and invariance to scale, rotation and illumination changes. However,
the traditional SIFT algorithm does not perform well on the SAR images due to the effect of speckle
noise [1]. Several improvements have been proposed to improve the SIFT algorithm for SAR image
registration. Some algorithms ameliorated the SIFT algorithm by extracting features starting from
the second octave [10], skipping the dominant orientation assignment when the matching images
do not have rotation transformation [11], or replacing the Gaussian filter with several anisotropic
filters [12], or designing a new gradient specifically dedicated to SAR images by utilizing the Ratio Of
the Exponentially-Weighted Average (ROEWA) instead of a differential (SAR-SIFT) [1]. In SIFT-like
algorithms, rotation invariance is achieved by assigning a dominant orientation to each keypoint.
However, Fan et al. [13] pointed out that the computed orientation is not stable enough and adversely
affects the matching performance of the SIFT descriptor. Moreover, the calculation of the dominant
orientation in SAR images is strongly affected by speckle noise.

In order to solve the aforementioned problems, we propose a robust feature descriptor for SAR
image registration, which combine the advantages of the ratio-based detectors [14] and the intensity
order pooling [13]. Considering the inherent property of SAR images, an improved intensity order
pooling method is introduced to partition the circular neighborhood, then the rotation-invariant
sub-regions of image neighborhood are obtained. For each sub-region, we propose a rotation-invariant
ratio orientation histogram, which is obtained by accumulating the ratio values of different directions
in a rotation-invariant coordinate system. The proposed descriptor is composed of the concatenation
of the histograms of each sub-region.

The main contributions of the paper are given as follows: (1) a rotation-invariant local
descriptor is constructed without assigning a dominant orientation, which can be widely used
in feature-based registration techniques; (2) considering the inherent property of SAR images,
we proposed a rotation-invariant ratio orientation histogram that is robust to speckle noise.
Additionally, the intensity order pooling method is improved to adapt to SAR images. Rotation
invariance is achieved by the improved intensity orders and rotation-invariant ratio orientation
histograms; and (3) multiple image neighborhoods are aggregated to increase the distinctiveness of
the descriptor.

2. Methodology

2.1. Local Descriptors for SAR Image Registration

Local descriptors have achieved good performance for optical image registration, such as SIFT [4],
Speeded Up Robust Features (SURF) [15], Oriented FAST and Rotated BRIEF (ORB) [16], shape-based
invariant texture feature [17] and so on. However, when these descriptors are directly applied to
SAR images, the results are poor due to the effect of speckle noise and large differences between
the intensity and geometric information [10]. Consequently, we only focus on the local descriptors
that have been successfully operated on SAR images. As mentioned before, some improved SIFT-like
descriptors have shown good performance on SAR image registration. Among them, SAR-SIFT
is the state-of-the-art method. Benefiting from the Constant False Alarm Rate (CFAR) property of
ratio-based edge detectors [14], the gradient by ratio used in SAR-SIFT is robust to speckle noise, leading
to a good performance specifically on SAR images. The SAR-SIFT descriptor utilizes the gradient by
ratio to compute gradient orientation for each point. Then, dominant orientation is assigned to each
keypoint to maintain the rotation invariance. More details about SAR-SIFT can be seen in [1].

Other feature descriptors have also been developed. Dai et al. [18] found matches between SAR
and optical images using improved chain-code representation and invariant moments. Yasein et al. [19]
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obtained correspondences between the feature points using Zernike moments. Wong et al. [20]
proposed an algorithm that makes use of phase-congruency moment-based patches as local-feature
descriptors. Huang et al. [5] improved the shape context descriptor to make it fit for use with
complex remote sensing images. Recently, learning-based feature descriptors are applied to SAR
image processing. Yang et al. [21] introduced a computationally efficient graphical model for densely
labeling large remote sensing images, which combined the advantages of the multiscale visual features
and hierarchical smoothing. Hu et al. [22] generated image features via extracting CNN features
from different layers. Yang et al. [23] proposed a high-level feature learning method to describe
an image sample. Hu et al. [24] presented an improved unsupervised feature learning algorithm
based on spectral clustering, which can not only adaptively learn good local feature representations
but also discover intrinsic structures of local image patches. The aforementioned local descriptors
almost all adapted a dominant orientation to achieve rotation invariance. However, Fan et al. [13]
and Liu et al. [25] claimed that the dominant orientation assignment based on local image statistics
is an error-prone process and it will make many true corresponding points un-matchable by their
descriptors. Moreover, the calculation of dominant orientation is not stable enough due to the speckle
noise of SAR images.

In order to assess this, an orientation error experiment is operated on 40 pairs of SAR images
with rotation differences. We choose the SAR-SIFT descriptor as representative. The Orientation
Error (OE) for two corresponding points is given as: ξori = (θ′ − θ)− θ (H), where θ is the dominant
orientation of the keypoint (x, y; θ) in the reference image and θ′ is the dominant orientation of
the corresponding keypoint (x′, y′; θ′) in the sensed image. θ (H) is the orientation difference between
two images according to the ground truth model H. Figure 1a shows the distribution of OEs between
all corresponding points. Figure 1b shows the distribution of OEs between corresponding points
that are correctly matched. We can see that the OEs of the correctly-matched points are almost
in the range of [−20◦, 20◦]. However, the rate of corresponding points that have the OEs in the range
of [−20◦, 20◦] is 62.59%. This means that 37.41% of the corresponding points may not be correctly
matched. Consequently, the matching performance can be significantly improved by a more accurate
estimation of dominant orientation or building a rotation-invariant local descriptor without assigning
a dominant orientation.

(a) (b)

Figure 1. (a) orientation error (OE) distribution of all of the corresponding points; (b) OE distribution
of the correctly-matched points.

2.2. The Proposed Rotation-Invariant Descriptor

As mentioned in Section 2.1, building a rotation-invariant local descriptor without assigning
a dominant orientation is an effective method to improve the matching performance. Inspired
by region partition based on the intensity order [13], we first divide the circular neighborhood of
each keypoint into several sub-regions according to the improved intensity order. Ratio orientation
histograms of each sub-region are then calculated in a local rotation-invariant coordinate system. Finally,
the descriptor is constructed by concatenating the ratio histograms of each sub-region in multiple image
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neighborhoods. Consequently, they are inherently rotation invariant, and no dominant orientation
is required in the proposed local descriptor. The flow chart of descriptor construction is shown
in Figure 2.

Figure 2. Flow chart of the construction of the proposed descriptor.

2.2.1. Neighborhood Division Based on Improved Intensity Order

SAR images are often acquired at different imaging conditions, such as different times, different
polarizations and different viewpoints. Therefore, the same ground scene may appear differently
due to differing illumination conditions and sensor sensitivities [20]. Moreover, due to the coherent
imaging mode and speckle noise in SAR images, there exist some isolated bright pixels in one image,
which can not be found repeatable in another image. Hence, the region division based on the intensity
order may fail to correctly partition the neighborhood into similar sub-regions for SAR images. Figure 3
shows the division results of two corresponding neighborhoods in two SAR images. The right-top
part of Figure 3 shows the division results based on the intensity order, where different sub-regions
are indicated by different colors. We followed the instructions of intensity order pooling in [13]. It can
be observed that there exist many unrepeatable fragments in the division results. Hence, it is very
difficult to match the two corresponding neighborhoods using the intensity order pooling.

Figure 3. Division results based on the intensity order and the improved intensity order.

Generally, keypoints correspond to locations with significant structural information;
their neighborhoods always contain many important feature structures like roads and buildings.
However, there also exist small-scale structures caused by high frequency components of speckle
noise. Herein, an improved intensity order method is proposed to adapt to SAR images.
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First, a median filter is applied to reduce isolated bright pixels. Then, the Rolling Guidance
Filter (RGF) proposed by Zhang et al. [26] is utilized to remove small-scale structures while
preserving important feature structures. Instead of eliminating speckle noise in the raw image,
we aim at searching the large-scale feature structures and effectively dividing the neighborhoods.
Compared with the Gaussian filter and other filters specifically designed for SAR images, RGF
achieves real-time performance and produces better results in separating different scale structures.
Finally, the circular neighborhood is divided according to the intensity order after the two filters.
We denote that P = {p1, p2, ..., ph} is the circular neighborhood with h points after the two
filters. I (pi) represents the intensity of the point pi. The points are first non-descending sorted,
and the index is

{
d (i) , i = 1, 2, ..., h : I(pd(1)) ≤ I(pd(2)) ≤ ... ≤ I(pd(h))

}
. Then, h points are divided

into k groups as:

Pj =
{

pi ∈ P : I(tj−1) < I(pi) ≤ I(tj)
}

; tj = pd(dhj/ke), j = 1, 2, ..., k, t1 = 0. (1)

where k groups denote k sub-regions.
The partition result based on the improved intensity order is shown in the right-bottom part of

Figure 3. It can be observed that the corresponding sub-regions are very similar, resulting in a high
possibility to correctly match the two keypoints. Compared with the result based on the intensity order,
it is more reliable for SAR images. The sub-regions are divided by the intensity orders of a circular
neighborhood, hence, they are invariant to illumination change and rotation.

2.2.2. Rotation-Invariant Ratio Orientation Histogram

In this section, the rotation-invariant ratio orientation histogram is proposed to construct
descriptors for each sub-region. Here, we first build a rotation-invariant coordinate system for each
keypoint. We assume that X is a keypoint and P is its circular neighborhood, shown in Figure 4a.
For one sample point Xi in the neighborhood, a local coordinate system is established by setting the

direction
→

XXi as the x-axis and the direction perpendicular to the
→

XXi as the y-axis. An example
of the rotated coordinate system is shown in Figure 4b, it can be observed that the pixels in the
orignal neighborhood of the sample point Xi remain the same in the rotated neighborhood of the
corresponding sample point Xj. Hence, the local coordinate system is rotation invariant, descriptors
calculated in this coordinate system are also rotation invariant.

Then, we adopt the Gaussian-Gamma-Shaped (GGS) operator [14] to calculate the ratio orientation
histogram. For one sample point, its GGS processing window consists of two parts W1(x, y) and
W2(x, y), given as follows:

W1(x, y) = |y|α−1
√

2πσxΓ(α)βα
exp

(
−
(

x2

2σ2
x
+ |y|

β

))
, y ≥ 0,

W2(x, y) = |y|α−1
√

2πσxΓ(α)βα
exp

(
−
(

x2

2σ2
x
+ |y|

β

))
, y ≤ 0,

(2)

where W1(x, y) and W2(x, y) are two horizontal windows, (x, y) are the coordinate of
the point, σx, α and β control the size of the processing window and Γ is the gamma
function. Rotating the two windows by an orientation angle θ, the two windows are given
as Wθ

s (x, y) = Ws(x cos θ − y sin θ, x sin θ + y cos θ), s = 1, 2. Figure 4c illustrates two processing
windows oriented at π/4. For a processing window, its local mean is computed by the convolution of
the image intensities with the window function. The ratio value of an orientation angle θ is calculated
by the ratio of two local means as follows:

Ri = log (µ1 (x, y, θi) /µ2 (x, y, θi)) ; i = 1, 2, ..., n, (3)
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where µs (x, y, θi) = ∑ Wθi
s (x′, y′)I(x− x′, y− y′); s = 1, 2 and θi = π

n (i − 1); i = 1, 2, ..., n,

n is the number of directions. Hence, for the sample point Xi, we have obtained eight ratio values.
The ratio orientation histograms is then computed by accumulating eight ratio values of points in each
sub-region. Since we have divided the circular neighborhood into k parts and the ratio orientation
histograms of each part have been computed, the final descriptor of this keypoint is derived as:

D = (des1, des2, ..., desk) , desj =
(
∑ R1, ∑ R2, ..., ∑ Rn

)
; j = 1, ..., k, (4)

where k is the number of sub-regions and n is the number of orientations. Actually, some information
is lost after the improved intensity order pooling. In order to increase the distinctiveness of
the descriptor, multiple image neighborhoods are aggregated. Descriptors of several neighborhoods
of different sizes are concatenating to form the final descriptor as follows: (D1, D2, ..., Dm). Here,
m is the number of multiple neighborhoods.

(a) (b)

(c)

Figure 4. (a) Rotation-invariant local coordinate system. (b) A rotated example of the local coordinate
system. (c) A pair of Gaussian-Gamma-Shaped (GGS) windows oriented at π/4.

3. Experimental Results and Discussion

3.1. Parameter Settings and Datasets

In this section, in order to evaluate the matching performance of the proposed local descriptor,
three categories of experiments are operated. The proposed descriptor is compared with three other
methods, SIFT, Bilateral Filter Scale-Invariant Feature Transform (BFSIFT) [12], Synthetic Aperture
Radar Scale-Invariant Feature Transform (SAR-SIFT) [1]. Since we only focus on the comparisons of
descriptors, all of the methods use the same keypoint detection and matching techniques. Herein,
keypoints are detected by the SAR-Harris method [1] and matched by the Nearest Neighbor (NN) and
Distance Ratio (DR) methods [4]. Parameters of the SIFT, BFSIFT and SAR-SIFT descriptors follow
the authors’ instructions. For the proposed descriptor, we use multiple neighborhoods with a size
of {17, 31, 45, 59} to construct the descriptor. Each neighborhood is divided into k = 6 parts, and
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for each part, n = 8 ratio orientation histograms are built. A large orientation number will increase
the distinctiveness of the descriptor, while it also results in a heavy computational cost. The GGS
processing windows used to calculate the ratio values need to consider the tradeoff of containing
enough adjacent pixels and the computational cost. Moreover, the size of the GGS window relates to the
scale parameter. Since we do not consider the scale difference in the paper, the size of the GGS window
remains the same in all experiments, which is empirically set based on {α = 3, β = 1.75, σx = 3.67}.
The parameters of keypoint detection and matching methods also follow their authors’ instructions.

In the first experiment, two satellite images are used; the first is a TerraSAR-X image with a
size of 700 × 700; the second is a GaoFen (GF) -3 image with a size of 755 × 755. In the second
experiment, 16 pairs of TerraSAR-X images are utilized. They are all acquired under the same
conditions (StripMap mode, HH polarization, 3-m resolution) with simulated rotations in Beijing City.
In the third experiment, three image pairs with complex conditions are used to evaluate the proposed
descriptor. These images are obtained under different acquisition conditions, such as polarizations,
time and viewpoints, presented in Table 1 and shown in Figure 5. The ground truth transformation
model is obtained by manually selecting 20 pairs of control points for each image pair.

Table 1. Image pairs and their characteristics. QPSI, Quad Polarization StripMap; SM, StripMap; FSI,
Fine StripMap; DEC, Descending; ASC, Ascending; GF, GaoFen.

Set Sensor Mode Polarization Date Direction Looks Size

a Radarsat-2 SM HH June 2008 ∗ 1 600× 500
a Radarsat-2 SM HH June 2009 ∗ 4 600× 500
b GF-3 QPSI VV 9 December 2016 DEC ∗ 552× 462
b GF-3 QPSI HV 9 December 2016 DEC ∗ 601× 482
c GF-3 FSI HH 19 August 2016 DEC ∗ 564× 635
c GF-3 FSI HH 20 September 2016 ASC ∗ 543× 629

(a) (b) (c)

Figure 5. Image pairs. (a) the first; (b) the second; (c) the third.

3.2. Experiments on Rotation Invariance

Herein, we create two experiments to test the rotation invariance of the proposed local descriptor.
In the first experiment, we focus on the same images, which only have simulated rotation differences.
The raw image is denoted as the reference image; the sensed image is the raw image after rotating
by different angles βk = kπ

8 , k = 0, 1, ..., 15. We use the bilinear interpolation method in this
experiment. Since the calculations of orientation in SIFT and BF-SIFT are the same, we only take
SIFT as a representative. We assume that M (p1, p2) is a match between a point p1(x1, y1) and a point
p2(x2, y2), and the match is a correct match only if ‖H(x1, y1)− (x2, y2)‖2 < t, where H represents
the transformation model; ‖ ‖2 is the Euclidean distance; t stands for a distance threshold. We use
the Correct Matches Rate (CMR) to compare the performance of the local descriptors. For a given
distance threshold, the CMR is defined as CMR= #cm/#total, where #cm represents the number of
correct matches; #total represents the number of all of the matches. The distance threshold t is used to
measure the quality of a correspondence. We set it to five in this experiment.

The curves of CMR versus orientations are shown in Figure 6. A large CMR indicates that more
correctly-matched keypoints exist, leading to a more precise transformation model. It can be observed



Remote Sens. 2017, 9, 686 8 of 12

that the proposed descriptor reaches a large CMR for all orientations. For the SAR-SIFT descriptor,
when the angle is in the range of [100◦, 250◦], its CMRs fall to 0.6. For the SIFT descriptor, its CMRs are
close to 0.5 for more than half of the angles. As shown in the experiments in Section 2.1, the calculation
of dominant orientation is an error-prone process, and orientation-based methods do not work well
for arbitrary positions, the rotation invariance degenerates at some positions. Additionally, since
image pairs with larger rotations are more strongly affected by changes due to lighting effects and
motion blur [25,27], the expected curve is decreasing as the rotation increases in the range of [0◦, 180◦].
However, we use a bilinear interpolation method to rotate the reference image in this experiment.
The interpolating method has an impact on the matching performance, while for 90◦ , 180◦ and 270◦,
the local deformations caused by the interpolating method are slighter than those of other degrees.
Consequently, the CMRs of the 90◦, 180◦, 270◦ for SIFT and SAR-SIFT are higher than those of their
adjacent degrees.

(a) (b)

Figure 6. The curves of Correct Matches Rate (CMR) versus angles. (a) the GF-3 image;
(b) the TerraSAR-X image.

Hence, for the reference and sensed images with rotation differences, the orientation estimation
turns many true corresponding points into misregistrations by their descriptors. Instead of adopting
dominant orientation, the proposed descriptor makes use of the improved intensity orders and the
rotation-invariant ratio orientation histogram, resulting in more robust rotation invariance.

In the second experiment, Receiver Operator Characteristic (ROC) curves are used to compare
the matching performance of the four descriptors. The curve shows the percentage of correctly-matched
keypoints against the false alarm rate. The two criteria are given as:

PerCM =
#CM
#Mall

, f alse alarm rate =
#CM

#CM + #FM
, (5)

where #CM represents the number of correct matches, #FM represents the number of false matches
and #Mall stands for the number of total matches. For different ratio threshold th used in the Nearest
Neighbor (NN) and Distance Ratio (DR) method, global ROC curves can be obtained by the PerCM
against the f alse alarm rate, shown in Figure 7.

It can be observed that the proposed descriptor gives the best matching performance, followed by
the SAR-SIFT algorithm. The performances of BFSIFT and SIFT algorithms are similar. Considering
the speckle noise, SAR-SIFT takes advantages of the gradient by ratio and gives better performance
than SIFT and BFSIFT on SAR images. However, the aforementioned three SIFT-like algorithms all
adopt the dominant orientation assignment. For our proposed descriptor, we adopt the GGS detector
to construct the ratio orientation histogram; it is also robust to speckle noise. Moreover, the proposed
descriptor combines the information of multiple image neighborhoods to increase the distinctiveness,
and it is rotation invariant without relying on a dominant orientation, further improving its robustness.
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Figure 7. Global ROC curves of the proposed descriptor, SAR-SIFT, BFSIFT and SIFT.

3.3. Experiments on Satellite SAR Images with Complex Conditions

In these experiments, three image pairs obtained under complex situations are utilized to
further evaluate the performance of the four descriptors. We adopt the RANSAC method to
remove the false matches for all of the comparative methods. For two SAR images that have
the same resolution, we skip the scale space construction in order to increase the matching process.
The matching performance is quantitatively evaluated by the Root Mean Square Error (RMSE) and

CMR. The RMSE can be computed as ξrmse = 1
Ncorr

Ncorr
∑

i=1

∥∥H(xi
1, yi

1)− (xi
2, yi

2)
∥∥

2, where (xi
1, yi

1) and

(xi
2, yi

2) are the coordinates of the ith matched pair and Ncorr is the number of correctly-matched
keypoints, and the Standard Deviation (SD) and Maximum Error (ME) are also presented. Small RMSE
denotes that the accuracy of matching performance is high. Comparisons of the four descriptors
are presented in Table 2. Matching results of the second image pair are shown in Figure 8, where yellow
lines denote correctly-matched correspondences, and red lines denote misregistrations.

Table 2. Comparisons of SAR-SIFT, BFSIFT, SIFT and the proposed method.

Set SAR-SIFT BFSIFT SIFT Proposed

CMR a 15/44 29/73 24/76 30/40
RMSE (pixel) a 1.22 1.28 1.63 0.89

SD a 0.6545 1.0818 1.4436 0.4816
ME a 2.5840 2.3780 4.4502 1.9676

CMR b 17/44 7/45 9/57 21/41
RMSE (pixel) b 1.91 2.57 2.78 1.29

SD b 1.1503 1.5380 1.5040 0.7455
ME b 2.8800 4.2722 5.6833 2.7870

CMR c 13/56 9/66 7/55 9/54
RMSE (pixel) c 1.45 2.89 2.34 1.78

SD c 0.6510 1.7002 1.2165 1.1036
ME c 2.0994 6.5029 4.6881 3.9308

It can be observed from Table 2 that the proposed descriptor gives a better matching performance
than the three other descriptors on the first and second image pairs, followed by SAR-SIFT. As shown
in Figure 8, the proposed descriptor yields the highest number of correctly-matched keypoints,
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resulting in a more precise transformation model. Compared with SIFT, BFSIFT only replaces
the Gaussian filter with the bilateral filter; it gives better matching performance in regions with
edge structures, whereas SIFT yields better results in regions with blob structures. Since there are many
edge structures in the first image pair, BFSIFT gives better results than SIFT. However, the third
image pair describes a dense urban area. Due to the side-looking mechanism of SAR sensors, urban
areas are corrupted with geometric distortions, such as layover and foreshortening [28]. Strongly
affected by distortions, neighborhood division in the proposed descriptor becomes unstable, resulting
in an increasing number of misregistrations, presented in Table 2. How to make the proposed descriptor
more adaptable to local distortions will be studied in the future.

(a) (b)

(c) (d)

Figure 8. Matching results on second image pair. (a) SAR-SIFT; (b) BFSIFT; (c) SIFT; (d) proposed.

4. Conclusions

In this paper, an advanced rotation-invariant descriptor for SAR image registration is proposed.
Aiming at achieving rotation invariance without assigning a dominant orientation, we first divide
the circular neighborhood into several sub-regions based on the improved intensity orders. Then,
a rotation-invariant local coordinate system is built for each keypoint. The ratio orientation histogram
of each sub-region is calculated by the GGS ratio values of different directions in this coordinate
system. Moreover, multiple image neighborhoods are aggregated to increase the distinctiveness of
the descriptor. The proposed descriptor is composed of the concatenation of the ratio orientation
histograms of each sub-region in multiple neighborhoods. Experimental results show that the proposed
descriptor has achieved a robust rotation invariance and yields a superior matching performance for
SAR image registration.
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