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Abstract: Reduction in channel capacity can trigger an increase in flood hazard over time. It represents
a geomorphic driver that competes against its hydrologic counterpart where streamflow decreases.
We show that this situation arose in the Guadalquivir River (Southern Spain) after impoundment.
We identify the physical parameters that raised flood hazard in the period 1997–2013 with respect to
past years 1910–1996 and quantify their effects by accounting for temporal trends in both streamflow
and channel capacity. First, we collect historical hydrological data to lengthen records of extreme
flooding events since 1910. Next, inundated areas and grade lines across a 70 km stretch of
up to 2 km wide floodplain are delimited from Landsat and TerraSAR-X satellite images of the
most recent floods (2009–2013). Flooded areas are also computed using standard two-dimensional
Saint-Venant equations. Simulated stages are verified locally and across the whole domain with
collected hydrological data and satellite images, respectively. The thoughtful analysis of flooding
and geomorphic dynamics over multi-decadal timescales illustrates that non-stationary channel
adaptation to river impoundment decreased channel capacity and increased flood hazard. Previous
to channel squeezing and pre-vegetation encroachment, river discharges as high as 1450 m3·s−1 (the
year 1924) were required to inundate the same areas as the 790 m3·s−1 streamflow for recent floods
(the year 2010). We conclude that future projections of one-in-a-century river floods need to include
geomorphic drivers as they compete with the reduction of peak discharges under the current climate
change scenario.

Keywords: Guadalquivir River; flood; Landsat; paleohydrology; backwater effect; reservoir sedimentation;
climate change

1. Introduction

The present work aims to analyse the relationship between reduction in channel capacity and
increase in flood hazard in one of the most affected rivers by climate change in Europe, i.e., the
regulated Guadalquivir River in Southern Spain. The analysis of past changes in flood-prone areas and
stage-discharge curve in a well-gauged river since the year 1910 allows us to show that non-stationary
channel adaptation to anthropogenic forcing (e.g., river impoundment) is of paramount importance in
long-term projections of flood risk. In fact, the unexpected rise in inundated areas in the Upper River
Basin during extreme rainfall events in 1997–2013 [1,2] contrast with both observed and projected
trends of decrease in precipitation and streamflow [3,4].

A pioneering study across the United States [5] highlights the increase in flood frequency because
of reduction in channel capacity. Regional transformation of stream valleys had occurred in North
America, from widespread aggradation (base-level rise) upstream of dams for several kilometres as
a result of damming and backwater effects [6]. More recent research corroborates the relevance of
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the hydrogeological component in flood risk analysis over multi-decadal timescales with respect to
the climate counterpart [7]. The dominant component in the long-term projection of flood risk is
routinely assumed to be climate, which determines the probability of extreme hydrological events
and streamflow [4,5]. Saint-Venant equations or simplified versions of shallow water equations are
subsequently employed to route projected water discharges through the main channel and floodplain
assuming a non-erodible bed [8]. In fact, the preferred method of flood hazard mapping in the
application of the Flood Directive 2007/60/EC in Europe adopts the two-dimensional hydraulic
modelling [9,10]. Geomorphic processes [11] and anthropogenic alterations of the topography [12]
that can both mediate and increase the impacts of extreme events and backwater effects, respectively,
are usually neglected.

Climate change studies report on a decrease of observed trends in annual precipitation [13]
and an increase in projected changes in heavy daily precipitation events in Southern Spain [3,4].
Less precipitation but more concentrated in heavy rainfall events have developed, with annual
precipitation and streamflow reduced by 20% [14]. Floods might be less probable in this situation
because of the obvious reason that lower river discharges might have induced shallower flows.
Surprisingly, exceptional floods with peak discharges of approximately 2000 m3·s−1 occurred in the
Upper Guadalquivir Basin between the years 2009 and 2013 and provoked about 150 M€ insured
losses. Similar water discharges during previous wet periods (i.e., 1920–1930 and 1960–1970) did not
cause such damage.

To better understand changes in flood hazard over time, we lengthen flood records of rare
and extreme fluvial events by combining the following two approaches. First, historical floods are
reconstructed using a wide collection of hydrological data [1,15], including lengthy gauge records,
paleoflood signatures [16] and documentary evidence [17] of extreme events. Second, satellite imagery
and aerial photography during peak flow are incorporated to observe the dynamics of modern
floods [18,19]. Combining them with post-event orthophotos and LiDAR (Light Detection and Ranging)
elevations, grade lines can be inferred [20]. Paleohydrology is also applied to modern floods, allowing
us to compare the accuracy of different approaches.

Lastly, we gain insight into flood dynamics using Computational Fluid Dynamics (CFD).
Numerical simulations may account for human-made hydraulic structures (in particular, dams) and
geomorphic processes (i.e., reservoir sedimentation, channel infilling and vegetation encroachment).
Hence, following our previous works [1,21], simulated flooding areas are computed using the
open-source software DassFlow-Hydro 2.0 [22]. The use of remote sensing helps to verify the
hydraulic reconstruction of modern floods across a lengthy 70 km stretch of up to 2 km wide
floodplain, while paleohydrological data benchmark local points of interest. Note that the comparison
of paleohydrological records, remote sensing data and hydraulic modelling are not part of standard
risk analysis, but are an original method of study proposed in this paper. Furthermore, the combination
of the three methods serves to identify hydrogeological drivers of flood hazard.

The paper is organised as follows. Section 2 presents a brief description of the study site and
recaps material and methods (some of them used in our earlier publications [1,21,23]). Section 3
presents a detailed study of modern floods by combining remote sensing data based on satellite images
and helicopter flood photography with model simulations. Section 4 discusses the relation between
the observed increase in flood impacts and the decrease in channel capacity at flood stage over time in
the Guadalquivir River. Finally, Section 5 outlines our conclusions.

2. Materials and Methods

2.1. Study Site

The field area is situated along a stretch of the Guadalquivir Valley in Southern Spain, upstream
of the border of the provinces of Jaén and Córdoba (Figure 1). The fluvial regime is typically
Mediterranean, showing a summer drought period with minimum water levels and highest values
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in winter and spring. The complex topography of the surrounding landscapes, the large size of the
drainage area (19,546 km2) and the different climate influences of the Mediterranean Sea and the
Atlantic Ocean favour the occurrence of heavy precipitation events and floods [24]. Indeed, flooding is
the most damaging type of natural disaster in this area with economic losses per province ranging
between 200 × 106 and 1200 × 106 € [25].

Remote Sens. 2017, 9, x FOR PEER REVIEW  3 of 23 

 

is the most damaging type of natural disaster in this area with economic losses per province ranging 
between 200 × 106 and 1200 × 106 € [25].  

 

Figure 1. Study area along the Guadalquivir River including the inundated area (light blue) on 24 
February 2010 for Q = 1950 m3·s−1 at Marmolejo dam (flow from right to left). Urban areas at risk and 
hydropower stations are highlighted in red and yellow, respectively. Aerial photography shows a 
small portion of flooded areas in Llanos del Sotillo. Our earlier work [1] presents a detailed analysis 
of the flood dynamics in the confined valley of 6 km length downstream of Marmolejo dam. 

The selected river reach is of 70 km length and 170 m bankfull width. The river flows across two 
confined valleys at the inflow and outflow boundaries. Between the confined valleys, 45 km of 
meanders with 5–6 m bankfull depth were sculpted in the lower sand-mud terrace. The incised 
meandering channel formed unpaired terraces across its floodplain, intensively used by the human 
activity. Several farms and villages, one town (i.e., Villanueva de la Reina) and one city (i.e., 
Andujar) are vulnerable to floods, as depicted in Figure 1. Indeed, characteristic flow depths during 
large floods are larger than 6 m in the meandering floodplain and 10 m in the confined valleys [1]. 
Inundated areas in the meandering reach, where urban areas and irrigated crops are usually 
submerged, are about 2 km wide during exceptional hydrological events.  

The mean bed slope in the meandering stretch is 0.072%, lower than the original value of 0.12% 
for a straight channel configuration. The adaptation of bed slope to downstream valley slope 
(0.076%) indicates the existence of a downstream hydraulic control of meander dynamics by the 
confined valley in Marmolejo [26]. The bed substrate is made of clasts and rounded coarse gravels 
with grain diameters in the range of 6–40 cm except in the downstream valley, where slate outcrop is 
exposed if transport capacity exceeds sediment supply. Meanders are stable as they did not migrate 
even during the past wet periods (1920–1930 and 1960–1970) when the peak river discharges reached 
values between 1400 and 3000 m3·s−1 [1]. Appendix A gives stable meander dimensions.  

Figure 1. Study area along the Guadalquivir River including the inundated area (light blue) on
24 February 2010 for Q = 1950 m3·s−1 at Marmolejo dam (flow from right to left). Urban areas at risk
and hydropower stations are highlighted in red and yellow, respectively. Aerial photography shows a
small portion of flooded areas in Llanos del Sotillo. Our earlier work [1] presents a detailed analysis of
the flood dynamics in the confined valley of 6 km length downstream of Marmolejo dam.

The selected river reach is of 70 km length and 170 m bankfull width. The river flows across
two confined valleys at the inflow and outflow boundaries. Between the confined valleys, 45 km
of meanders with 5–6 m bankfull depth were sculpted in the lower sand-mud terrace. The incised
meandering channel formed unpaired terraces across its floodplain, intensively used by the human
activity. Several farms and villages, one town (i.e., Villanueva de la Reina) and one city (i.e., Andujar)
are vulnerable to floods, as depicted in Figure 1. Indeed, characteristic flow depths during large floods
are larger than 6 m in the meandering floodplain and 10 m in the confined valleys [1]. Inundated areas
in the meandering reach, where urban areas and irrigated crops are usually submerged, are about
2 km wide during exceptional hydrological events.

The mean bed slope in the meandering stretch is 0.072%, lower than the original value of 0.12%
for a straight channel configuration. The adaptation of bed slope to downstream valley slope (0.076%)
indicates the existence of a downstream hydraulic control of meander dynamics by the confined
valley in Marmolejo [26]. The bed substrate is made of clasts and rounded coarse gravels with grain
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diameters in the range of 6–40 cm except in the downstream valley, where slate outcrop is exposed
if transport capacity exceeds sediment supply. Meanders are stable as they did not migrate even
during the past wet periods (1920–1930 and 1960–1970) when the peak river discharges reached values
between 1400 and 3000 m3·s−1 [1]. Appendix A gives stable meander dimensions.

To conclude, it is worth noting the presence of four dams distributed along the studied river reach
(Figure 1). As we shall see, they play a key role in the dynamics of floods. The four hydropower stations
referred to as Mengíbar, San Rafael, Valtodano and Marmolejo dams work since 1916, 1912, 1919 and
1910, and have maximum heights of 12, 5, 6 and 20 m, respectively. Mengibar dam is characterised by
adjustable floodgates that prevent reservoir sedimentation. Conversely, Marmolejo dam uses tainter
gates and spillways elevated 12 m above the outlet channel. The absence of bottom withdrawal
spillways in Marmolejo dam provoked a 70% silting degree of the reservoir and the colonisation of
mud by riparian vegetation [1]. In fact, the tail of the silted-up reservoir extends 15 km upstream of
Marmolejo dam, up to the Roman Bridge of Andújar (see Section 3).

2.2. Gauging Records, Documentary, Imagery, Sedimentary and Botanical High Watermarks

Here, we adopt the same approach as in previous publication. As methods have been detailed
previously and at length in [1], we will not dwell in depth on this issue. However, a summary
explanation is needed.

Systematic measurements of river discharge and flow depth at hydropower and gauge stations
are publicly available in Spain [27,28]. The earliest record dates back to 1910 at Marmolejo dam.
The selected study site includes two additional hydropower stations with gauged data, namely:
Mengíbar and Valtodano. Rare and extreme floods typically prevented in situ measurement of peak
water discharge at these locations because stages were deep enough to overtop stations vigorously [16].
In fact, overtopping of station happened during several flood episodes (e.g., the 1924, 1963 and 2010).
To lengthen flood records of such rare and extreme fluvial events, we used documentary information
from the National Database of Historical Floods [29] (freely accessible on-line [30]).

Furthermore, we compiled additional records based on in situ photography of floods
(e.g., Figure 1). Aerial photography acquired from a helicopter by the Civil Protection Services
in Andalusia are available on 23 and 24 February 2010 between 15:00 and 16:00 and 10:00 and 11:00,
respectively. It is worth noting that this is an accurate source of information regarding the most
catastrophic flood event because it captured the inundation at peak flow. Upstream of the meandering
floodplain and downstream of Andújar city the peak water discharge achieved 1070 and 1928 m3·s−1

(Table 1), respectively. Using these images, or combining them with Landsat/TerraSAR-X satellite
images, we delimited the inundation extent shown in Figure 1 that serves to verify the numerical
model results in Section 3. Additionally, a catalogue of imagery (KMZ format) containing flooded
areas on 8 December 2010 is also available.

Table 1. Peak river discharges at Mengíbar (inlet) and Marmolejo (outlet) dams in February 2010,
December 2010 and April 2013 floods.

Event Peak Flow

No. Location Date and Time Q Local (m3·s−1)

1 Inlet 23 February 2010 18:00 1070
1 Outlet 24 February 2010 11:00 1928
2 Inlet 08 December 2010 09:00 648
2 Outlet 09 December 2010 09:00 1433
3 Inlet 02 April 2013 03:00 671
3 Outlet 02 April 2013 16:00 1378

Historical cartography [31,32] and sequence of orthophotos [33] depict the evolution of the channel
planform since 1883 and 1956, respectively. Historical maps are available in 1900, 1924, 1938 and 1989
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across the study area [32]. In addition, local maps at specific locations subject to water management
exist in 1879, 1883, 1889, 1902, 1918 and 1940 [31]. Orthophotos in the Upper Guadalquivir Basin
correspond with the years 1945, 1956, 1977, 1984, 1997, 2001, 2004, 2007, 2009, 2011 and 2013 [33].
Combining historical cartography and orthophotos, we were able to identify the meander with the
largest migration rate as well as the most aggraded straight channel. Furthermore, the orthophoto of
the year 2013 was particularly useful because it depicts the most elevated slackwater deposits along
the riversides after the most recent flood (April 2013), which was of similar magnitude than December
2010 event (see Table 1). It allowed the identification of high water marks and paleostage indicators
(HWM-PSIs) and the delimitation of the inundated area in the confined valley setting. As a matter
of fact, the 0.5 m spatial resolution of the 2013 post-event orthophoto was much better than the 30 m
resolution of TerraSAR-X and Landsat images. Satellite images could not be used in the upstream and
downstream confined valleys of 150–200 m bankfull width, as explained in Section 3.3.

Lastly, post-event fieldworks were conducted between October 2015 and April 2017 to survey
high watermarks from historical images, shoreline elevation of modern floods from aerial photography,
mud lines on bridge piers, overbank flood-deposited sediments and botanical records (e.g., scars on
trunks and woody debris). We employed a modern Leica Zeno 20 Global Positioning System (GPS)
combined with laser Leica DISTOTM to locate inaccessible stage indicators. Subsequently, correlating
the date and time of flood record with inferred flood stage and river discharge yield the rating curve.

2.3. Satellite Imagery: Landsat-5 and TerraSAR-X

Landsat-5 Thematic Mapper (TM) image of flooding on 24 February and 9 December 2010, at
peak streamflows in Marmolejo dam of 1928 and 1412 m3·s−1, respectively, were downloaded from the
USGS through EarthExplorerTM at WRS-2 Path/Row 200/34 (Table 2). We acquired the level 1 terrain
(L1T) corrected product that is radiometrically and geometrically processed and includes correction
for relief displacement [18,34]. Subsequently, these images were processed with ArcMap 10.3 (Esri:
Redlands, CA, USA), using the 5-4-3 (SWIR, NIR, Red) band combination that permits to highlight
the water surfaces. The length of the spatial extent that Landsat images partially wreathe is given in
Table 2.

Table 2. The Landsat and TerraSAR-X imageries used in this study.

River
Reach

Event The Available Satellite Images

No. Source Date and Time Q Outlet
(m3·s−1)

Q Inlet
(m3·s−1)

10–59 km 1 Landsat 24 February 2010 11:40 1882 1024
30–70 km 1 TerraSAR-X 05 March 2010 18:06 653 321
0–52 km 2 Landsat 09 December 2010 11:39 1412 350
0–70 km 2 TerraSAR-X 09 December 2010 1095 309

In addition, TerraSAR-X radar satellite images were used to identify inundated areas in non-visible
regions covered by clouds in Landsat due to spectral behaviour (Table 2). Such data were acquired
and processed by the local government of Andalusia and is available through REDIAM [33]. Detailed
features of TerraSAR-X image are as follows: 29.5◦–32.4◦ incidence angle, StripMap (50 × 30 km;
3 m) image mode, HH polarisation, MGD-ORISAR 2 m product type and geometrically optimised
resolution. In this process, the images were geometrically and radiometrically optimised with the
object of extracting the flood mask. This extraction was based on the characteristic spectral signature
of the water sheet over terrestrial zones that allow identifying with accuracy the margins of the
same. Taking into account that the characteristic spatial resolution of scenes was 30 m, with mean
geodetic accuracy lower than one-quarter of a pixel, flooded areas in the 45 km stretch of up to
2 km wide meandering floodplain could be readily mapped. Remote sensing derived water stages
were obtained on the observed shorelines from post-event LiDAR elevations [35] (spatial resolution
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≤1.4 m). We located the observation points where terrain slope vanishes. In doing so, root-mean-square
(RMS) and maximum errors in inferred stage should approach LiDAR errors lower than 0.2 m and
0.4 m, respectively.

By comparing the river discharges of the satellite images (Table 2) and the peak streamflows
at the inlet and outlet river reaches (Table 1), we conclude that available remotely sensed images
capture the peak flood event in some sub-region but not in the entire domain. Hence, we selected spot
locations at the optimal region-growing output to infer image-based water levels wherever appropriate.
We integrated water levels from the satellite images with flood model via validation. Furthermore,
the comparison of remote sensing stage with the rest of evidence serves to show the accuracy of
this technique.

2.4. Two-Dimensional Shallow Water Numerical Simulation

Following our previous works [1,21,23], the 2D unsteady shallow-water model implemented in
the open-source code Dassflow-Hydro 2.0 [22] was used to simulate flooding areas, maps of water
flow depth and two-dimensional velocity vectors. It is the preferred method of flood hazard mapping
in the application of the Flood Directive 2007/60/EC in Europe [9,10]. Anthropogenic alterations of
the topography, backwater effects, hydraulic jumps, backflood of tributary and wet/dry fronts can be
computed with success using this approach [12].

The extent of the computational domain was chosen from Mengibar dam (inlet) to the floodplain
6 km downstream of Marmolejo dam (outlet) shown in Figure 1. In doing so, we avoided the
influence of the boundary conditions on the numerical results at the meandering river reach [36].
The computational mesh was obtained by patching a 5 m resolution digital elevation model [35] with
the channel and reservoir bathymetry (obtained from SONAR measurements) and the dam/spillways
geometry (measured in situ with the Zeno 20 GPS + Leica DISTOTM S910, Heerbrug, St. Gallen,
Switzerland). We set the cell size and their distribution in the computational grid to ensure the mesh
of the channel, reservoirs, dams and spillway piers replicate reality.

The cell size of the computational mesh was thinner than 1 m near hydraulic structures. Far from
infrastructures, the computational grid was coarser with characteristic edge lengths of 5 m in the
channel and 10 m in the floodplain. Consequently, a minimum of 30 cells was uniformly distributed
along the bankfull channel cross section of 150 m characteristic width, 150 cells defined the 1.5 km
wide cross section of an inundated meander, and about 200 cells were used in the tainter gates over the
spillways of Marmolejo dam. These spatial resolutions led to mesh with 2.5 million triangular cells.
The model captures backwater effects intrinsically in river flows through sudden channel contractions
and over-elevated spillways without needing to prescribe internal boundary conditions thanks to
the trustworthy geometry of the computational mesh. Furthermore, the use of the river bathymetry
allowed us to account for the base-level rise in a severely aggraded river stretch.

We set Manning’s roughness coefficient in the 2D flood model to 0.04, 0.06, 0.12 and 0.26 s·m−1/3 in
arable crops, the channel, sparse and dense forest corresponding to a depth of flow reaching branches,
respectively [37]. Numerical simulations run without parameter tuning. We addressed the accuracy
of the numerical results by comparing the simulated stage with helicopter image-based water levels,
remote sensing data, HWM-PSIs and systematic gauge records at peak flow (Section 3).

We forced a steady state regime in the model by setting the peak streamflow as inflow boundary
condition both at the main river and regulated tributaries. Hourly-average discharges measured in
the main channel (Mengíbar and Marmolejo dams) as well as in the Rumblar and Jándula tributaries
(Zocueca and Encinarejo dams, respectively) served to check the validity of the steady-state hypothesis
at peak flow. Figure 2 shows the unsteady hydrograph in these gauge stations. Assuming a
quasi-steady regime and using the continuity equation of the water phase, we evaluated the water
discharge at the outlet as the sum of the inflow contributions (blue line in Figure 2). The computed
outflow discharge was 1899 m3·s−1 while the measured value was 1928 m3·s−1. Thus, the relative
error was 1.8%. This small difference implies that peaks in the tributaries occurred nearly at the
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same time/day as in the outlet boundary location of the main channel. Taking into account that the
flow regime in the Guadalquivir River is quasi-steady during floods, the numerical modelling was
notoriously simplified. The numerical simulation was run until the flood wave inundated the whole
channel, attaining a steady state at late time.
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3. Results

3.1. Maximum Stage Profile in Modern Floods

To visualise the spatial dynamics of the flood wave and address the accuracy of the model
prediction in each sub-region, Figure 3 shows bed elevation, simulated and measured water levels
against distance to Mengíbar dam at peak flow on February 2010. The presentation of model results is
based only on flood stage (this section) and inundation extent (forthcoming sections) because of the
obvious reason that satellite and helicopter imagery, among other evidence, do not provide values of
flow velocity vectors, though numerical simulation does.

Along the first 45 km, the flow depth was quasi-uniform, and the water surface profile was nearly
parallel to the thalweg profile. This sub-region comprises the inlet confined valley, including the first
two dams (i.e., Mengíbar and San Rafael), and a large portion of the meandering river reach crossing
the town (i.e., Villanueva de la Reina) and the third dam (i.e., Valtodano). The flood overtopped the
second and the third dams (i.e., San Rafael and Valtodano). Further downstream, at a distance of
47.5 km and near the city (Andújar), a nick point developed due to reservoir sedimentation, delta
formation and channel infilling. Aggradational wedges of fine-grained sediment inside Marmolejo
reservoir (47.5–64.3 km) were trapped after dam construction (in 1962) provoking a decrease in bed
slope from 0.072% (original value) to zero (present value). Note that the largest change in slope indeed
occurs between the city and the farms, where bed slope vanishes. The water surface profile also
reflects this phenomenon because the hydraulic grade line is horizontal between the city and the farms.
Next, the free surface slope suddenly increased when water entered into the outlet confined valley.
The bed slope also retrieved the basin slope there. Lastly, downstream of Marmolejo dam, the flow
was quasi-uniform similar to the inlet confined valley.

Overall, simulated stages agree with inferred values from Lansat 5 image (circles in Figure 3),
aerial photographs from a helicopter (squares) and stream gauges (diamonds). Interestingly, water
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levels from satellite and photography overlap each other, showing the accuracy of both methods. Next,
we detail the precise values of the stage shown in the graph.
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Table 3 shows the specific values of simulated water levels at carefully selected spot locations
with near flat topographic gradient, away from edge of buildings and with no or very short vegetation.
Root Mean Square Error (RMSE) in simulated altitude with respect to evidence is also given. Along the
outlet valley axis, simulation, in situ photography and HWM-PSI are in excellent agreement with
RMSE = 0.1 m. The inferred elevation from flood photograph coincides with the field evidence. Few
metres upstream, in the reservoir of Marmolejo dam, RMSE was evaluated with the systematic gauged
record and raised up to 0.5 m. In the farms, 6 km upstream of the dam, we obtain the same RMSE as in
the reservoir. Satellite images underpredict the maximum stage from helicopter photographs at peak
flow by 0.4 m at this location. The main sources of error in remote sensing data are the clouds affecting
Landsat images and the TerraSAR-X lag time of 9 days. Results in the village are similar. The existence
of a gauge station in the Roman Bridge of Andújar city allows us to evaluate with accuracy the model
prediction error nearby larger urban areas. There, the simulation overpredicts the water level only by
0.1 m. The use of photographs acquired from helicopter overpredicts the water elevation by 0.5 m.
We attribute this disparity to the accuracy of the LiDAR elevation data with RMS error in the range of
0.2–0.4 m in the inundated riparian forest where we infer the stage.

In the meandering floodplain, which encloses Valtodano dam and the town, RMSE between
simulated and satellite image-based water level is lower than 0.7 m. The agreement is even better
between simulation and in situ photography, with RMSE ≤ 0.2 m. Lastly, along the narrow, confined
valley at the inlet of the study site, satellite images could not be used. We adopted the gauged record as
true value to compute the error. On the one hand, imagery and HWM-PSI provides a similar elevation
which is 0.2 m higher than the true value. On the other hand, the numerical simulation underpredicts
by 0.7 m the stage. Regarding simulated flow depths, we found out maximum values deeper than
10 m at the inlet and outlet confined valleys, in agreement with gauged records. In the meandering
river reach, the flow was shallower and simulated flow depths typically varied in the range of 7–8 m.
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Table 3. Mean water level and RMSE in the numerical flood simulation using selected spot locations.
The data source used to evaluate RMSE correspond with the following order of confidence: gauge
station, in situ imagery, remote sensing data and PSI. All data are in metres.

Location Simulation Satellite Imagery Gauge PSI RMSE

Outlet Valley 185.6 - 185.7 - 185.7 0.1
Outlet Reservoir 190.9 - - 190.4 - 0.5

Farms 197.7 196.8 197.2 - - 0.5
Village 197.9 197.0 197.5 - - 0.4

City (Bridge) 198.9 - 199.3 198.8 - 0.1
City (Highway) 201.1 201.5 200.9 - - 0.2

Valtodano
[210.8, 206] [205.4, 210] - - - 0.6

206.3 - 206.2 - - 0.1

Town
[214.9, 221] [215, 219.5] - - - 0.7

215.8 - 216 - - 0.2
217.6 217 - - 217.7 0.6

Inlet Valley 237.5 - 238.2 238 238.2 0.5

3.2. Verification of Inundated Areas in a Meandering Floodplain

In this section, we evaluate the spatial accuracy of the model simulation in terms of inundation
extent by comparing with remote sensing data from Landsat on 24 February 2010 at 11:40. The observed
shoreline was corrected where clouds exist (white smudges in Figure 4a) using in situ photography of
the flood at 11:45. At this time, the river discharge was 1024 and 1882 m3·s−1 at the inlet and outlet of
the study site (Table 2), which approaches the peak value of 1070 and 1928 m3·s−1 (Table 1). Figure 4a
shows the original satellite image and the delimited inundation extent.

Figure 4b depicts the simulated elevation of the water surface (contour map) and the observed
wet perimeter (solid line in black). Simulated flooded areas overlap observed ones in the meanders
between the town and Valtodano dam, but some discrepancies appear due to the presence of islands
in the numerical simulation and the small overflooded area near Valtodano dam. Solid lines in blue
split the classified elevations into steps of 1 m depth. The shape of the isocontours is complex across
the area. This fact commonly characterises two-dimensional flows because in the simple case of
one-dimensional flows the isoelevations are simply perpendicular to the mean streamflow direction.

Scarce stage indicators exist in this region as a consequence of the intensive human activity that
destroyed most evidence in arable crops over the floodplain. Exceptional paleostage indicators were
identified in the meander with the highest sinuosity (Figure 4b). Modern floods (years 2009–2013)
provoked depositional PSIs as woody debris and slackwater deposits (Figure 4c,d). In addition,
channel-scale concave sculpted forms were found in the outer floodplain of the channel bend [38].
These puzzle erosional bedforms resemble plunge pools in loose granular material [39]. They are
found at the back of a 2.5 m height bump over the riverbank and made of depositional sequences
of laminated fine sand and dunes. Erosional forms lead us to think that the wake flow of the bump
developed whirlpool vortex and formed plunge pools during modern floods. The 217.7 m elevation of
field evidence corroborates the simulated water stage of 217.6 m (see Table 3).

Finally, we focus on the accuracy of the simulation regarding inundation extent (Table 4) as errors
in water levels has been already presented in Section 3.1 at the observation spots (Table 3).
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respectively. CSI equals 1 when simulated and observed areas coincide exactly, and equals 0 when 

Figure 4. (a) Flooded area derived based on Lansat 5 data and corrected with flood photographs on 24
February 2010; (b) Numerical flood simulation superposed on Lansat wet perimeter. Colours indicate
altitudes of water surface. Flow from right to left. The inundated town at the bottom is Villanueva de
Reina. Stage indicators correspond with Figure 3; (c) Photograph of the overtopped Valtodano dam
(see location in panel b); (d) An example of botanical HWM-PSI. Person 1.85 m tall provides scale.

To this end, we adopt the same quality index as proposed in the pioneering work by Bates and
De Ro [40], referred to as critical success index (CSI):
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CSI =
Aobs ∩ Amod
Aobs ∪ Amod

(1)

where Aobs and Amod represent the sets of pixels observed to be inundated and predicted as inundated,
respectively. CSI equals 1 when simulated and observed areas coincide exactly, and equals 0 when no
overlap exists. Table 4 shows a summary of results in the different river reaches where we applied this
method. In the meandering stretch, the CSI or F-statistic is 0.8. According to previous flood simulation
studies, there are a relatively small number of simulations with CSI > 0.7 [41,42]. Hence, we conclude
that the model simulated inundation extent is reasonably good with respect to the remote sensing data.

Table 4. Comparison of inundation extents from model simulation and remote sensing data.

River Reach Data Source Aobs (km2) Amod (km2) Aobs ∩ Amod CSI

Inlet valley Photography 0.580 0.528 0.461 0.81
Meandering stretch Satellite + photos 10.303 10.937 9.408 0.80

Farms-city floodplain Satellite + photos 16.279 15.761 14.516 0.83
Outlet valley Photography 1.911 1.941 1.755 0.84

3.3. Flood Maps in a Confined Valley Setting

In the confined valley downstream of Mengíbar dam, which represents the inlet river reach of
the study site, the maximum stage measured in the gauge station in February 2010, December 2010
and April 2013 were 237.7, 238.4 and 237.3 m for streamflows of 671, 1070 and 648 m3·s−1 (Figure 5a).
The corresponding bankfull width at the site (second bridge in Figure 5b) was 125, 139.2 and 118 m
and the flow depth achieved 9.7, 10.4 and 9.3 m, respectively. The bankfull width increased only by
18% (i.e., 21 m) when the water discharge grew from 650 to 1050 m3·s−1. Hence, the narrow channel
prevents from using the 30 m resolution satellite images in the verification stage of the simulation.
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Figure 5. (a) Rating curves at stream gauges (650 m downstream of Mengíbar dam); and (b) flooded
area downstream of Mengíbar dam on 8 December 2010 with the local river discharge Q = 650 m3·s−1

(flow from top to bottom). Gauge stations located on the second bridge.

Alternatively, we delimited the inundation extent from visible shorelines in helicopter
photographs on 24 February 2010 14:45 with 1024 m3·s−1. Another data source that is particularly
useful to verify the model in the confined valley is the high-water mark (e.g., the mud-line on bridge
pier), as it records nearly the same stage as the gauge (Table 3) with an error in flow depth of 2%
(i.e., 0.2 m). Furthermore, overbank flood-deposited sediments are visible in the April 2013 post-event
orthophoto along the riversides and over areas where velocity magnitude suddenly decreased.

The perimeter in red in Figure 6a represents fine slackwater deposits along the channel margin.
Three fully silted reservoirs located 45 km upstream favoured the high sediment supply because
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they could not retain sediments during the 2010–2013 floods and, consequently, much sediment was
supplied to the Guadalquivir River. The flood wave transported and deposited fine-grained sediments
that are widespread in the channel. Laterally-attached sandy siltlines in the natural channel bend (red
line) overlap with the simulated inundation extent (blue line). The observed water level from flood
photograph (black line) is in agreement with the simulation and sedimentological evidence in the
outer riverbank. The quality index of the simulated inundation extent is CSI = 0.81 (Table 4), which
supports our numerical results. Interestingly, the area enclosed by slackwater sediments (i.e., 0.218 km2)
represents the 47% of Aobs ∩ Amod and extends along the 80% length of the analysed stretch, showing
that paleohydrology can contribute to reconstruct modern floods in places where remote sensing data
are not accessible.
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The computed map of depth-averaged velocity magnitude (Figure 6b) indicates that laterally-attached
sandy siltlines emplaced from suspension occurred where flow boundaries reduced local velocities
relative to the mean channel velocity. The velocity magnitude downstream of the bridge was typically
in the range of 1.5–2 m·s−1 along the thalweg and increased up to 3–5 m·s−1 at the natural channel
bend and a flow contraction area. Slower flows with velocity below 1.5 m·s−1 occurred in the vegetated
island between the two bridges, the inner side of the bend and the top of the riverbanks, in agreement
with visible slackwater flood deposits. This phenomenon contributed to bar formation at natural
channel bend. Regarding the contours of water surface elevation, we found them aligned with the
cross section of the channel and perpendicular to the streamwise direction in this occasion (Figure 6c).
This pattern corresponds with a uni-directional flow. The surface slope vanishes between the bridges,
increases at the bend due to local head losses and retrieves the thalweg slope, as shown in Figure 3
with distances to the dam lower than 3.5 km.

Lastly, we briefly describe the main characteristics of the flood in the confined valley at the outlet
of the study site (Figure 7). We refer the reader to our earlier publication [1] for a detailed analysis
of available flood records and their good correlation with numerical results. In fact, CSI achieves the
value of 0.84, which represents a maximum on the rest of river reaches.
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Figure 7. Contours of water elevation from the numerical flood simulation (transparent colour) and
inundation perimeter derived based on helicopter flood photograph (black line) on 24 February 2010 at
the outlet confined valley crossing Marmolejo dam (red dot). Flow from right to the bottom.

When water enters into the valley, it feels the presence of Marmolejo dam. We observe that the
surface elevation decreases progressively from 198.5 to 195.5 m along the first 3 km. Then, in less
than 1.5 km, altitude suddenly decreases to 190.3 m in the flow over the spillways. Water sharply
falls at the foot of the dam, reaching an elevation of 186 m. Downstream of the dam, the natural river
flow is unaltered, and the water surface adopts the channel bottom slope. As it happens in the other



Remote Sens. 2017, 9, 727 14 of 23

confined valley, water levels of constant altitudes are perpendicular to the main flow direction and,
consequently, the flow is quasi-unidirectional.

The one-dimensional representation of the water level as a function of the streamwise distance,
recall Figure 3, makes easier the visualisation of the effects of Marmolejo dam on the flow behaviour.
The area in Figure 7 corresponds to the streamwise distance range of 60–70 km in Figure 3. There are
two factors increasing the water level upstream of dam: first, the 12 m high dam by itself; second, the
silted-up reservoir that increases the base level and decreases the channel bottom slope (0.06%) with
respect to the original valley slope (0.076%).

We verified the simulated stage with gauge data at the reservoir and foot of the dam at peak
flow in February 2010 flood (see Figure 8a). The simulated rating curve (dashed line) matches the
observed one with the peak river discharge Q = 1928 m3·s−1 and an elevation of 190.3 m. In addition,
the simulation predicts the 186 m observed stage with an absolute error of 0.2 m when Manning’s
roughness is 0.06 s·m−1/3. Consequently, the numerical simulation can reproduce with accuracy
the flow over the spillways, even in the presence of an over-elevation of 4.3 m between the stages
upstream and downstream of the dam. To quantify the over-elevation in the wide range of streamflow
Q ≤ 3000 m3·s−1, we conducted additional numerical simulations, as shown in Figure 8a. In practice,
the 12 m high Marmolejo dam heightens the water level by 6.9, 5.2, 4.3, 3.7 and 3.2 m for 1000, 1500,
2000, 2500 and 3000 m3·s−1. Unfortunately, such increases in flow depth propagate upstream when
the flow regime is subcritical, as it happens in our case.
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Figure 8. Measured and simulated rating curves at stream gauges: (a) reservoir and foot of Marmolejo
dam; and (b) Roman Bridge of Andújar city. Panel (a) includes a sensitivity study of the model results
downstream of Marmolejo dam with variations in the Manning’s roughness coefficient.

3.4. Backwater Effect Upstream of Dam and Silted-Up Reservoir

To benchmark the accuracy of the numerical simulation against systematic instrumental data for
river discharges provoking floods in the floodplains of Andújar city, Figure 8b depicts the simulated
elevation of the water surface as a function of the river discharge at the stream gauge below the Roman
bridge. The distance to Marmolejo dam is 15 km (see also the sketch in Figure 3). The observed
stage for 1400 ≤ Q ≤ 2000 m3·s−1 varies between 197.9 and 198.8 m, while the simulated values
are 198.2 and 198.5 m, respectively. Taking into account that the thalweg is 190.0 m, the measured
(computed) depths are 7.9 (8.2) and 8.8 (8.5) m. The agreement between simulated stage and gauged
record is good because absolute and relative errors are lower than 0.3 m and 3.8% for Q ≥ 1400 m3·s−1.
The experimental data show some hysteresis while the numerical simulation provides a one to one
relation between stage and discharge. However, differences are small during floods.

Several points emerge from the analysis of the inundated extent downstream of Andújar city
(Figure 9). We delimited the observed inundation extent as in Section 3.2. The model simulation extent
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is reasonably good with respect to the remote sensing data and achieves the quality index of CSI = 0.83
(Table 4). The width of the flooded area reaches a maximum of 2.2 km just behind the outlet confined
valley. This value doubles the 1 km flood-prone width in the meandering stretch (Figure 4). Second,
flood impacts are higher than expected from historical records. For instance, the National Database
of Historical Floods [29,30] establishes that the village and the city were inundated uniquely in the
previous years 1963 and 1945 with river discharges in the range of 2500–3000 m3·s−1. Taking into
account that the peak river discharge was 1928 m3·s−1 in February 2010, we conclude that flood risk
has increased over multi-decadal time scales in the Guadalquivir River.Remote Sens. 2017, 9, x FOR PEER REVIEW  15 of 23 
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Figure 9. Numerical flood simulation (coloured transparent contour) and flooded area derived based
on Landsat/TerraSAR-X/helicopter data (solid line in black) on 24 February 2010. The location of
Marmolejo dam and the stream gauge near Andújar city is also given. Flow from right to left.

Anthropogenic alterations of topography due to the construction of a 12 m high dam in the outlet
confined valley (i.e., Marmolejo dam) increased the impacts of extreme events due to backwater effects.
The direction of the flood wave in the southern floodplain was opposed to the direction of the flow
in the main channel due to the flow contraction regime when approaching the downstream confined
valley setting. We do not show the details of flow velocity for the sake of brevity. The over-elevation in
Marmolejo dam amplifies this effect (recall Figure 8a). This phenomenon is referred to as backwater
effect in the hydraulic literature and typically occurs at subcritical speeds in the presence of hydraulic
structures [12], as in the present case. Another contribution to increasing flood hazard is reservoir
sedimentation. Recall that Figure 3 depicts the tail of the silted-up reservoir reaching the Roman bridge
of Andújar. The aggradation and base-level rise extend upstream of the dam for 16.8 km, where the
water surface elevation suffers a similar effect (see stages along 47.5–64.3 km in Figure 3).

4. Discussion: Effects between Streamflow and Channel Capacity

4.1. Trend in Streamflow over Time

Figure 10a shows maximum annual river discharge values at the study site aiming to provide
an idea of the severity and frequency of flooding since the year 1910. Climatically, the first half of the
twentieth century registered periods of high flood recurrence (1910–1930) with discharges on the order
of 1000–2300 m3·s−1, but also of moderate events (1930–1950) lower than 1000 m3·s−1. Unusually
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high flood frequencies occurred in the period 1951–1980. The most catastrophic flood developed
in winter of 1963 with a peak water discharge as high as 2850 m3·s−1. Persistently drier conditions
with scarce hydrological events were observed between 1980 and 1996. In the 21st century, flood
frequency and magnitude decrease, with peak annual flow rates of approximately 1300–2000 m3·s−1

in the period 2009–2013. Since then, we are suffering a period of drought. Subsequently, the recurrence
intervals of maximum flood magnitudes were evaluated using the Bulletin 17B and Expected Moments
Algorithm procedures implemented in PeakFQ [43]. Figure 10b shows the exceedance probabilities
and return periods of both systematic and historical (high outliers) floods. Floods highlighted with
a green pentagram, and diamond symbols correspond with March 1924 and February 2010 extreme
events, respectively, and an associated return period of about 20 years. Rare hydrological events with
larger return periods occurred in 1960 (50 years) and 1963 (100 years).
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Figure 10. (a) Flood frequency distribution and relative magnitude of the Guadalquivir River floods at
Marmolejo dam (after [1]); and (b) flood frequency analysis of streamflow records using PeakFQ [43].
Estimates of flood magnitudes for several recurrence intervals (1–200 years) are also given.

It is worth proving that the observed decrease in peak streamflows in the post-impoundment era
(i.e., since approximately 1950) is due to less frequent precipitation in the Guadalquivir River Basin,
as established in climate change reports [3,4]. The climate component shows the decrease in time
of the annual precipitation across the Guadalquivir Basin [13,14]. Here, we adopt the standardised
precipitation index (SPI), which is based on a proper statistical distribution of the precipitation [44].
Originally, it was developed for drought detection. Later, it was used with success as a regional system
for climate risk monitoring and to detect the potential threat of possible flood events.

Figure 10a compares the peak annual streamflow and the 36 months SPI curve. Interestingly,
we got positive values of SPI during the periods of high flood recurrence commented beforehand.
The largest value of 3.01 occurs in the hydrological year 1963 when the largest flood occurred. Other
local maximums, with SPI values of 1.63, 1.57, 1.99 and 1.28, are well correlated with extreme floods in
1970, 1979, 1997 and 2010. Interestingly, reservoirs attenuated the hydrological event of 1996 because
of their nearly empty states after the drought period 1980–1996, when SPI reached −2.68 (values lower
than −1.65 correspond to extreme drought [45]). Unfortunately, all the reservoirs attained the top
water level in the rest of extreme rainfall events, and could not regulate the peak streamflow.

4.2. Effects of Vegetation Encroachment and Aggradation on Channel Capacity

The term channel capacity has two senses according with the existing literature: originally,
it represents the cross-sectional channel area at flood stage AFS [46,47]; a broader meaning refers
to the average cross-sectional discharge at flood stage QFS which is evaluated as the product of AFS
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and the cross-sectional average flow velocity VFS [5,48]. In the first case, the unique cause of changes in
channel capacity can be bed aggradation/degradation or channel narrowing/widening. In the second
case, channel capacity can be controlled not only by depth and width at flood stage but also bed slope
and boundary roughness (e.g., grain size and bank vegetation). Hence, we refer to channel capacity at
flood stage as the volume of flow that can be carried within the channel at flood stage QFS. To close the
concept, we define the flood stage as an established gauge height for a given location above which a
rise in water surface level begins to create a hazard [5]. We identified it with the bankfull stage from
the proto-floodplain (top of the point bar surface) that supports woody vegetation [49].

Widespread flood-level rise occurred all over the studied area after impoundment, which reflects a
change in channel capacity (denoted from now on by ∆QFS). In the confined valley setting, we inferred
the accumulated change in channel capacity from the rating curve at flood stage. In the inlet valley
(Figure 6), the accumulated reduction in channel capacity amounts to ∆QFS = 568 m3·s−1 since 1910
and represents the 56% of the original capacity QFS = 1010 m3·s−1 for a 8 m flood depth (see Figure 5a).
The major alteration process was the development of a shallow island in the middle of the channel.
It was colonized by non-flexible riparian vegetation (recall Figure 5b) that reduces the mean flow
velocity VFS. In the outlet valley (Figure 7), downstream of the dam, the influence of bank vegetation
on channel capacity was moderate (Figure 8a). Setting a flood depth of 7.2 m yields ∆QFS = 188 m3·s−1

for QFS = 1565 m3·s−1. In the floodplain downstream of Andújar city (Figure 9), the base-level rise
upstream of the silted-up reservoir exacerbated flooding in the period 2009–2013 with respect to the
middle of the twentieth century, but the lack of documentary records during the Spanish civil war and
the dictatorial regime prevented their analysis.

Alternatively, we followed the original approach by Fergus [47] and characterised ∆QFS in terms
of the change in cross-sectional channel area at flood stage ∆AFS. Table 5 summarises channel change
statistics in twenty cross profiles uniformly distributed from the city to the entrance of the outlet
valley with a distance of 400 m between each profile. In the river stretch between the city and the
confluence, the channel width (flow depth) at flood stage decreased from 121 (6.2) to 111 (4.3) m during
the study period. Downstream of the confluence, the decrease from 138 (9) to 100 and (4.2) m was
more pronounced than upstream. Hence, the mean cross-sectional channel area at flood stage AFS in
1900 was 1249 and 448 m2 in the river stretch upstream and downstream of the Guadalquivir-Jándula
river confluence. This makes a difference with respect to present days as the actual channel area in
each river reach is 448 and 506 m2, which amounts to the relative reduction in cross-sectional channel
area ∆AFS/AFS = 64% and 28%.

Table 5. Mean width, depth and channel capacity at flood stage in 1900 and 2013.

River Stretch
1900 2013

BFS (m) HFS (m) AFS (m2) BFS (m) HFS (m) AFS (m2)

City-confluence 121 6.2 711 111 4.3 506
Confluence-valley 138 9.0 1249 100 4.2 448

In the meandering floodplain (Figure 4), we proceeded to analyse the channel form, a procedure
that provides a context for interpretation of past changes in the fluvial environment (Appendix B).
We adopted the following two methods to quantify the original channel capacity in the early twentieth
century. First, Dury’s algebraic equation was selected from available equations in the paleohydrology
literature to estimate pre-impoundment channel capacity using geometrical data of the meanders
into the lowest sand-mud terrace [50]. Second, results from regime based equations by Yalin and da
Silva [51] linking the bankfull dimensions of the channel and the water discharge served not only to
estimate channel capacity pre-impoundment but also to account for changes in channel roughness due
to post-impoundment vegetation encroachment.
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Substituting the mean wavelength value given in Appendix A into Dury’s correlation (A1),
one obtains the pre-impoundment channel capacity QFS = 2023 m3·s−1 in the meandering setting.
Streamflows larger than 2000 m3·s−1 were required to overtop the river banks and inundate the current
floodplain in years previous to flow regulation. A similar result was obtained using equations by
Yalin and da Silva [51], who reviewed all the available regime-data before the year 1990 and correlated
the bankfull dimensions of the collected rivers and the river discharge. The main advantage of the
second approach is that it incorporates the dependency on the roughness coefficient explicitly. In
the situation of pre-vegetation encroachment, n = 0.035 s·m−1/3 [1]. Evaluating (A3) with the mean
thalweg slope S0 = 0.076%, the mean bankfull width B = 184 m and flow depth in the range of 4–5 m,
yields 1460 ≤ QFS ≤2118 m3·s−1. Note that the upper bound is in close agreement with Dury’s
solution QFS = 2023 m3·s−1 and the National Database of Historical Floods [29,30], which reported
flood episodes only in the years 1963 and 1945 with river discharges in the range of 2500–3000 m3·s−1.

In the current situation of channel infilling and vegetation encroachment, the mean Manning’s
roughness increases up to 0.06 s·m−1/3 (Figure 8a). Such an increase in roughness leads to an overall
reduction in channel capacity from 1460 to 852 m3·s−1 for the bankfull flow depth of 4 m. As a
matter of fact, inundations of the meandering stretch occurred during the years 2009–2013 at the water
discharges of 800–1070 m3·s−1, which is consistent with the prediction of the hydraulic model.

The unexpected increase in inundated areas in the Upper River Basin during extreme rainfall
events in 2010–2013 (Figures 4, 6, 7 and 9) contrasts with historical records of inundations before
river flow regulation and trends in both precipitation and streamflow during the twentieth century
(recall Figure 10). In the inlet valley of the study site, we found flows as deep as 12.3 m with a local
streamflow of, approximately, 2000 m3·s−1 in the inundation of the year 1963 (Figure 5a). The rest of
floods in the period 1912–2009 were less severe and exhibited flow depths lower than 10.6 m with local
river discharges smaller than 1577 m3·s−1 at the same location. Surprisingly, maximum stages in the
period 2010–2013 varied in the range of 9.7–10.4 m for streamflows in the range of 670–1024 m3·s−1.
Such flow depths are similar in magnitude than in 1924 when the river discharge achieved 1577 m3·s−1.
Furthermore, flow depths corresponding with a 670 m3·s−1 river discharge increased from 6.7–7.5 m
to 9.7 m over the studied period. In the outlet valley, the deepest historical flood developed a flow
depth of 8 m for 2300 m3·s−1 that nearly equals the stage of a modern flood with the lower discharge
of 1950 m3·s−1. Nonetheless, the observed increase in flood risk during modern floods is due to the
decrease in channel capacity post-impoundment.

4.3. Identification of Flood Driver at the Basin Scale

Land degradation processes in the catchment increased sediment yield and availability of fine
sediments (mostly, silt and clay). We processed and quantified soil losses across the drainage basin
using maps of soil use and vegetation cover between the years 1956, 1984 and 2007 [33]. Nearly half
of the area dedicated to olive groves in 2007 currently replaces old arable crops from 1956 (Table 6).
Specifically, land-use change since 1956 represents an increase (decrease) in olive groves (arable
crops) from 16 (30) to 28 (16) per cent of the drainage area. Theoretical estimates and experimental
measurements of mean annual soil loss rates by water erosion for arable crops and olive groves were
borrowed from the literature, which yields 3 t·ha−1·year−1 [52] and 60 t·ha−1·year−1 [53], respectively.
Scaling these factors by the corresponding areas in Table 6 yields an overall increase of 63% in the mean
annual budget of sediments supplied from the basin to the river that raises from 1680 to 2740 t·year−1

between the years 1956 and 2007.
The synergistic effect of increasing sediment supply and decreasing streamflow by flow regulation

and climate provoked a widespread aggradation (base-level rise) and reduced channel capacity over
time. In the second half of the twentieth century, extraordinary events of high flood recurrence
activated sediment transport and geomorphic processes. Dam heightening and exceptional floods
in the sixties induced reservoir sedimentation. Streamflow regulation and droughts in the period
1985–1997 favoured in-channel sediment storage. Furthermore, colonisation of sediment deposit by



Remote Sens. 2017, 9, 727 19 of 23

riparian vegetation led to abandonment channel and channel infilling. The channel width decreased at
flood stage. This situation prevails along the whole Guadalquivir River nowadays and explains the
increase in flood hazard observed in the flood episodes during the period 2009–2013.

Table 6. Evolution of soil use in the Guadalquivir basin draining the study area between the years 1956,
1984 and 2007.

1956 1984 2007

Area (km2) Percent Area (km2) Percent Area (km2) Percent

Arable crops 4990 30 4500 28 2610 16
Olive groves 2585 16 3098 19 4450 28
Scrub/forest 7179 44 7721 48 7838 48
Woody crops 387 3 544 3 591 4

Other 1136 7 295 2 629 4

5. Conclusions

This article presents the first flood study in the Guadalquivir River (Southern Spain) verifying
the outputs of the model simulated inundation extent with respect to remote sensing data. Flood
hazard maps computed with the two-dimensional hydraulic model DassFlow-Hydro 2.0 predict
reasonably well the observed inundation area derived based on Lansat 5 data at the peak streamflow
of approximately 1900 m3·s−1 on 24 February 2010. We improved flood observation for cloud-covered
areas and narrow, confined valleys via helicopter flood photographs and field survey of paleostage
indicators. The overall accuracy of the modelled flooding area achieves more than 80%, which is a
significant achievement regarding previous flood simulation studies with an overlap between modelled
and observed extents lower than 70%. The local root mean square error of the simulated and observed
water levels varies in the range of 1–8% and 1–5% of the maximum flow depth in the unconfined
meandering floodplain and the confined valley setting, respectively.

Based on the above analysis of recent floods, series of orthophotos, historical topographic maps
and available rating curves, we analysed the spatiotemporal changes of the Guadalquivir channel
capacity over the period 1900–2013. Channel aggradation, reservoir sedimentation and vegetation
encroachment are the main factors reducing the channel capacity after river impoundment. In the
confined valley, the maximum reduction in channel capacity amounts to ∆QFS = 568 m3·s−1 which
represents the 56% of the original capacity QFS ≈ 1000 m3·s−1 for a 8 m flood depth. In the unconfined
floodplain, the decrease in the cross-sectional area upstream of a silted-up reservoir leads to a 28–64%
reduction in channel capacity for the undisturbed value 1500 ≤ QFS ≤ 2000 m3·s−1.

We conclude that geomorphic processes and anthropogenic alterations of the topography have
both mediated and increased the flood risk and backwater effects over time. The observed decrease
in channel capacity at flood stage contrasts with the observed and projected decrease of 20–33% in
mean annual precipitation and streamflow in the Guadalquivir River under the current scenario of
climate change. Hence, the long-term projection of flood risk from existing studies in the Guadalquivir
Basin needs to be revisited and account for the probability of a further reduction in channel capacity in
addition to the probability of extreme hydrological events and streamflow.

As the Guadalquivir River also flooded across the lower basin and inundated large industrial
areas, the analysis in detail of the dynamics of the flood wave deserves an additional study there.
To this end, the capabilities of DassFlow-Hydro 2.0 [22] to assimilate remote sensing data via the
resolution of the adjoint-based inverse problem could be used instead of the direct flood mapping
method adopted in this paper. Furthermore, new studies can be carried out in the Iberian Peninsula on
regulated rivers with a similar geomorphic status as the Guadalquivir River (e.g., the Ebro River).
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Appendix A. Characteristic Dimensions of Meanders

Table A1 summarises the characteristic dimensions of the meanders in Figure 1. To evaluate them,
we determined the bankfull stage from the proto-floodplain (top of the point bar surface) that supports
woody vegetation, as suggested in [49].

Table A1. Characteristic values of geometrical properties of meanders (M) shown in Figure 1.
The streamwise distance was measured using Mengíbar dam as the origin of reference. L = length,
Lm = axial wavelength, P = sinuosity (L/Lm), A = amplitude, B = bankfull width, H = bankfull depth.

Property
Meander No.

M1 M2 M3 M4 M5

Start (km) 20.0 26.6 33.7 37.8 41.8
End (km) 26.6 31.8 37.8 41.8 46.7

L (m) 6600 5200 4100 4000 4900
Lm (m) 2600 1950 2700 2150 2720

P 2.5 2.7 1.5 1.9 1.8
A (m) 1500 1550 1400 1500 1450
B (m) 100–250 175 166 159 156
H (m) 5.7 6.2 5.5 6.4 6.9

Appendix B. Regime Based Bankfull Capacity

Dury [54] empirically derived a one-parameter equation correlating the meander wavelength Lm

and the water discharge Q based on the analysis of multiple meandering rivers with characteristic
water discharges lower than 4100 m3·s−1, that reads

Lm = 54.34 Q1/2 (A1)

We selected Dury’s equation from the paleohydrologic equations for rivers because the channel
dimensions of the Guadalquivir River (see Table A1) are similar to some of the rivers he studied.
We refer the reader to Table 1 in the review by Williams [50] for details on available formulas and
applicable ranges. Hence, our parameter values lie within the range of application of the empirical
Equation (A1).

Yalin and da Silva [51] proposed alternative equations accounting for channel roughness.
They reviewed all the available regime data before the year 1990 and showed that the bankfull
dimensions of the collected rivers satisfy the following set of equations:

B = αB

√
Q

v∗,cr
, h =

(
αB

2 Fr
)− 1

3
(

Q v∗,cr

g

) 1
3
, Fr = c2S0, c =

h1/6

n
√

g
, (A2)

in which αB depends on the channel roughness and the sediment properties, v*,cr denotes the critical
velocity for the inception of sediment motion, Fr is the Froude number, and n and c represent Manning’s
roughness coefficient and Chezy’s friction factor, respectively. Both parameters can be eliminated from
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Equation (A2), leading to the classical Manning (or Chezy) equation for a uniform flow in a channel
with rectangular cross section B × h, bed slope S0 and roughness parameter n (or c):

Q = n−1 B h5/3
√

S0 = c B h3/2√g S0 . (A3)

The main advantage of Equation (A3) with respect to Equation (A1) is that the latter incorporates
the dependency on the roughness coefficient explicitly.
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