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Abstract: The rapid development of high spatial resolution (HSR) remote sensing imagery
techniques not only provide a considerable amount of datasets for scene classification tasks but
also request an appropriate scene classification choice when facing with finite labeled samples.
AlexNet, as a relatively simple convolutional neural network (CNN) architecture, has obtained great
success in scene classification tasks and has been proven to be an excellent foundational hierarchical
and automatic scene classification technique. However, current HSR remote sensing imagery scene
classification datasets always have the characteristics of small quantities and simple categories,
where the limited annotated labeling samples easily cause non-convergence. For HSR remote
sensing imagery, multi-scale information of the same scenes can represent the scene semantics to
a certain extent but lacks an efficient fusion expression manner. Meanwhile, the current pre-trained
AlexNet architecture lacks a kind of appropriate supervision for enhancing the performance of this
model, which easily causes overfitting. In this paper, an improved pre-trained AlexNet architecture
named pre-trained AlexNet-SPP-SS has been proposed, which incorporates the scale pooling—spatial
pyramid pooling (SPP) and side supervision (SS) to improve the above two situations. Extensive
experimental results conducted on the UC Merced dataset and the Google Image dataset of SIRI-WHU
have demonstrated that the proposed pre-trained AlexNet-SPP-SS model is superior to the original
AlexNet architecture as well as the traditional scene classification methods.

Keywords: scene classification; convolutional neural network; pre-trained AlexNet; spatial pyramid
pooling; side supervision; high spatial resolution remote sensing imagery

1. Introduction

With the recent launch of remote sensing satellites around the world, a large volume of multi-level,
multi-angle, and multi-resolution HSR remote sensing images can now be obtained, where the remote
sensing big data brings new understandings for the traditional definition of big data [1–3]. These
multi-source remote sensing images allow the ground object observation from multiple perspectives.
The rapid development of HSR remote sensing imaging sensors has provided us with a large number
of HSR remote sensing images with abundant detail and structural information, and a higher spatial
resolution [1]. In addition, these multi-source HSR remote sensing images also provide a huge
amount of data without corresponding labels, which may consume a large amount of human labor for
labeling. Traditional HSR remote sensing imagery understanding is based on recognizing pixel-based
or object-based ground elements, but this cannot describe the whole content of the scene images and
cannot well bridge the “semantic gap” between the low-level features and the high-level semantics [4].
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Scene classification for HSR remote sensing imagery is aimed at obtaining the semantic category
information of the scene images, where the core idea of HSR remote sensing imagery scene classification
is to bridge the semantic gap and to explore the high-level semantic category information contained
within the scenes [5–8].

To adequately bridge the semantic gap between the low-level features and the high-level semantics,
various scene classification methods have been proposed in recent years. The traditional HSR remote
sensing imagery scene classification methods include bag of visual words (BOVW) [9–12], spatial
pyramid matching (SPM) [13], latent Dirichlet allocation (LDA) [14–16], and probabilistic latent
semantic allocation (PLSA) [17,18]. These methods adopt manual feature extraction techniques,
namely the spectral features, textural features, and structural features (e.g., scale invariant feature
transformation, SIFT [19]), to realize scene semantic recognition. However, all these approaches adopt
manually designed feature descriptors for the predefined algorithms [4–10], which require expert
engineering experience.

Recently, with the development of deep learning [20–27], much effort has been dedicated
to developing automatic and discriminative feature extraction and representation frameworks
for HSR remote sensing imagery scene classification [26–34]. Previous works have proven
that CNN are excellent deep learning model for HSR remote sensing imagery scene semantic
recognition [26,28–30,32,35–38] or image classification [39,40], and they can efficiently and
automatically extract features derived from the data. A CNN is a hierarchical feature representation
framework consisting of multiple alternate convolutional and pooling layers, with a back-propagation
mechanism to tune the whole network to obtain the final classification result [35]. However, according
to the current research status, research into CNN models for HSR remote sensing imagery scene
classification can be summarized into two research trends.

The first research trend of CNN models is focused on carefully designing an effective and accurate
network architecture to obtain a satisfactory HSR remote sensing scene classification result. For
instance, to improve HSR remote sensing imagery scene classification performance, Zhang et al. [33,35]
proposed an improved gradient boosting CNN ensemble framework to reuse the weights in each
random convolutional network. Compared with the large and complicated natural imagery scene
datasets, as introduced in [20], the current HSR remote sensing imagery scene datasets have the
characteristics of small quantities, simple categories, simple content, multi-scale objects et al., which
results in the manually designed CNN models being faced with many critical challenges when the
labeled samples are limited. To better deal with the above situations, another effective and meaningful
research trend of HSR remote sensing imagery scene classification with CNN models is the introduction
of the pre-training mechanism. A pre-trained CNN architecture involves first training the existing
CNN model upon a large natural imagery dataset, and then a transfer mechanism is used to convey the
network parameters from the natural imagery dataset to the HSR remote sensing imagery dataset [32],
considering some of the specific similarities between HSR remote sensing imagery scene dataset and
natural imagery scene dataset. Marco et al. [28] were the first to prove that the transfer of a pre-trained
CNN can achieve a promising classification performance. Hu et al. [32] further explored that the
transferability of the natural image features from the pre-trained CNN applicable to the limited amount
of HSR remote sensing scene datasets with the feature coding methods. The advantage of the second
research trend of pre-trained CNN models is their effective extensible properties for dealing with the
HSR remote sensing imagery scenes with limited labeling. However, the pre-trained CNN models
seldom consider fusing the multi-scale information of the last convolved feature maps.

Although the pre-training mechanism can help CNN models achieve satisfactory classification
performances for HSR remote sensing imagery scenes with limited labeled samples, the choice of a
proper network architecture for making strong and correct assumptions about the nature of the input
data is a big challenge for the current HSR remote sensing imagery scene classification techniques.
Thus, research into a simple network architecture with a powerful modelling capability is urgently
needed. AlexNet, as a simple, typical, foundational, and one of the state-of-the-art CNN architecture,
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was first proposed by Hinton and was successfully utilized in the 2012 ImageNet Competition [21].
Compared with the other structure-complex and deep CNN architectures (e.g., GoogLeNet [22], VGG
et al. [23]), AlexNet is a structure-simple CNN architecture, which is easy to train and optimize. When
fine-tuned with HSR remote sensing imagery datasets, a fast and satisfactory classification result can
be obtained. However, considering the multi-scale characteristic in some specific semantic scenes
with key objects, the properties of the current pre-trained AlexNet architecture are limited. In order to
further improve the classification performance and adequately consider the multi-scale information
with the AlexNet architecture, an improved pre-trained AlexNet architecture is needed.

In order to better deal with the multi-scale information of the convolved feature maps of the
HSR remote sensing scene images and fuse this information, a multi-scale pooling strategy, named
spatial pyramid pooling (SPP) [13,41–43], is incorporated into the pre-trained AlexNet classification
architecture. SPP is a pooling strategy proposed by He et al. [44] for object detection tasks, which
was developed from the SPM model proposed by Lazebnik et al. in [13], and extended research done
in [41–44]. The SPP strategy operates on the multi-scale convolved feature maps, and concatenates the
different-scale convolved feature maps, which adequately takes the multi-scale spatial information
of the same scenes into consideration and can narrow the semantic differences for the scenes with
multi-scale information.

Although the pre-trained AlexNet architecture can handle scenes containing multi-scale
information with the SPP strategy, the relatively simple pre-trained AlexNet architecture still lacks an
efficient side supervision (SS) technique to prevent overfitting of the AlexNet architecture. To further
improve the performance of the pre-trained AlexNet architecture, an effective improvement is needed
to be incorporated into the pre-trained AlexNet architecture. The SS strategy firstly derived from [45]
is an effective companion operation which incorporates deep supervision into both the hidden layers
of the deep CNN and the final output layer to propagate this supervision to the previous layers,
simultaneously minimizing the classification error. In addition, SS can also reduce the gradient
vanishing phenomenon and prevent overfitting of the CNN architecture. By introducing the SPP and
SS strategies into the pre-trained AlexNet architecture, the multi-scale operation and the simultaneous
minimization operation can be handled at the same time for the pre-trained AlexNet architecture,
which enables the pre-trained AlexNet architecture with better properties to better deal with HSR
remote sensing imagery scene classification.

The main contributions of this paper can be summarized as follows.

(a) The end-to-end AlexNet classification architecture. Differing from the complicated and stepwise
operation of the AlexNet classification architecture, the proposed pre-trained AlexNet-SPP-SS
model is an end-to-end operation. Pre-trained AlexNet-SPP-SS deals with the label-limited
HSR remote sensing imagery scene classification task with fast and effective one-step
heterologous parameter transferring and pre-training operations, enabling the whole procedure
to be more convenient, reducing the complicated intermediate operations, and reducing the
resource consumption.

(b) The effective multi-scale pyramid pooling scene interpretation capability. The SPP strategy is
incorporated into the end-to-end pre-trained AlexNet architecture, and solves the multi-scale
scene interpretation task by fusing the different-scale convolved feature maps, which adequately
considers the spatial information in different scales and increases the scene interpretation ability.

(c) The simultaneous supervision processing framework. To make the end-to-end pre-trained
AlexNet architecture more transparent in dealing with the heterologous parameter transferring in
quantity-limited HSR remote sensing imagery scene classification, the SS strategy is incorporated
by introducing intermediate supervision to the layers of the pre-trained AlexNet architecture, to
reduce the gradient vanishing phenomenon and prevent overfitting of the whole architecture.

To test the performance of the proposed pre-trained AlexNet-SPP-SS model, extensive experiments
were conducted on HSR remote sensing datasets—the UC Merced dataset and the Google image
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dataset of SIRI-WHU—with the pre-trained network parameters transferred from natural image
datasets, demonstrating that the proposed pre-trained AlexNet-SPP-SS model can perform better
than the pre-trained AlexNet architecture, the AlexNet-SPP architecture, and the AlexNet-SS
architecture, as well as the traditional handcrafted feature based HSR remote sensing imagery scene
classification approaches.

The rest of this paper is organized as follows. In Section 2, the typical AlexNet architecture is
introduced. In Section 3, the SPP strategy, the SS strategy, and the proposed AlexNet-SPP-SS model are
described in detail. The experimental datasets, the experimental results, and an analysis are given in
Sections 4 and 5. Section 6 presents a discussion. Section 7 draws our conclusions.

2. The AlexNet Architecture

AlexNet, which was first proposed by Alex Krizhevsky et al. in the 2012 ImageNet Large
Scale Visual Recognition Challenge (ILSVRC-2012) [21], is a fundamental, simple, and effective CNN
architecture, which is mainly composed of cascaded stages, namely, convolution layers, pooling layers,
rectified linear unit (ReLU) layers and fully connected layers. Specifically, AlexNet is composed of five
convolutional layers, the first layer, the second layer, the third layer and the fourth layer followed by the
pooling layer, and the fifth layer followed by three fully-connected layers. For the AlexNet architecture,
the convolutional kernels are extracted during the back-propagation optimization procedure by
optimizing the whole cost function with the stochastic gradient descent (SGD) algorithm. Generally,
the convolutional layers act upon the input feature maps with the sliding convolutional kernels to
generate the convolved feature maps, and the pooling layers operate on the convolved feature maps
to aggregate the information within the given neighborhood window with a max pooling operation
or average pooling operation. The reason why AlexNet is successful can be attributed to some of the
practical strategies, for instance, the ReLU non-linearity layer and the dropout regularization technique.
The ReLU, as shown in Equation (1), is a half-wave rectifier function, which can significantly accelerate
the training phase and prevent overfitting. The dropout technique can be regarded as a kind of
regularization by stochastically setting a number of the input neurons or hidden neurons to be zero to
reduce the co-adaptations of the neurons, which is usually utilized in the fully connected layers in the
AlexNet architecture.

f (x) = max(x, 0) (1)

The transfer mechanism and the pre-training mechanism allow the CNN network parameters to
be transferred from natural imagery datasets to HSR remote sensing imagery datasets. The reason why
this can succeed can be explained, to some extent, by the similarities between natural imagery datasets
and remote sensing imagery datasets, and the category compatibility. It can also be easily understood
that the large and complicated ImageNet datasets can help to obtain a well-trained AlexNet architecture,
and well-trained network parameters are important for initializing the subsequent classification
framework. Therefore, the pre-training mechanism helps the AlexNet architecture to perform the
HSR remote sensing imagery scene classification task. Based on the introduction of the convenient
and comprehensive representation ability of the pre-trained AlexNet architecture in dealing with
HSR remote sensing imagery scene classification, the pre-training mechanism also makes the AlexNet
architecture an end-to-end classification pipeline. The pre-trained AlexNet network architecture is
shown in Figure 1.
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3. The Proposed AlexNet-SPP-SS Architecture for High Spatial Resolution Remote Sensing
Imagery Scene Classification

It is noted that the simplicity and convenience of the pre-training mechanism in the AlexNet
architecture make the pre-trained AlexNet architecture a good choice in dealing with HSR remote
sensing imagery scene classification. In order to further mine the properties of the pre-trained
AlexNet for the HSR remote sensing imagery scene classification tasks, and to adequately consider
the multi-scale properties of the ground objects as well as the simultaneous processing capacity,
an improved pre-trained CNN architecture named the pre-trained AlexNet-SPP-SS architecture is
proposed in this paper. The proposed pre-trained AlexNet-SPP-SS model is introduced below.

3.1. The Effective Multi-Scale Pyramid Pooling Ground Objects Scene Interpretation Strategy—Spatial
Pyramid Pooling (SPP)

SPP developed from the SPM model [13] for object recognition and scene classification [41–43],
to improve the performance of the CNN architecture [44], SPP deals with the multi-scale convolved
feature maps to generate a fixed-length pooling representation, regardless of the image size, and
concatenates the pooled feature maps into a long single vector. As the multi-scale convolved feature
maps contain abundant complementary spatial information, especially the scenes containing key
ground objects, the incorporation of the SPP strategy can enhance the scene interpretation capability.
The SPP strategy also has the outstanding advantage of generating a fixed-length pooling feature
representation, regardless of image size, and is thus able to deal with the images of arbitrary scales.

The advantages of incorporating the SPP strategy into the pre-trained AlexNet architecture can be
summarized from three aspects. The first advantage of SPP is that it computes the convolved feature
maps only once from the entire image, and it pools the convolved features in arbitrary-scale regions to
generate a fixed-length representation. The second advantage of SPP is that it can utilize multi-scale
spatial bins, which is an approach that has been shown to be robust to object deformation, while the
sliding window pooling only uses a single window size. The third advantage of SPP is that it can pool
features extracted at different scales. These advantages enable the pre-trained AlexNet architecture
to interpret HSR remote sensing imagery scenes with multi-scale ground objects. The multi-scale
processing procedure of the SPP strategy is shown in Figure 2.
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3.2. The Simultaneous Supervision Processing Framework: the Side Supervision (SS) Strategy

The pre-trained AlexNet architecture is an effective end-to-end HSR remote sensing imagery
scene classification framework, but it only deals with the classification task with the final supervision
term. It is noted that the goal of the pre-trained AlexNet architecture is to learn layers of filters and
weights for the minimization of the classification error at the final output layer. However, the single
supervision term limits the ability of the pre-trained AlexNet architecture to deal with the simultaneous
and transparent classification error minimization. To alleviate the phenomenon of non-simultaneous
and non-transparent processing in the pre-trained AlexNet architecture, a supervision [45] strategy
is incorporated into the pre-trained AlexNet architecture. SS is a strong convex strategy, which
enforces the feature robustness and discriminative ability through both final-layer supervision and
intermediate-layer supervision. Specifically, the core idea of SS is aimed at providing integrated
direct supervision to the hidden layers, which is in contrast to the standard approach of providing
supervision only at the output layer and propagating this supervision back to earlier layers. The SS is
added by the companion objective function for each hidden layer, and can be regarded as an additional
constraint within the learning process.

For the pre-trained AlexNet architecture, there are three obvious problems with the current
architecture. The first problem is the non-transparency in the intermediate layers during the overall
classification procedure, which makes the training process difficult to observe. The second problem
refers to the robustness and discriminative ability of the learned features, especially in the latter
layers of the network, which can significantly influence the performance. The third problem is
the low training effectiveness in the face of “exploding” and “vanishing” gradients. In order to
better deal with the problems existing in the current pre-trained AlexNet architecture, there are
two significant advantages of introducing the SS companion objective functions into the pre-trained
AlexNet architecture. The first advantage is that the SS functions are strong convex regularization
functions for both the large training data in deeper networks and the small training data in relatively
shallower networks, which can increase the robustness and discriminative ability of the learned
features in the pre-trained AlexNet architecture. The second advantage is that SS can make the
intermediate layers transparent during the training process.

In order to allow a better understanding of the pre-trained AlexNet architecture with the SPP
and SS strategies, an illustration is given below. Suppose that the input sample Xi ∈ Rn denotes
the raw input data and yi ∈ {1, . . . , K} denotes the corresponding ground truth label for sample
Xi. Suppose that there are M layers in total in the pre-trained AlexNet architecture, the weight
combinations for the pre-trained AlexNet architecture are W = (W(1), . . . , W(M)). Meanwhile, for each
classifier in each hidden layer of the pre-trained AlexNet architecture, the corresponding weights are
w = (w(1), . . . , w(M−1)). In the pre-trained AlexNet architecture, the relationships between the weight
parameters and the filters are respectively shown in Equations (2) and (3):

Z(m) = f(Q(m)) and Z(0) = X (2)

Q(m) = W(m) ∗ Z(m−1) (3)

In Equations (2) and (3), M denotes the total layer number of the pre-trained AlexNet architecture;
m refers to the specific layer of the pre-trained AlexNet architecture; W(m), m = 1 . . . M are the network
weights to be learned; Q(m) refers to the convolved responses on the previous feature map; and f()
is the pooling function on Q. The total objective function for the pre-trained AlexNet architecture is
shown in Equation (4).

F(W) = P(W) + Q(W) (4)
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where P(W) and Q(W) refer to the output objective and the summed companion objectives, which are
defined in Equations (5) and (6), respectively.

P(W) ≡ ‖w(out)‖
2
+ L(W, w(out)) (5)

Q(W) ≡
M−1

∑
m=1

[
‖w(M)‖

2
+ l(W, w(m))− r

]
(6)

where w(out) refers to the classifier weight of the output layer. The final combined objective function of
the pre-trained AlexNet architecture is defined in Equation (7).

‖w(out)‖
2
+ L(W, w(out)) +

M−1

∑
m=1

am

[
‖w(m)‖

2
+ l(W, w(out))− r

]
(7)

where ‖w(out)‖2
and L(W, w(out)) are respectively the margin and squared hinge loss of the support

vector machine (SVM) classifier. ‖w(m)‖2
and l(W, w(m)) are respectively the margin and squared

hinge loss of the SVM classifier at each hidden layer. The overall loss of the output layer L(W, w(out))

is as shown in Equation (8):

L(W, w(out)) = ∑
yk

1y

[
1− < w(out), f(Z(M), y)− f(Z(M), yk)

]
(8)

In Equation (7), l(W, w(out)) as the companion loss of the intermediate layers is as shown in
Equation (9).

l(W, w(out)) = ∑
yk

1y

[
1− < w(m), f(Z(m), y)− f(Z(m), yk) >

]2

+

(9)

For Equations (8) and (9), they are both squared hinge losses of the prediction errors. From the
above formulations, it can be understood intuitively that, in Equations (8) and (9), the pre-trained
AlexNet architecture not only learns the convolutional kernels W?, but enforces a constraint at each
hidden layer to directly make a good label prediction and give a strong push for having discriminative
and sensible features at each individual layer. It is noted that for each l(W, w(m)), the w(m) directly
depends on Z(m), which is dependent on W1, . . . , Wm up to the mth layer. The second term often goes
to zero during the course of training. In this way, the overall goal of producing a good classification
result at the output layer is not altered and the companion objective just acts as a proxy or regularization.
To achieve this goal, the threshold γ is usually set in the second term of Equation (6). The working
mechanism of this companion function is that the hinge losses of the overall function and the
companion objective function vanish and no longer play a role in the learning process when the
overall value of the hidden layer reaches or is below γ. αm balances the importance of the error in the
output objective and the companion objective.

To summarize, the working mechanism of the pre-trained AlexNet architecture with SS strategy is
that the output performance of the entire network is achieved with a “satisfactory” level of performance
on the part of the hidden layer classifiers. For the pre-trained AlexNet architecture with SS strategy,
the optimization procedure is conducted using the SGD algorithm and the gradient functions in a
similar way to the original AlexNet architecture. To better demonstrate the working details and the
processing manner of the pre-trained AlexNet architecture, a flowchart is provided in Figure 3.
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3.3. The Proposed Pre-Trained AlexNet-SPP-SS Model for High Spatial Resolution Remote Sensing Imagery
Scene Classification

As a simple and effective HSR remote sensing imagery scene classification model, the AlexNet
architecture has some disadvantages in dealing with both the non-transparency phenomenon of the
intermediate layers and scene classification tasks with the multi-scale thematic scenes. To quickly make
the objective function converge to an optimal value, the network weight parameters transferred from
the natural images are retrained in the HSR remote sensing imagery scene classification tasks, where
the pre-trained AlexNet architecture is derived from pre-training AlexNet architecture on large-scale
natural imagery datasets. The similar semantic scene information helps the pre-trained AlexNet
architecture to obtain a fast and satisfactory result for the HSR remote sensing scene images. In order
to deal with the multi-scale phenomenon of the specific multi-scale semantic scenes, SPP, as a kind of
effective multi-scale pooling operation is added into the pre-trained AlexNet architecture. To better
represent the intermediate layer information of the pre-trained AlexNet architecture, SS, as a kind of
useful intermediate supervision incorporation strategy, can help the pre-trained AlexNet architecture
improve the classification performance not only from the aspect of the robustness of the network
weights but also from the aspect of the transparency of the intermediate layers. Based on the advantages
of the SPP and the SS strategies, and for the purpose of further improving the HSR remote sensing
imagery scene classification performance with the pre-trained AlexNet architecture, the pre-trained
AlexNet-SPP-SS model is proposed to first incorporate the SPP and SS strategies into the pre-trained
AlexNet architecture.

The pre-trained AlexNet-SPP-SS architecture is a combinatorial CNN network architecture, which
incorporates the supervision layers as the intermediate layers of the pre-trained AlexNet architecture
and also combines the SPP layers into the AlexNet architecture to allow the pre-trained AlexNet
architecture to have the ability to both deal with the multi-scale information of the pre-trained AlexNet
architecture and simultaneously process the SS information. In an overall view, the pre-trained
AlexNet-SPP-SS model, as shown in Figure 4, endows the HSR remote sensing imagery with limited
samples to obtain an improved scene classification performance.
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4. Datasets and Experiment Scheme

In order to test the performance of the proposed pre-trained AlexNet-SPP-SS model, three datasets,
namely the widely utilized UC Merced dataset, the Google image dataset of SIRI-WHU, and WHU-RS
dataset were utilized to conduct the experiment.

4.1. Dataset Description

The first dataset utilized for evaluating the performance of the proposed pre-trained
AlexNet-SPP-SS model is the UC Merced dataset, which was collected from the USGS National
Map Urban Area Imagery collection [46]. This dataset is composed of 21 classes, with 100 samples per
class. The image size of the UC Merced dataset is 256 × 256 with a 1-ft spatial resolution. The classes
for the UC Merced dataset are: agriculture, airplane, baseball diamond, beach, buildings, chaparral,
dense residential, forest, freeway, golf course, harbor, intersection, medium residential, mobile home
park, overpass, parking lot, river, runway, sparse residential, storage tanks, and tennis courts, as shown
in Figure 5. For the UC Merced dataset, 80 samples of each class were stochastically selected as the
training samples, and the rest were selected as the testing samples.
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Figure 5. Representative images of the 21 land-use categories in the UC Merced dataset: (a) agriculture;
(b) airplane; (c) baseball diamond; (d) beach; (e) buildings; (f) chaparral; (g) dense residential; (h) forest;
(i) freeway; (j) golf course; (k) harbor; (l) intersection; (m) medium residential; (n) mobile home
park; (o) overpass; (p) parking lot; (q) river; (r) runway; (s) sparse residential; (t) storage tanks;
(u) tennis court.
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The second dataset utilized for evaluating the performance of the proposed AlexNet-SPP-SS model
is the Google image dataset of SIRI-WHU. The Google image dataset of SIRI-WHU covering urban
areas in China was collected by the RSIDEA (Intelligent Data Extraction, Analysis and Applications
of Remote Sensing) group, LIESMARS, Wuhan University [10,14,47]. The Google image dataset of
SIRI-WHU consists of 12 land-use classes, and each class has 200 samples, for which the image size is
200 × 200 and the spatial resolution is 2 m. The class names of the Google image dataset of SIRI-WHU
are meadow, pond, harbor, industrial, park, river, residential, overpass, agriculture, water, commercial,
and idle land, demonstrate as shown in Figure 6. In this experiment, 160 samples of each class were
stochastically selected per class as the training samples, and the rest were retained as the test samples.Remote Sens. 2017, 9, 848  10 of 22 

 

 
Figure 6. Representative images of the Google Image dataset of SIRI-WHU: (a) meadow; (b) pond; (c) 
harbor; (d) industrial; (e) park; (f) river; (g) residential; (h) overpass; (i) agriculture; (j) commercial; 
(k) water; (l) idle land. 

The third dataset utilized for evaluating the performance of the proposed AlexNet-SPP-SS 
model is WHU-RS dataset. The WHU-RS dataset [32], collected from Google Earth (Google Inc.), is a 
new publicly available dataset, which consists of 950 images with a size of 600 × 600 pixels uniformly 
distributed in 19 scene classes. Some example images are shown in Figure 7. In this experiment, 25 
samples of each class were stochastically selected per class as the training samples, and the rest were 
retained as the test samples. 

 

Figure 7. Representative images of the WHU-RS dataset: (a) airport; (b) beach; (c) bridge; (d) 
commercial; (e) desert; (f) farmland; (g) football field; (h) forest; (i) industrial; (j) meadow; (k) 
mountain; (l) park; (m) parking; (n) pond; (o) port; (p) railway station; (q) residential; (r) river; (s) 
viaduct. 

  

Figure 6. Representative images of the Google Image dataset of SIRI-WHU: (a) meadow; (b) pond;
(c) harbor; (d) industrial; (e) park; (f) river; (g) residential; (h) overpass; (i) agriculture; (j) commercial;
(k) water; (l) idle land.

The third dataset utilized for evaluating the performance of the proposed AlexNet-SPP-SS
model is WHU-RS dataset. The WHU-RS dataset [32], collected from Google Earth (Google Inc.,
Mountain View, CA, USA), is a new publicly available dataset, which consists of 950 images with a
size of 600 × 600 pixels uniformly distributed in 19 scene classes. Some example images are shown
in Figure 7. In this experiment, 25 samples of each class were stochastically selected per class as the
training samples, and the rest were retained as the test samples.
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Figure 7. Representative images of the WHU-RS dataset: (a) airport; (b) beach; (c) bridge;
(d) commercial; (e) desert; (f) farmland; (g) football field; (h) forest; (i) industrial; (j) meadow;
(k) mountain; (l) park; (m) parking; (n) pond; (o) port; (p) railway station; (q) residential; (r) river;
(s) viaduct.

4.2. Experiment Scheme

To gradually and explicitly demonstrate the advantages of the proposed pre-trained
AlexNet-SPP-SS model, the performances of the original AlexNet architecture, the pre-trained
AlexNet-SPP architecture, and the pre-trained AlexNet-SS architecture were respectively compared.
As introduced in the previous sections of this paper, the pre-trained AlexNet is the AlexNet architecture
with weights transferred from the natural images, the pre-trained AlexNet-SPP architecture is the
pre-trained AlexNet architecture with SPP strategy, and the pre-trained AlexNet-SS architecture
is the pre-trained AlexNet architecture with SS strategy. To demonstrate the advantages of the
proposed pre-trained AlexNet-SPP-SS model, the previously proposed pre-trained AlexNet-related
architectures, for instance, the AlexNet-BOVW, the AlexNet-FV, the AlexNet-VLAD [32] were also
compared. Furthermore, some of the traditional HSR remote sensing imagery scene classification
methods—BOW, SPM, LDA, and a non-pre-trained CNN architecture, the gradient boosting random
convolutional network (GBRCN) [35] were also compared.

The images were resized to 227 × 227 on the Caffe platform [48]. To increase the diversity of
the HSR remote sensing image datasets, a data augmentation strategy was adopted by incorporating
five types of cropping with 0◦ and 180◦ flipping. The initial learning rates for the three datasets
were sequentially set as 0.0001, 0.001, and 0.0001, and the momentum and the weight decay for the
three datasets were set as 0.9 and 0.0005 respectively. To test the stability of the proposed pre-trained
AlexNet-SPP-SS model, the experiments were executed 10 times to obtain convincing results for the
three datasets. The mean value and standard deviation were adopted as the evaluation indicators.

5. Results

In order to evaluate the performance of the proposed pre-trained AlexNet-SPP-SS model and
compare with the performances of the traditional classification methods on the UC Merced dataset,
the scene classification results are listed in Table 1.

Table 1. Scene classification results for the UC Merced dataset.

Scene Classification Method Classification Accuracy (%)

BoW 72.05 ± 1.41
SPM 82.30 ± 1.48
LDA 81.92 ± 1.12

UFL+Saliency [34] 82.72 ± 1.18
GBRCN [35] 94.53
TF-CNN [36] 89.90
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Table 1. Cont.

Scene Classification Method Classification Accuracy (%)

Pre-trained AlexNet 1st-FC [32] 95.08
Multiview deep learning [31] 93.48 ± 0.82

CNN with OverFeat [40] 95.48
AlexNet 90.21 ± 1.17

Pre-trained-AlexNet 95.00 ± 0.72
Pre-trained-AlexNet-SPP 95.95 ± 1.01
Pre-trained-AlexNet-SS 95.71 ± 1.21

Pre-trained-AlexNet-SPP-SS 96.67 ± 0.94

From Table 1, it can be seen that the pre-trained-AlexNet-SPP and the pre-trained-AlexNet-SS
obtain better scene classification performances than the pre-trained-AlexNet architecture, which
proves that the incorporation of either SPP or SS can improve the scene classification performance. The
pre-trained-AlexNet-SPP-SS achieves the best scene classification result of 96.67 ± 0.94%. Compared
with the traditional scene classification methods, the pre-trained AlexNet-SPP architecture and
the pre-trained AlexNet-SPP-SS architecture obtain accuracy of 95.95 ± 1.01% and 95.71 ± 1.21%.
This proves that the incorporation of the combination of SPP and SS further improves the
pre-trained-AlexNet classification performance in the HSR remote sensing imagery.

In order to better demonstrate the performance of the proposed pre-trained AlexNet-SPP-SS
model for the UC Merced dataset, a confusion matrix is shown in Figure 8.
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Figure 8 demonstrates the confusion matrix of the pre-trained AlexNet-SPP-SS model, where the
accuracy of the row represents the producer’s accuracy and the column represents the user’s accuracy.
From Figure 8, it can be seen that most of the classes obtain a satisfactory classification result over 90%,
but the dense residential class shows a severe misclassification. By analyzing the confusion matrix of
the pre-trained AlexNet-SPP-SS model, it can be seen that the samples of the dense residential classes
are mainly misclassified as the building and medium residential classes. For the UC Merced dataset,
the pre-trained AlexNet-SPP-SS model easily misclassifies the dense residential, building, and medium
residential classes, as a result of their similar ground object distributions.

To further demonstrate the performances of the proposed pre-trained AlexNet-SPP-SS model on
the UC Merced dataset, the scene classification accuracies for each thematic category are compared with
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the AlexNet, the pre-trained AlexNet, the pre-trained AlexNet-SPP, and the pre-trained AlexNet-SS
in Figure 9.

Figure 8 demonstrates the confusion matrix of the pre-trained AlexNet-SPP-SS model, where the
accuracy of the row represents the producer’s accuracy and the column represents the user’s accuracy.
From Figure 8, it can be seen that the pre-trained AlexNet-SPP-SS model obtains a better classification
accuracy than the pre-trained AlexNet, the pre-trained AlexNet-SPP, and the pre-trained AlexNet-SS
in an overall view. However, the classes of dense residential and sparse residential obtain a worse
classification accuracy as they contain confusing scene images that are difficult to classify. Taking
a more in-depth and detailed analysis of the classification accuracy for certain classes, for example,
all the classes except for the forest and tennis court classes, it can be seen that a better classification
performances is obtained when adopting the SPP strategy. This is mainly due to the performance
promotion of the SPP strategy considering the multi-scale information of the HSR remote sensing
scene images with key ground objects. However, the classes of forest and tennis court show less
improvement on the pre-trained AlexNet and the pre-trained AlexNet-SPP-SS models, because the
scene images possesses heterogenous ground object distributions covering the main parts of the images.
From Figure 9, it can be seen that the pre-trained AlexNet-SS performs better than the pre-trained
AlexNet for most classes, except for the dense residential, forest, freeway, and sparse residential classes.Remote Sens. 2017, 9, 848  13 of 22 
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Merced dataset.

From Table 2, for the Google image dataset of SIRI-WHU, it can be seen that the
pre-trained-AlexNet-SPP-SS model achieves the best scene classification result of 95.07 ± 1.09%.
The reason why the pre-trained-AlexNet-SPP-SS method obtains a better scene classification result
can be attributed to the multi-scale spatial information consideration and the side-supervision
incorporation in the relatively simple pre-trained AlexNet architecture.
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Table 2. Scene classification results for the Google image dataset of SIRI-WHU.

Scene Classification Method Classification Accuracy (%)

BoW 73.93 ± 1.41
SPM 80.26 ± 1.86
LDA 66.85 ± 2.12

TF-CNN [36] 82.81
AlexNet 90.42 ± 1.11

Pre-trained-AlexNet 93.64 ± 0.98
Pre-trained-AlexNet-SPP 94.21 ± 1.18
Pre-trained-AlexNet-SS 94.58 ± 0.98

Pre-trained-AlexNet-SPP-SS 95.07 ± 1.09

In order to better demonstrate the specific performances of the proposed pre-trained
AlexNet-SPP-SS model for the Google Image dataset of SIRI-WHU, a confusion matrix is shown
in Figure 9.

From Figure 10, it can be seen that the classes of agriculture, harbor, and industrial obtain
satisfactory classification results, but the pond class shows a severe misclassification. By analyzing
the confusion matrix of the pre-trained AlexNet-SPP-SS model, it can be seen that the pre-trained
AlexNet-SPP-SS model easily misclassifies the pond, meadow, idle land, and agriculture classes, as a
result of their similar ground object distributions.Remote Sens. 2017, 9, 848  14 of 22 
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Figure 10. Confusion matrix for the pre-trained AlexNet-SPP-SS model with the Google image dataset
of SIRI-WHU.

In Figure 11, to further demonstrate the performances of the proposed pre-trained AlexNet-SPP-SS
model on the Google image dataset of SIRI-WHU, the scene classification accuracies for each
thematic category are compared with the results of AlexNet, the pre-trained AlexNet, the pre-trained
AlexNet-SPP, and the pre-trained AlexNet-SS.
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From Figure 11, it can be seen that the pre-trained AlexNet-SPP-SS model obtains a better
classification accuracy than the pre-trained AlexNet, the pre-trained AlexNet-SPP, and the pre-trained
AlexNet-SS, in an overall view. However, the classes of meadow and pond obtain a worse classification
accuracy as they contain confusing scene images that are similar to agriculture and river, respectively.
Taking a more in-depth and detailed analysis of the classification accuracy for certain classes, for
example, all the classes except for the harbor and park classes, it can be seen that a better classification
performances when adopting the SPP strategy. This is mainly due to the performance promotion of
the SPP strategy considering multi-scale information of the HSR remote sensing scene images with
key ground objects. However, for the classes of overpass and water, SPP shows less improvement
in the pre-trained AlexNet and the pre-trained AlexNet-SPP-SS, because the scene images possesses
heterogeneous ground object distributions covering the main part of the images. For the Google image
dataset of SIRI-WHU, the pre-trained AlexNet-SS performs better than the pre-trained AlexNet for
most of the classes, except for the pond and industrial classes.

From Table 3, for the WHU-RS dataset, it can be seen that the pre-trained-AlexNet-SPP-SS
model achieves the best scene classification result of 95.00 ± 1.12%. The pre-trained AlexNet-SPP
and pre-trained AlexNet-SS architectures also obtain superior scene classification performances,
which can be attributed to the multi-scale spatial information consideration and the side-supervision
incorporation in the relatively simple pre-trained AlexNet architecture.

Table 3. Scene classification results for the WHU-RS dataset.

Scene Classification Method Classification Accuracy (%)

BoW 69.06 ± 2.26
SPM 85.67 ± 2.13
LDA 75.46 ± 2.50

AlexNet 86.32 ± 1.86
Pre-trained-AlexNet 94.32 ± 1.54

Pre-trained-AlexNet-SPP 94.73 ± 1.09
Pre-trained-AlexNet-SS 94.28 ± 2.10

Pre-trained-AlexNet-SPP-SS 95.00 ± 1.12

In order to better demonstrate the specific performances of the proposed pre-trained
AlexNet-SPP-SS model for the WHU-RS dataset, a confusion matrix is shown in Figure 12.
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From Figure 12, it can be seen that the classes of beach, desert, forest, and mountain
obtain satisfactory classification results, but the classes of meadow and residential show severe
misclassifications. By analyzing the confusion matrix of the pre-trained AlexNet-SPP-SS model,
it can be seen that the pre-trained AlexNet-SPP-SS model easily misclassifies the farmland, meadow,
commercial, residential, railway station, and viaduct classes, as a result of their similar ground
object distributions.

In Figure 13, to further demonstrate the performances of the proposed pre-trained AlexNet-SPP-SS
model on the WHU-RS dataset, the scene classification accuracies for each thematic category are
compared with the results of AlexNet, the pre-trained AlexNet, the pre-trained AlexNet-SPP, and the
pre-trained AlexNet-SS.Remote Sens. 2017, 9, 848  16 of 22 
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From Figure 13, it can be seen that the pre-trained AlexNet-SPP-SS model obtains a better
classification accuracy than the pre-trained AlexNet, the pre-trained AlexNet-SPP, and the pre-trained
AlexNet-SS, in an overall view. However, the classes of bridge, commercial, meadow, pond,
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and, residential obtain a worse classification accuracy as they contain confusing scene images that
are similar to agriculture, residential, commercial, and river, respectively. Taking a more in-depth
and detailed analysis of the classification accuracy for certain classes, for example, all the classes
except for the farmland, football field, and river classes, it can be seen that a better classification
performances when adopting the SPP strategy. This is mainly due to the performance promotion of
the SPP strategy considering multi-scale information of the HSR remote sensing scene images with
key ground objects. However, for the classes of bridge, forest, pond, railway station, and viaduct,
SPP shows less improvement in the pre-trained AlexNet and the pre-trained AlexNet-SPP-SS, because
the scene images possesses heterogenous ground object distributions covering the main part of the
images. For the WHU-RS dataset, the pre-trained AlexNet-SS performs better than the pre-trained
AlexNet for most of the classes, except for the beach, farmland, and parking classes.

6. Discussion

From the above, it is known that the SPP strategy can improve the performance of the pre-trained
AlexNet-SPP-SS model. To study the effect of the SPP layer number of the proposed pre-trained
AlexNet-SPP-SS model for the UC Merced dataset, the Google image dataset of SIRI-WHU dataset,
and the WHU-RS dataset, the other parameters generated by the pre-trained AlexNet and SS strategy
were kept the same. The number of SPP layers was then varied over the range of [1–4] for the proposed
pre-trained AlexNet-SPP-SS model.

From Figure 14, it can be seen that when the spatial pyramid layer number is equal to 4,
the pre-trained AlexNet-SPP-SS model obtains the best classification performance with the UC Merced
dataset. In addition, this experiment also indicates that the pre-trained AlexNet-SPP-SS model can
better deal with the multi-scale convolutional feature information, as a result of the information fusion
ability of the SPP strategy.
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Figure 14. The influence of the spatial pyramid layer number for the pre-trained AlexNet-SPP-SS
model with the UC Merced dataset.

From Figure 15, it can be seen that when the spatial pyramid layer number is equal to 3 or 4,
the pre-trained AlexNet-SPP-SS model obtains the best classification performance for the Google image
dataset of SIRI-WHU. Furthermore, the experimental results of the pre-trained AlexNet-SPP-SS model
demonstrate that the SPP strategy has the ability to fuse the information of the multi-scale convolved
feature maps and promotes the classification performance.
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with the Google Image dataset of SIRI-WHU.

From Figure 16, it can be seen that when the spatial pyramid layer number is equal to 4,
the pre-trained AlexNet-SPP-SS model obtains the best classification performance for the WHU-RS
dataset. Furthermore, the experimental results of the pre-trained AlexNet-SPP-SS model demonstrate
that the SPP strategy has the ability to fuse the information of the multi-scale convolved feature maps
and promotes the classification performance.Remote Sens. 2017, 9, 848  18 of 22 
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Figure 16. The influence of the spatial pyramid number for the pre-trained AlexNet-SPP-SS model
with the WHU-RS dataset.

Although the performance of the pre-trained AlexNet-SPP-SS model was analyzed with the
regard to the spatial pyramid layer number, further research into the classification performance of
the pre-trained AlexNet-SPP-SS model with different training sample ratios is needed. For a further
comparison of the proposed pre-trained AlexNet architecture with the other AlexNet architecture
related models, the classification performances with the varying numbers of the training samples
are reported in Figures 17–19, for the UC Merced dataset, the Google Image dataset of SIRI-WHU,
and WHU-RS dataset, respectively.

From Figure 17, it can be seen that the pre-trained AlexNet-SPP-SS model performs better over
the training sample ratios of [10, 20, 30, 40, 50, 60, 70, 80] than the pre-trained AlexNet, the pre-trained
AlexNet-SPP, and the pre-trained AlexNet-SS for the UC Merced dataset. This figure also demonstrates
that, in most of the training sample ratios, the pre-trained AlexNet-SPP-SS model performs better than
the other models. In addition, the pre-trained AlexNet-SS model performs slightly better than the
pre-trained AlexNet model in most of the training sample ratios.
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Merced dataset.

From Figure 18, it can be seen that the pre-trained AlexNet-SPP-SS model performs better over
the training sample ratios of [10, 20, 30, 40, 50, 60] than the pre-trained AlexNet, the pre-trained
AlexNet-SPP, and the pre-trained AlexNet-SS models for the Google image dataset of SIRI-WHU.
In this figure, for the Google Image dataset of SIRI-WHU, the performance of the pre-trained
AlexNet-SS model is slightly better than the pre-trained AlexNet-SPP model, which can be attributed
to the introduction of the side supervision.Remote Sens. 2017, 9, 848  19 of 22 
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image dataset of SIRI-WHU.

From Figure 19, it can be seen that the pre-trained AlexNet-SPP-SS model performs better over the
training sample ratios of [10, 20, 30, 40, 50] than the pre-trained AlexNet, the pre-trained AlexNet-SPP,
and the pre-trained AlexNet-SS models for the Google image dataset of SIRI-WHU. In this figure,
for the WHU-RS dataset, the performance of the pre-trained AlexNet-SPP model is slightly better
than the pre-trained AlexNet-SS model. When the training sample ratio is small, the pre-trained
AlexNet-SPP model and the pre-trained AlexNet-SS model perform much better than the pre-trained
AlexNet model.
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7. Conclusions

In this paper, an improved pre-trained CNN architecture named the pre-trained AlexNet-SPP-SS
model has been proposed for HSR remote sensing imagery scene classification. By fully utilizing both
SPP and SS to further improve the performance of the pre-trained AlexNet architecture, the pre-trained
AlexNet-SPP-SS demonstrates robust feature description ability for HSR remote sensing imagery.
The incorporation of SPP adequately takes the multi-scale spatial information into consideration
and helps to maintain theI ha fixed-length representation of the multi-scale convolved information.
The incorporation of SS strategy can, to some extent, alleviate the over-fitting problem for HSR
remote sensing imagery scene classification. Through the experiments, it was found that the proposed
pre-trained AlexNet-SPP-SS model outperforms the current pre-trained AlexNet models, and the
handcrafted feature based HSR remote sensing scene classification models on the UC Merced dataset,
the Google image dataset of SIRI-WHU, and the WHU-RS dataset. In our future work, the multi-scale
SPP strategy will be explored in more CNN architectures, and more automatic and adaptive multi-scale
spatial pyramid information will be considered. In the future, an interesting phenomenon that the
scene classification performances of images containing different scales of objects not present in the
training/testing images will be studied.
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