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Abstract: In this study, we proposed an empirical algorithm for significant wave height
(SWH) retrieval from TerraSAR-X/TanDEM (TS-X/TD-X) X-band synthetic aperture radar (SAR)
co-polarization (vertical-vertical (VV) and horizontal-horizontal (HH)) images. As the existing
empirical algorithm at X-band, i.e., XWAVE, is applied for wave retrieval from HH-polarization
TS-X/TD-X image, polarization ratio (PR) has to be used for inverting wind speed, which is treated as
an input in XWAVE. Wind speed encounters saturation in tropical cyclone. In our work, wind speed is
replaced by normalized radar cross section (NRCS) to avoiding using SAR-derived wind speed, which
does not work in high winds, and the empirical algorithm can be conveniently implemented without
converting NRCS in HH-polarization to NRCS in VV-polarization by using X-band PR. A total of
120 TS-X/TD-X images, 60 in VV-polarization and 60 in HH-polarization, with homogenous wave
patterns, and the coincide significant wave height data from European Centre for Medium-Range
Weather Forecasts (ECMWF) reanalysis field at a 0.125◦ grid were collected as a dataset for tuning
the algorithm. The range of SWH is from 0 to 7 m. We then applied the algorithm to 24 VV and 21
HH additional SAR images to extract SWH at locations of 30 National Oceanic and Atmospheric
Administration (NOAA) National Data Buoy Center (NDBC) buoys. It is found that the algorithm
performs well with a SWH stander deviation (STD) of about 0.5 m for both VV and HH polarization
TS-X/TD-X images. For large wave validation (SWH 6–7 m), we applied the empirical algorithm
to a tropical cyclone Sandy TD-X image acquired in 2012, and obtained good result with a SWH
STD of 0.3 m. We concluded that the proposed empirical algorithm works for wave retrieval from
TS-X/TD-X image in co-polarization without external sea surface wind information.
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1. Introduction

It is well known that space-borne synthetic aperture radar (SAR) is an efficiently instrument for
wind and wave observation in a large coverage with high spatial resolution at seas. Most satellite
SAR operates at X-band (TerraSAR-X (TS-X), TanDEM-X (TD-X), and Cosmo-SkyMed), C-band
(Radarsat-1/2, ERS-1/2, Envisat-ASAR, Sentinel-1A/-1B and Chinese Gaofen-3), and L-band (Japanese
ALOS-1/ALOS-2). TS-X and its twin TD-X have 514 km orbit height above earth and a 100-min orbit
period with fine spatial resolution of image up to 1 m. TS-X and TD-X SAR are officially operated
by Germen Aerospace Center (DLR). In the past few years, several algorithms for winds [1–5] and
waves [6–9] retrieval from TS-X/TD-X image have been developed. Geophysical model function
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(GMF) XMOD2 [4] and polarization ratio XPR2 [5] are the latest achievements for wind retrieval from
VV-polarization and HH-polarization TS-X/TD-X image, respectively. After employing SAR-derived
wind speed, waves can be estimated from TS-X/TD-X image by using the theoretic-based algorithm
“Parameterized First-guess Spectrum Method” (PFSM) [9] or the empirical algorithms [6,7]. Recently,
empirical wave retrieval algorithm is adapted for coastal application [8], considering the ship and
wave breaking etc. in offshore region.

Algorithm PFSM [10–12] was originally exploited for wave retrieval from C-band SAR, which
is based on the wave mapping mechanism on SAR, including tilt modulation, hydrodynamic
modulation [13] and velocity bunching [14]. PFSM is developed similar to the “Max-Planck Institute”
algorithm (MPI) [15–17], “Semi Parametric Retrieval Algorithm” scheme (SPRA) [18] and “Partition
Rescaling and Shift Algorithm” (PARSA) [19]. All these algorithms need a first-guess wave spectrum
and the “true” wave spectrum is inverted through a set of iterations by minimizing a cost function [15].
Algorithm MPI and PARSA take the outputs from numeric wave model [20] as the first-guess spectrum,
and both of these require a long computing time. Algorithm SPRA employs wind speed from
scatterometer to produce the first-guess wind-sea spectrum by using empirical parametric wave
function and information on swell is regarded as the difference between the retrieval results mapping
spectrum and the original SAR spectrum. In other words, the error in the wind-sea retrieval process is
delivered into the swell retrieval process in SPRA scheme. PFSM separates the non-linear wind-sea
and the linear-mapping swell spectrum by calculating the separation threshold of the wave number.
Moreover, it searches for the best parameters, e.g., dominate wave phase velocity and peak propagation
direction, together with SAR-derived wind speed so as to produce the best fit first-guess wind-sea
wave spectrum by using empirical parametric wave function, e.g., Jonswap [21]. The composite wave
spectrum is obtained, after the different wave spectrum portions are inverted from corresponding SAR
intensity spectrum portions. In addition, there are several unconstrained algorithms [22,23], which
can also be applied for waves retrieval in a particular sea state, e.g., a long wave dominant regime,
however, the retrieval result usually contains information on swell due to the portion produced by
shorter waves in a SAR spectrum is missing in the inversion schemes. In fact, the basic scattering
physics is independent on radar frequency and imaging polarization. In our previous study [9], it
was already proven that algorithm PFSM can be applied to invert wave spectrum from TS-X/TD-X
image and then wave parameters are derived from the inverted wave spectrum. Validation against the
third-generation wave model WaveWatch-III outputs through 16 HH-polarization TS-X/TD-X images
show a 0.43 m Root-Mean-Square Error (RMSE) of significant wave height (SWH).

Due to the complex nature of modulation transfer functions (MTF) in these theoretic-based
algorithms, researchers also exploited the empirical algorithms such as CWAVEs (CWAVE_ERS [24]
and CWAVE_ENV [25]) algorithms for C-band SAR and XWAVE [6–8] algorithms for X-band SAR.
In parallel, a few researches recently have made effort to build empirical algorithms for retrieving
SWH through azimuthal cutoff wavelength on SAR [26–29]. CWAVEs describe a relationship among
wave and several other variables, e.g., wind speed, radar cross section and a set of orthonormal
decompositions in a two-dimensional SAR spectrum derived from SAR intensity image. However,
CWAVEs were designed to retrieve wave information from particular C-band SAR mode image, e.g.,
wave mode that has a fixed incidence angle around 23◦. XWAVE inherits the idea behind CWAVEs,
which is exploited through a number of TS-X/TD-X images at full incidence angle ranged from 20◦

to 50◦. In the development of XWAVE [6,7], the algorithm coefficients were primarily tuned using
VV-polarization TS-X/TD-X data acquired over National Oceanic and Atmospheric Administration
(NOAA) moored buoys in the open ocean. The SWH retrieval results show good agreement with the
outputs from numerical wave model data provided by DWD. SAR-derived wind speed is necessary in
algorithm XWAVE. XMOD2 [4] are tuned by using an amount of VV-polarization TS-X/TD-X images
and collocated winds from DWD. However, no reliable wind retrieval above 20 m/s is achieved
from TS-X/TD-X image by using XMOD2 due to no available data at such wind speeds in the tuning
process. Thus far, two existing algorithms, PFSM and XWAVE, have not been implemented under
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tropical cyclone conditions yet. This is because XMOD is tuned and validated through VV-polarization
TS-X/TD-X images and the DWD with the wind speeds up to 25 m/s. Moreover, the signal saturation
problem also exists for SAR in tropical cyclone [30,31].

Recently, a new empirical approach was reported in [32], by which it is possible to directly retrieve
SWH in tropical cyclones from normalized radar cross section (NRCS) of C-band wide ScanSAR image,
e.g., Envisat-ASAR and Radarsat-1/2. Interestingly, that empirical model can be conveniently applied
similarly to the SAR wind retrieval methodology. Although the validation against outputs from
the third–generation wave models, including WaveWatch-III and SWAN, has exhibited encouraging
results, there are still some weaknesses existed in the model as mentioned by the authors.

In this study, we propose an empirical algorithm for SWH retrieval from X-band SAR through
improving existing XWAVE model. In particular, this developed model can be directly applied for
HH-polarization TS-X/TD-X image without converting NRCS in HH-polarization into NRCS in
VV-polarization. The proposed algorithm avoids using SAR-derived wind speed, which is known
having large retrieval errors in tropical cyclone. Data collected at high sea state (SWH > 5 m) are also
included in the tuning dataset and the algorithm performs well under tropical cyclone condition.

The paper is organized as follows. SAR images and collocated NOAA in situ buoys dataset
are introduced in Section 2. In Section 3, methodology of the proposed empirical model for SWH
retrieval is presented and the coefficients of the proposed empirical function are tuned by the dataset.
The comparison of SWH retrieved from SAR imagery and those measured by buoys is shown in
Section 4. A case study for wave retrieval using two TS-X/TD-X images acquired during in tropical
cyclone Sandy in 2012 is also presented. Conclusions are summarized in Section 5.

2. Data Description

SAR data used in this study includes 60 VV-polarization and 60 HH-polarization SAR images
acquired between 2008 and 2015. As examples, a HH-polarization TS-X image in StripMap mode
acquired in Gulf of Alaska at 03:05 UTC on 3 November 2011 is shown in Figure 1a while another
VV-polarization ScanSAR mode TD-X image acquired near Southeast Newfoundland Coast at 21:17
UTC on 4 October 2013 is shown in Figure 1b.
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Figure 1. (a) A HH-polarization StripMap mode TerraSAR(TS-X) image acquired in Gulf of Alaska at 
03:05 UTC on 3 November 2011; and (b) a VV-polarization ScanSAR mode TanDEM-X (TD-X) image 
acquired to the Southeast of Newfoundland at 21:17 UTC on 4 October 2013.  

Figure 1. (a) A HH-polarization StripMap mode TerraSAR(TS-X) image acquired in Gulf of Alaska at
03:05 UTC on 3 November 2011; and (b) a VV-polarization ScanSAR mode TanDEM-X (TD-X) image
acquired to the Southeast of Newfoundland at 21:17 UTC on 4 October 2013.
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In this study, the European Centre for Medium-Range Weather Forecasts (ECMWF) global
atmospheric-marine reanalyzed data is matched up against the SAR measurements. Here, we used
ECMWF reanalysis SWH data at a 0.125◦ grid (approximate 12.5 km) at an interval of six hours.
To perform the matchup, every TS-X/TD-X imagery was divided into sub-scenes with a spatial
coverage of 1.5 × 1.5 km for StripMap mode and 4 × 4 km for ScanSAR mode images in azimuth and
range direction, respectively. Then, ECMWF SWH data in every sub-scene were calculated by both
bilinear interpolation in space and time. To eliminate inhomogeneous sub-scenes, we compute the
image variance and only keep those with values smaller than 1.05 [26]. Moreover, the SAR spectrum is
smoothed to reduce the distortions of other marine phenomena. Figure 2a,b shows the ECMWF SWH
data that correspond to the two images shown in Figure 1a,b, respectively.
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Figure 2. (a) Space and time interpolated European Centre for Medium-Range Weather Forecasts
(ECMWF) SWH data corresponding to the SAR image in Figure 1a; and (b) same as (a) but for the SAR
image in Figure 1b.

In total, our dataset consists of more than one thousand SAR-derived and ECMWF reanalysis
SWH matchup points for algorithm tuning. Histograms of SWH matchups are shown in Figure 3, in
which the SWH ranges from 0 to 7 m at interval of 0.3 m.

Remote Sens. 2017, 9, 711  4 of 14 

 

In this study, the European Centre for Medium-Range Weather Forecasts (ECMWF) global 
atmospheric-marine reanalyzed data is matched up against the SAR measurements. Here, we used 
ECMWF reanalysis SWH data at a 0.125° grid (approximate 12.5 km) at an interval of six hours. To 
perform the matchup, every TS-X/TD-X imagery was divided into sub-scenes with a spatial coverage 
of 1.5 × 1.5 km for StripMap mode and 4 × 4 km for ScanSAR mode images in azimuth and range 
direction, respectively. Then, ECMWF SWH data in every sub-scene were calculated by both bilinear 
interpolation in space and time. To eliminate inhomogeneous sub-scenes, we compute the image 
variance and only keep those with values smaller than 1.05 [26]. Moreover, the SAR spectrum is 
smoothed to reduce the distortions of other marine phenomena. Figure 2a,b shows the ECMWF SWH 
data that correspond to the two images shown in Figure 1a,b, respectively. 

 

Figure 2. (a) Space and time interpolated European Centre for Medium-Range Weather Forecasts 
(ECMWF) SWH data corresponding to the SAR image in Figure 1a; and (b) same as (a) but for the 
SAR image in Figure 1b. 

In total, our dataset consists of more than one thousand SAR-derived and ECMWF reanalysis 
SWH matchup points for algorithm tuning. Histograms of SWH matchups are shown in Figure 3, in 
which the SWH ranges from 0 to 7 m at interval of 0.3 m. 

 
Figure 3. Histograms of SWH matchups at interval of 0.3 m. SWH ranges from 0 to 7 m: (a) VV-
polarization; and (b) HH-polarization. 

Figure 3. Histograms of SWH matchups at interval of 0.3 m. SWH ranges from 0 to 7 m:
(a) VV-polarization; and (b) HH-polarization.



Remote Sens. 2017, 9, 711 5 of 14

3. Development of Empirical Algorithm for Wave Retrieval at X-Band

3.1. Existing X-Band SAR Wind and Wave Algorithms

The wind retrieval from SAR is a matured technology. The initial X-band GMF, XMOD1, simply
related VV-polarization X-band radar normalized radar cross section (NRCS) from TS-X/TD-X images
to wind speed in a pre-launch study [1]. Then, similar to the development of C-band GMF CMOD5 [33]
that was derived from ERS-1 SAR images and ECMWF reanalysis wind data, XMOD2 has been
exploited in [4] by using collocated VV-polarization TS-X/TD-X images and National Data Buoy
Center (NDBC) buoy measurements and it was found that a 1.44 m/s RMSE of wind speed was
achieved against NOAA in situ buoys. Besides, another X-band GMF, called SIRX-MOD, was proposed
in [3] by retuning the coefficients in the C-band GMF CMOD-IFR2 [34] with the VV-polarization
Spaceborne Imaging Radar (SIR) X-band SAR NRCS data and ECMWF reanalysis wind data. XMOD2
and SIRX-MOD take the general form of:

σ0 = B0(1 + B 1cosφ + B2 cos 2φ) (1)

where σ0 is the NRCS in linear unit, and φ represents the angle between the radar look direction
and the wind direction. The coefficients B0, B1 and B2 are functions of the radar incidence angle θ

and sea surface wind speed U10 at 10 m height above sea surface. Figure 4 shows the XMOD2 and
SIRX-MOD curves at θ of 30◦ and φ of 45◦, showing X-band NRCS is linearly related to wind speed.
This behavior is consistent with the observations of microwave backscattering signatures of the ocean
at X-band during the experiment using an airborne microwave scatterometer-radiometer system [35].
As for wind retrieval from HH-polarization TS-X/TD-X image, polarization ratio (PR) model is used
to convert NRCS values from VV to HH. X-band PR (XPR) models for TS-X/TD-X are given for [2,5].
It was reported in [5] that the comparison of wind speed by using the combination method, that is
XMOD2 together with XPR2, shows a RMSE of 1.79 m/s against winds measured by NOAA buoys.
However, these algorithms are only valid for wind speeds up to 25 m/s, because they are exploited
through low-to-moderate wind speeds.

Remote Sens. 2017, 9, 711  5 of 14 

 

3. Development of Empirical Algorithm for Wave Retrieval at X-Band  

3.1. Existing X-Band SAR Wind and Wave Algorithms 

The wind retrieval from SAR is a matured technology. The initial X-band GMF, XMOD1, simply 
related VV-polarization X-band radar normalized radar cross section (NRCS) from TS-X/TD-X 
images to wind speed in a pre-launch study [1]. Then, similar to the development of C-band GMF 
CMOD5 [33] that was derived from ERS-1 SAR images and ECMWF reanalysis wind data, XMOD2 
has been exploited in [4] by using collocated VV-polarization TS-X/TD-X images and National Data 
Buoy Center (NDBC) buoy measurements and it was found that a 1.44 m/s RMSE of wind speed was 
achieved against NOAA in situ buoys. Besides, another X-band GMF, called SIRX-MOD, was 
proposed in [3] by retuning the coefficients in the C-band GMF CMOD-IFR2 [34] with the VV-
polarization Spaceborne Imaging Radar (SIR) X-band SAR NRCS data and ECMWF reanalysis wind 
data. XMOD2 and SIRX-MOD take the general form of: σ0	= B0(1 + B1cosφ + B2cos2φ) (1) 

where σ0	is the NRCS in linear unit, and φ represents the angle between the radar look direction 
and the wind direction. The coefficients B0, B1	and B2	are functions of the radar incidence angle θ 
and sea surface wind speed U10 at 10 m height above sea surface. Figure 4 shows the XMOD2 and 
SIRX-MOD curves at θ of 30° and φ of 45°, showing X-band NRCS is linearly related to wind speed. 
This behavior is consistent with the observations of microwave backscattering signatures of the ocean 
at X-band during the experiment using an airborne microwave scatterometer-radiometer system [35]. 
As for wind retrieval from HH-polarization TS-X/TD-X image, polarization ratio (PR) model is used 
to convert NRCS values from VV to HH. X-band PR (XPR) models for TS-X/TD-X are given for [2,5]. 
It was reported in [5] that the comparison of wind speed by using the combination method, that is 
XMOD2 together with XPR2, shows a RMSE of 1.79 m/s against winds measured by NOAA buoys. 
However, these algorithms are only valid for wind speeds up to 25 m/s, because they are exploited 
through low-to-moderate wind speeds. 

 
Figure 4. The simulation of XMOD2 and SIRX-MOD at θ of 30° and φ of 45°. 

Based on SAR-derived wind speed, two wave retrieval algorithms, a theoretic-based PFSM [9] 
algorithm and an empirical XWAVE model [6], have been developed for TS-X/TD-X image. XWAVE 
takes the form of: 

Figure 4. The simulation of XMOD2 and SIRX-MOD at θ of 30◦ and φ of 45◦.

Based on SAR-derived wind speed, two wave retrieval algorithms, a theoretic-based PFSM [9]
algorithm and an empirical XWAVE model [6], have been developed for TS-X/TD-X image. XWAVE
takes the form of:
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Hs = A1
√

Es tan θ + A2U10 + A3 + A4 cosφ (2)

where Hs is the SWH, θ is the radar incidence angle, U10 is the wind speed at 10 m above
sea surface, φ is the wave peak direction relative to azimuth direction ranged from 0 to 90◦,
Es (=

∫ 2π
0

∫ kmax
kmin

S̄(k, θ)dkdθ) is the integrated value of the normalized SAR intensity spectrum
S̄(k, θ)in wavelength domain Lmin (= 2π/kmin) of 30 to Lmax (=2π/kmax) of 600 m, and the coefficients
A1 to A4 are the constants tuned by VV-polarization TS-X/TD-X images together with SWH from
DWD and NOAA buoys in [6,7]. XWAVE is conveniently applied for waves retrieval from TS-X/TD-X
images without transferring SAR intensity spectrum into wave spectrum. Although SAR-derived
wind speed from VV-polarization and HH-polarization TS-X/TD-X image has known accuracy at
within 2 m/s RMSE of wind speed [4,5], XWAVE is restrictedly used during operational application,
due to prior wind direction is necessary in the process of wind retrieval by using XMODs.

3.2. Empirical Algorithm for Wave Retrieval in Both VV- and HH-Polarization

X-band GMF XMOD2 and PR model XPR2 are valid for winds up to 25 m/s due to no available
higher winds in the tuning dataset. In this study, we develop an empirical wave retrieval algorithm by
replacing wind speed with NRCS in Equation (2). The purpose of this kind of development is that the
empirical algorithm can be conveniently implemented without calculating the sea surface wind speed.
The proposed empirical model takes the form:

Hs = C1
√

Es tan θ + C2σ
0+ C3 + C4 cosα (3)

where, α represents the peak direction relative to azimuth direction in a SAR spectrum instead of wave
peak direction φ in Equation (2) for convenient application. The collocated dataset, including ECMWF
SWH data and the three other variables derived from SAR intensity spectrum, is used for tuning the
coefficients C1 to C4 in VV-polarization and HH-polarization. The values of matrix C in Equation (3)
for VV-polarization and HH-polarization are shown in Tables 1 and 2, respectively.

The statistical analysis between the ECMWF reanalysis SWH and the simulated SWH by using
proposed algorithm is exhibited in Figure 5 for 10◦ of incidence angle bins between 20◦ and 50◦ and
1 m of SWH bins ranged from 0 to 7 m. The result shows the correlation is about 0.8. Under this
circumstance, it is indicated that the proposed algorithm is suitable for Hs retrieval from VV and HH
polarization TS-/TD-X image. However, it is necessary to figure out if the proposed algorithm relies
on good-quality power spectra of SAR image.

Table 1. Tuned coefficients in Equation (3) for VV-polarization.

C1 2.90

C2 3.31

C3 0.47

C4 0.58

Table 2. Tuned coefficients in Equation (3) for HH-polarization.

C1 2.11

C2 2.21

C3 0.91

C4 0.64
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4. Validation

4.1. Validation Against Buoys

As a case study, the image of HH-polarization TS-X image in StripMap mode acquired at 16:19
UTC on 1 February 2012 at 13:59 UTC is shown in Figure 6, which covers the NOAA in situ buoy (ID:
46047). A sub-scene of 2048 × 2048 pixels with a 1.25 × 1.25 pixel size has been extracted from TS-X
image, which covers the location of NDBC buoy. The sub-scene is normalized and then the sub-scene
is divided into 2 × 2 small scenes. The corresponding four two-dimensional SAR spectra are calculated
by using the two-dimensional Fast Fourier Transform (FFT-2) method. The smooth two-dimensional
spectrum, which is obtained by averaging the four two-dimensional SAR spectra, is used here.

The image of sub-scene and the corresponding two-dimensional wave spectrum in term of length
λ, is shown in Figure 7a,b. The SAR-derived SWH in area A centered at the buoy location is 2.01 m
and the buoy-measured SWH is 2.48 m. As for this case study, the difference between retrieve SWH
and observed SWH is 0.47 m.

We apply the X-band wave retrieval algorithm to extract SWH values from 24 VV-polarization
and 21 HH-polarization TS-X/TD-X images. In these SAR images, they also contain 30 NOAA buoy
locations. The information of SAR images and corresponding NDBC buoys is shown in Appendix A.
The SAR-derived wave information is matched up against co-located NOAA buoy measurements.

As shown in Figure 8, the RMSE of SWH is 0.5 m with a 27% scatter index (SI) for VV-polarization
images and the RMSE of SWH is 0.52 m with a 36% SI for HH-polarization images. The stander
deviation (STD) of SWH is 0.5 m between retrieval results from co-polarization TS-X/TD-X images and
buoy measurements. We found that SAR-derived SWH by using the proposed algorithm has a similar
accuracy to the analysis results by using the existing wave retrieval algorithms, which has a SWH
STD of around 0.5 m as validated against observations from moored buoys or altimeters [18,24,25].
Again, it should be noted that the proposed empirical XWAVE model can be directly applicable
without knowing the information on wind speed and PR model is not required as it is applied for
HH-polarization TS-X/TD-X image.



Remote Sens. 2017, 9, 711 8 of 14

Remote Sens. 2017, 9, 711  8 of 14 

 

 
Figure 6. The image of HH-polarization TS-X image in StripMap mode acquired at 16:19 UTC on 1 
February 2012, covering the NOAA in situ buoy (ID: 46047). 

 

Figure 7. (a) Intensity image of sub-scene covering the NOAA in situ buoy (ID: 46047); and (b) the 
two-dimensional SAR spectrum in term of length λ corresponding to the sub-scene. 

Figure 6. The image of HH-polarization TS-X image in StripMap mode acquired at 16:19 UTC on 1
February 2012, covering the NOAA in situ buoy (ID: 46047).

Remote Sens. 2017, 9, 711  8 of 14 

 

 
Figure 6. The image of HH-polarization TS-X image in StripMap mode acquired at 16:19 UTC on 1 
February 2012, covering the NOAA in situ buoy (ID: 46047). 

 

Figure 7. (a) Intensity image of sub-scene covering the NOAA in situ buoy (ID: 46047); and (b) the 
two-dimensional SAR spectrum in term of length λ corresponding to the sub-scene. 

Figure 7. (a) Intensity image of sub-scene covering the NOAA in situ buoy (ID: 46047); and (b) the
two-dimensional SAR spectrum in term of length λ corresponding to the sub-scene.



Remote Sens. 2017, 9, 711 9 of 14

Remote Sens. 2017, 9, 711  9 of 14 

 

 

Figure 8. SWH retrieval results from TS-X/TD-X images are compared with buoy measurements: (a) 
VV-polarization images; and (b) HH-polarization images. 

4.2. Application in Trpocial Cyclone 

Further, we also validate the algorithm for one TD-X image taken during tropical cyclone Sandy 
in 2012. SAR has the capacity of all-weather field monitoring, especially in tropical cyclones. Through 
several tropical cyclones captured by SAR, some achievements have been exhibited in [36–40], e.g., 
morphology of cyclones [36–38], hurricane-generated ocean swell refraction [39] and a new method 
of high wind speed retrieval [40]. The comparison of wind retrieval using VV-polarization C-band 
SAR backscattering in hurricanes was reported in [41]. The results show RMSE of wind speed is 6.2–
6.5 m/s against measurements from Stepped Frequency Microwave Radiometer (SFMR), due to 
winds encounter saturation problem as winds growing under tropical cyclone condition [30–31]. 
Therefore, SAR-derived wind speeds have a large deviation with reality in tropical cyclones. To 
eliminate this source of errors, we replaced the wind speed with the NRCS in the existing XWAVE 
formula in this study. The advantage of this development is that the application of proposed 
algorithm avoids using SAR-derived wind speed, which is not working at high winds.  

The multi-look ground range detected (MGD) VV-polarization TD-X SAR image in ScanSAR 
mode acquired over tropical cyclone Sandy at 22:49 UTC on 28 October 2012 is shown in Figure 9. 
The TD-X image has an 8.25 × 8.25 m pixel size in both azimuth and range directions and then it was 
divided into sub-scenes of 512 × 512 pixels, which correspond to a spatial coverage of about 4 × 4 km. 
The sub-scenes were processed to retrieve SWH by using the developed algorithm. However, about 
15% of sub-scenes are contaminated by the rain. These data were excluded in this study. 

There are no NOAA buoys within the TD-X image’s coverage. Therefore, we only perform the 
comparison against ECMWF results. The commonly used WaveWatch-III model output has a spatial 
resolution of 0.5° grid, which is too coarser than the ECMWF model results. Figure 10 shows that the 
SAR-derived SWH from the TD-X image in tropical cyclone Sandy and ECMWF reanalysis SWH at 
a 0.125° grid, in which the black rectangle represents the coverage of TD-X image. In particular, the 
time between the TD-X imaging time and ECMWF reanalysis SWH data is comparatively close, i.e. 
within 2 h. In general, the SAR-derived SWH is agreeable to the ECMWF reanalysis SWH data. Then 
the SAR-derived SWH points matched up closest to ECMWF grid points are selected. Figure 11 shows 
a 0.35 m RMSE of the SWH comparison. The unique ECMWF reanalysis SWH data were used for 
tuning and validating the proposed empirical algorithm, causing a better 0.3 m STD than a 0.5 m STD 
of SWH. Although ECMWF reanalysis SWH data deviate from reality, the statistical analysis of the 
case study still reveals the proposed empirical wave retrieval algorithm has a creditable performance 
under tropical cyclone condition.  

Figure 8. SWH retrieval results from TS-X/TD-X images are compared with buoy measurements:
(a) VV-polarization images; and (b) HH-polarization images.

4.2. Application in Trpocial Cyclone

Further, we also validate the algorithm for one TD-X image taken during tropical cyclone Sandy
in 2012. SAR has the capacity of all-weather field monitoring, especially in tropical cyclones. Through
several tropical cyclones captured by SAR, some achievements have been exhibited in [36–40], e.g.,
morphology of cyclones [36–38], hurricane-generated ocean swell refraction [39] and a new method
of high wind speed retrieval [40]. The comparison of wind retrieval using VV-polarization C-band
SAR backscattering in hurricanes was reported in [41]. The results show RMSE of wind speed is
6.2–6.5 m/s against measurements from Stepped Frequency Microwave Radiometer (SFMR), due
to winds encounter saturation problem as winds growing under tropical cyclone condition [30,31].
Therefore, SAR-derived wind speeds have a large deviation with reality in tropical cyclones. To
eliminate this source of errors, we replaced the wind speed with the NRCS in the existing XWAVE
formula in this study. The advantage of this development is that the application of proposed algorithm
avoids using SAR-derived wind speed, which is not working at high winds.

The multi-look ground range detected (MGD) VV-polarization TD-X SAR image in ScanSAR
mode acquired over tropical cyclone Sandy at 22:49 UTC on 28 October 2012 is shown in Figure 9.
The TD-X image has an 8.25 × 8.25 m pixel size in both azimuth and range directions and then it was
divided into sub-scenes of 512 × 512 pixels, which correspond to a spatial coverage of about 4 × 4 km.
The sub-scenes were processed to retrieve SWH by using the developed algorithm. However, about
15% of sub-scenes are contaminated by the rain. These data were excluded in this study.

There are no NOAA buoys within the TD-X image’s coverage. Therefore, we only perform the
comparison against ECMWF results. The commonly used WaveWatch-III model output has a spatial
resolution of 0.5◦ grid, which is too coarser than the ECMWF model results. Figure 10 shows that the
SAR-derived SWH from the TD-X image in tropical cyclone Sandy and ECMWF reanalysis SWH at
a 0.125◦ grid, in which the black rectangle represents the coverage of TD-X image. In particular, the
time between the TD-X imaging time and ECMWF reanalysis SWH data is comparatively close, i.e.
within 2 h. In general, the SAR-derived SWH is agreeable to the ECMWF reanalysis SWH data. Then
the SAR-derived SWH points matched up closest to ECMWF grid points are selected. Figure 11 shows
a 0.35 m RMSE of the SWH comparison. The unique ECMWF reanalysis SWH data were used for
tuning and validating the proposed empirical algorithm, causing a better 0.3 m STD than a 0.5 m STD
of SWH. Although ECMWF reanalysis SWH data deviate from reality, the statistical analysis of the
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case study still reveals the proposed empirical wave retrieval algorithm has a creditable performance
under tropical cyclone condition.
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5. Conclusions

XWAVE’s design was aimed to wave retrieval from VV-polarization TS-X/TD-X image, which
relies on SAR-derived wind speeds. Although several algorithms have been recently exploited for
wind retrieval from co-polarization TS-X/TD-X image, such as GMF SIRX-MOD [3], GMF XMOD2 [4]
and polarization ratio XPRs [2,5], these algorithms are only valid for wind speeds up to 25 m/s. When
XWAVE is applied for wave retrieval from HH-polarization TS-X/TD-X image, XPR has to be used for
converting NRCS in HH-polarization to NRCS in VV-polarization to retrieve wind speed. It is well
known that SAR NRCS has a strong relation with wind speed. This is true for C-band [33] and X-band
SAR [35]. In this study, we proposed an empirical algorithm by replacing NRCS instead of wind speed
in the existing XWAVE model. Therefore, this development benefits the operation of waves retrieval
from X-band SAR due to its application without using SAR-derived wind speeds.

In our work, 60 TS-X/TD-X images in VV-polarization and 60 TS-X/TD-X images in
HH-polarization were collected over whole seas. All these images were divided into numbers of
sub-scenes, which were collocated with ECMWF SWH data at a 0.125◦ grid. We have more than
one thousand matchups to tune the proposed empirical algorithm. An additional 24 images in
VV-polarization and 21 images in HH-polarization were implemented using the proposed empirical
algorithm and the retrieval results were validated against the observations from 30 NOAA in situ
buoys, showing a 0.5 STD of SWH. XWAVE needs convert NRCS in HH-polarization to NRCS in
VV-polarization by using XPRs and it relies on SAR-derived wind speed which has a deviation with
reality. The proposed algorithm directly works for both VV-polarization and HH-polarization without
using XPRs. The correlation between the ECMWF reanalysis SWH and the simulated SWH is about
0.8. Therefore, we think the proposed algorithm is suitable for wave retrieval from co-polarization
TS-X/TD-X image.

The validation of wind speed retrieved from TS-X/TD-X image using XMOD has not been
investigated yet under tropical cyclone condition. Therefore, the advantage of the proposed
empirical algorithm is that wind speed is no longer needed for wave retrieval in tropical cyclone.
One VV-polarization TD-X image in tropical cyclone Sandy in 2012 was used to confirm the applicability
of the proposed algorithm. Because no moored buoys were available in the TS-X coverage, and wave
data from WaveWatch-III model have a 0.5◦ grid, which is too coarse for validation, we use ECMWF
reanalysis SWH to preliminary evaluate the performance of the proposed algorithm. The comparison
between SAR-derived SWH and ECMWF reanalysis SWH data shows a 0.3 m STD of SWH meaning
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the proposed empirical algorithm also works under tropical cyclone condition. A new method of wind
retrieval in tropical cyclone was proposed in [40], in which wind speeds up to 65.4 m/s were retrieved
from the information on waves using the fetch-limited wind wave growth function. The validation
shows a good agreement with hurricane hunter measurements and there is no indication of saturation
problem in the wind retrieval. In the near future, we plan to validate the proposed algorithm through
more X-band SAR images in tropical cyclones, covering the moored buoys. Then winds can be retrieved
from X-band SAR image through SAR-derived SWH.
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Appendix A

Table A1. The information of TS-X/TD-X images and corresponding NDBC buoys used in our study.

Buoy
ID

TS-X/TD-X Acquisition
Time (YYYY-MM-DD)

Imaging
Mode

Buoy
ID

TS-X/TD-X Acquisition
Time (YYYY-MM-DD)

Imaging
Mode

46013 2008-02-22 02:08 StripMap 46011 2011-03-13 14:07 ScanSAR
46026 2008-03-02 14:15 StripMap 46054 2011-03-15 01:59 StripMap
46029 2009-03-19 02:02 ScanSAR 46050 2011-10-23 14:30 StripMap
41048 2009-05-13 22:31 StripMap 41047 2011-10-25 10:51 StripMap
46025 2009-06-10 01:50 ScanSAR 46050 2011-10-26 02:11 StripMap
46221 2009-07-19 01:42 ScanSAR 46229 2011-10-26 02:10 StripMap
46221 2009-09-12 01:42 ScanSAR 46015 2011-11-06 02:10 StripMap
46028 2010-04-08 01:59 ScanSAR 41047 2011-11-06 22:39 StripMap
46015 2010-06-13 02:01 ScanSAR 46015 2011-11-28 02:10 StripMap
46013 2010-07-05 02:00 ScanSAR 46050 2011-12-04 02:02 StripMap
46029 2010-07-05 02:02 StripMap 46015 2011-12-04 02:01 StripMap
42036 2010-07-06 11:42 StripMap 41043 2012-01-23 22:20 StripMap
46028 2010-07-16 01:59 StripMap 46047 2012-02-01 13:59 StripMap
46011 2010-11-12 14:07 StripMap 51000 2012-02-26 16:19 StripMap
46022 2010-11-16 14:31 StripMap 46222 2012-03-27 13:59 StripMap
46011 2010-11-17 14:15 StripMap 46011 2012-05-23 01:51 StripMap
44008 2010-11-20 22:25 StripMap 46025 2013-02-03 14:07 ScanSAR
51000 2010-12-13 16:19 ScanSAR 41048 2013-02-05 22:32 StripMap
46053 2010-12-15 14:07 ScanSAR 41002 2013-04-04 11:07 ScanSAR
46012 2010-12-17 02:00 ScanSAR 46011 2013-06-28 01:59 ScanSAR
51000 2010-12-20 04:14 ScanSAR 46053 2013-09-22 14:07 ScanSAR
51000 2010-12-24 16:19 ScanSAR 52200 2015-04-13 08:22 StripMap
46050 2011-03-04 02:02 ScanSAR
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