
remote sensing  

Article

Detection of Asian Dust Storm Using
MODIS Measurements

Yong Xie 1, Wenhao Zhang 2,* and John J. Qu 3

1 School of Geography and Remote Sensing, Nanjing University of Information Science & Technology,
Nanjing 210044, China; xieyong@radi.ac.cn

2 Institute of Remote Sensing and digital Earth, Chinese Academy of Sciences, Beijing 100101, China
3 Environmental Science and Technology Center (ESTC) and Department of Geography and

GeoInformation Science (GGS), George Mason University, Fairfax, VA 22030, USA; jqu@gmu.edu
* Correspondence: zhangwh@radi.ac.cn; Tel.: +86-10-6483-9949

Received: 30 June 2017; Accepted: 19 August 2017; Published: 22 August 2017

Abstract: Every year, a large number of aerosols are released from dust storms into the atmosphere,
which may have potential impacts on the climate, environment, and air quality. Detecting dust
aerosols and monitoring their movements and evolutions in a timely manner is a very significant task.
Satellite remote sensing has been demonstrated as an effective means for observing dust aerosols.
In this paper, an algorithm based on the multi-spectral technique for detecting dust aerosols was
developed by combining measurements of moderate resolution imaging spectroradiometer (MODIS)
reflective solar bands and thermal emissive bands. Data from dust events that occurred during
the past several years were collected as training data for spectral and statistical analyses. According to
the spectral curves of various scene types, a series of spectral bands was selected individually or jointly,
and corresponding thresholds were defined for step-by-step scene classification. The multi-spectral
algorithm was applied mainly to detect dust storms in Asia. The detection results were validated
not only visually with MODIS true color images, but also quantitatively with products of Ozone
Monitoring Instrument (OMI) and Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP).
The validations showed that this multi-spectral detection algorithm was suitable to monitor dust
aerosols in the selected study areas.
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1. Introduction

The study of atmospheric aerosols has become a very interesting topic in recent years due to
evidence showing their impact on climate change [1]. Aerosols, deserving of the same consideration as
greenhouse gases, play important roles in atmospheric chemistry, cloud microphysics, temperature,
and radiation balance in the lower atmosphere [2]. Dust storms are one kind of frequently occurring
natural phenomena over the continents, which may have potential impacts on the climate, environment,
and air quality. Dust storms, usually occurring in arid and semi-arid regions, can carry large quantities
of dust and move forward like an overwhelming tide to destroy crop plants, ruin mining and
communication facilities, weather vestiges, damage small villages, reduce visibility, and hinder human
daily activities, as well as impact aircraft and road transportation. It pollutes the atmosphere and air
quality, influences cloud formation [3], obscures sunlight, and alters temperature. Some dust storms
can remain suspended in the air for several days and travel by wind far from where they originated.
Recently, several studies have observed that heavy dust storms can impact the formation and evolution
of hurricanes [4,5].

The detection of dust storms in a timely manner can serve as warnings for people to avoid
economic loss and even loss of life. The detection results are also very useful for atmospheric modeling
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and simulation. Due to the large coverage of each dust storm, satellite remote sensing technology has
been applied to detect and monitor dust storms. Color imagery techniques have been the primary
tools used for dust storm monitoring in the past, where early researchers used the visible spectrum to
monitor dust outbreaks as well as to estimate dust optical depth over oceanic regions [6,7]. Dust was
detected and its evolution followed by its yellow color on Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) satellite images. Miller [8] applied color enhancement techniques to differentiate dust, ocean
surfaces, and clouds. Several studies have also shown that it is possible to detect Saharan dust over
land using brightness temperature (BT) in thermal infrared spectra [9–12]. A correlation of the BT
between 11 µm and 3.7 µm bands for dust outbreaks was proposed by Ackerman [13], who developed
a further tri-spectral (8, 11, and 12 µm) technique for detecting dust over water and for distinguishing
dust plumes from water/ice clouds [14].

Currently, several approaches have been developed for dust storm detection using MODIS
measurements given its good spectral, spatial, and temporal resolutions. Qu et al. [15] used the Normalized
Difference Dust Index (NDDI), a normalized ratio of the 2.1 µm band and blue band, to detect dust storms
and monitor the moisture change of the dust storm. NDDI has advantages due to the high sensitivity of
the MODIS 2.1 µm band to moisture content. Hao et al. [16] proposed a thermal infrared index to detect
Saharan dust storms by combining four moderate resolution Imaging Spectroradiometer (MODIS)
thermal emissive bands (TEBs). An automatic multi-spectral approach for detecting dust storms in
Northwest China was developed by Han et al. [17], where a set of indices was used to separate the dust
from cloud, snow, and land with several Reflective Solar Band (RSBs) measurements.

However, most of abovementioned methods detect dust storms only with measurements of either
RSBs or TEBs. Furthermore, the cloud mask product [18] is used directly, which may misclassify partial
dust as clouds under some conditions, hence decreasing detection quality. In this paper, an algorithm
based on the multi-spectral technique was developed, combining measurements of six MODIS RSBs
and TEBs. The bands were selected according to the spectral analysis and the thresholds of each test
were decided with the statistical analysis. Several dust storm events were selected as case studies to
test the algorithm. Additionally, the results were validated not only with MODIS true color images,
but also quantitatively with OMI and CALIOP measurements.

2. Data and Methods

2.1. Data

2.1.1. Moderate Resolution Imaging Spectroradiometer (MODIS)

MODIS, one of the key sensors of the NASA Earth Observing System (EOS), was launched onboard
the Terra spacecraft on 18 December 1999 and the Aqua spacecraft on 4 May 2002 [19,20]. Both Terra
and Aqua MODIS operate in a sun-synchronous orbit at an altitude of 705 km. Terra descends
southwards with the local equatorial crossing time 10:30 a.m. and Aqua ascends northwards with
the local equatorial crossing time 1:30 p.m. respectively. The MODIS makes Earth observations using
36 bands, including 20 RSBs and 16 TEBs with a wavelength range from 0.4 to 14.2 µm. Three different
spatial resolutions have been designed based on the band specifications and science applications:
250 m (bands 1–2), 500 m (bands 3–7), and 1 km (bands 8–36). Among these bands, band 1 (red),
band 4 (green), and band 3 (blue) are usually used for constructing RGB (Red Green Blue) true color
images. The MODIS is a cross-track scanning radiometer with a two-sided scan mirror which rotates
over a scan angle range of ±55◦, producing a swath of 2330 km in scan direction and 10 km in track
direction with each scan [21].



Remote Sens. 2017, 9, 869 3 of 17

The MODIS L1A geolocation and L1B calibrated radiance dataset were used for detecting dust
aerosols. The Aerosol Optical Depth (AOD) used in this paper was a level-2 C006 aerosol product, with
a resolution of 10 km (at nadir), obtained from the Level 1 and Atmosphere Archive and Distribution
System (LAADS) server https://ladsweb.modaps.eosdis.nasa.gov/. Table 1 shows the spectral bands
of MODIS (Source: http://modis.gsfc.nasa.gov/about/specifications.php).

Table 1. Specifications of moderate resolution imaging spectroradiometer (MODIS) spectral bands.

FPA 1 Band CW 2 Bandwidth 3 Ltyp 4 Primary Use

RSB

1 645 nm 620–670 21.8 Land/Cloud/Aerosols Boundaries
2 858 nm 841–876 24.7 Land/Cloud/Aerosols Boundaries
3 469 nm 459–479 35.3 Land/Cloud/Aerosols Boundaries
4 555 nm 545–565 29.0 Land/Cloud/Aerosols Boundaries
5 1240 nm 1230–1250 5.4 Land/Cloud/Aerosols Boundaries
6 1640 nm 1628–1652 7.3 Land/Cloud/Aerosols Boundaries
7 2130 nm 2105–2155 1.0 Land/Cloud/Aerosols Boundaries
8 412 nm 405–420 44.9 Ocean Color/Phytoplankton/Biogeochemistry
9 443 nm 438–448 41.9 Ocean Color/Phytoplankton/Biogeochemistry

10 488 nm 483–493 32.1 Ocean Color/Phytoplankton/Biogeochemistry
11 531 nm 526–536 27.9 Ocean Color/Phytoplankton/Biogeochemistry
12 551 nm 546–556 21.0 Ocean Color/Phytoplankton/Biogeochemistry
13 667 nm 662–672 9.5 Ocean Color/Phytoplankton/Biogeochemistry
14 678 nm 673–683 8.7 Ocean Color/Phytoplankton/Biogeochemistry
15 748 nm 743–753 10.2 Ocean Color/Phytoplankton/Biogeochemistry
16 869 nm 862–877 6.2 Ocean Color/Phytoplankton/Biogeochemistry
17 905 nm 890–920 10.0 Atmospheric Water Vapor
18 936 nm 931–941 3.6 Atmospheric Water Vapor
19 940 nm 915–965 15.0 Atmospheric Water Vapor
26 1375 nm 1360–1390 6.0 Cirrus Clouds Water Vapor

TEB

20 3.75 µm 3.660–3.840 300 Surface/Cloud Temperature
21 3.96 µm 3.929–3.989 335 Surface/Cloud Temperature
22 3.96 µm 3.929–3.989 300 Surface/Cloud Temperature
23 4.05 µm 4.020–4.080 300 Surface/Cloud Temperature
24 4.47 µm 4.433–4.498 250 Atmospheric Temperature
25 4.52 µm 4.482–4.549 275 Atmospheric Temperature
27 6.72 µm 6.535–6.895 240 Water Vapor
28 7.33 µm 7.175–7.475 250 Water Vapor
29 8.55 µm 8.400–8.700 300 Water Vapor
30 9.73 µm 9.580–9.880 250 Ozone
31 11.03 µm 10.78–11.28 300 Surface/Cloud Temperature
32 12.02 µm 11.77–12.27 300 Surface/Cloud Temperature
33 13.34 µm 13.18–13.48 260 Cloud Top Altitude
34 13.64 µm 13.48–13.78 250 Cloud Top Altitude
35 13.94 µm 13.78–14.08 240 Cloud Top Altitude
36 14.24 µm 14.08–14.38 220 Cloud Top Altitude

1 FPA: Focal Plane Assemblies; 2 CW: Central Wavelength; 3 The unit of bandwidth in this table for Reflective Solar
Band (RSB) is nm and for Thermal Emissive Band (TEB) is µm; 4 Ltyp is the typical value for Thermal Emissive
Band (RSB) in the unit of W/m2/sr/µ and for TEB in the unit of K.

To accurately decide the bands and thresholds in the dust storm detection algorithm, more than
fifty dust storm events in China that occurred during 2001–2007 (2001–2007 for Terra MODIS and
2002–2007 for Aqua MODIS) were collected as training data for spectral analysis. Detailed information
of each selected dust storm event is listed in Table 2, including the sensor, year, day, and UTC
(Coordinated Universal Time) time. Cloud pixels and clear pixels were also collected, and are presented
in Tables 3 and 4, based on the MODIS cloud mask product.

https://ladsweb.modaps.eosdis.nasa.gov/
http://modis.gsfc.nasa.gov/about/specifications.php
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Table 2. Dust storm events selected as training data for spectral and statistical analyses.

MODIS Year Julian/Calendar Time MODIS Year Julian/Calendar Time

Aqua 2002 234-08/22 06:50 Terra 2001 096-04/06 03:40
Aqua 2002 239-08/27 07:10 Terra 2001 098-04/08 05:05
Aqua 2002 290-10/17 07:40 Terra 2001 100-04/10 06:30
Aqua 2002 299-10/26 07:50 Terra 2002 106-04/16 05:15
Aqua 2003 107-04/17 07:00 Terra 2002 113-04/23 05:20
Aqua 2003 108-04/18 07:45 Terra 2002 114-04/24 06:05
Aqua 2004 120-04/30 07:40 Terra 2003 107-04/17 05:25
Aqua 2005 030-01/30 07:15 Terra 2004 329-11/24 05:05
Aqua 2005 118-04/28 06:25 Terra 2004 330-11/25 05:45
Aqua 2005 173-06/22 06:30 Terra 2005 030-01/30 05:35
Aqua 2005 176-06/25 07:00 Terra 2005 155-06/04 05:05
Aqua 2006 100-04/10 06:05 Terra 2005 17606/25 05:25
Aqua 2006 101-04/11 06:50 Terra 2006 045-02/14 05:05
Aqua 2006 103-04/13 06:40 Terra 2006 100-04/10 04:30
Aqua 2006 113-04/23 07:15 Terra 2006 101-04/11 05:10
Aqua 2006 207-07/26 07:30 Terra 2006 102-04/12 04:15
Aqua 2007 089-03/30 06:00 Terra 2006 105-04/15 04:45
Aqua 2007 090-03/31 05:00 Terra 2006 120-04/30 05:40
Aqua 2007 106-04/16 08:20 Terra 2006 124-05/04 05:20
Aqua 2007 113-04/23 06:45 Terra 2007 090-03/31 03:20
Aqua 2007 113-04/23 08:25 Terra 2007 091-04/01 05:45
Aqua 2007 130-05/10 07:30 Terra 2007 092-04/02 04:50
Aqua 2007 131-05/11 08:10 Terra 2007 106-04/16 05:00
Terra 2001 061-03/02 06:25 Terra 2007 113-04/23 05:05
Terra 2001 064-03/05 03:40 Terra 2007 120-04/30 03:30
Terra 2001 094-04/04 05:30 Terra 2007 130-05/10 05:50
Terra 2001 096-04/06 03:35 Terra 2007 131-05/11 04:55

Table 3. Cloud events selected as training data for spectral and statistical analyses.

MODIS Year Julian/Calendar Time MODIS Year Julian/Calendar Time

Aqua 2002 239-08/27 07:10 Terra 2001 064-03/05 03:40
Aqua 2003 107-04/17 07:00 Terra 2001 094-04/04 05:30
Aqua 2003 108-04/18 07:45 Terra 2001 096-04/06 03:35
Aqua 2004 070-03/10 04:35 Terra 2001 096-04/06 03:40
Aqua 2004 087-03/27 05:15 Terra 2001 09704/07 02:40
Aqua 2004 087-03/27 05:20 Terra 2001 098-04/-8 03:25
Aqua 2004 119-04/28 05:20 Terra 2001 238-08/26 05:25
Aqua 2004 120-04/29 07:40 Terra 2002 006-01/06 05:40
Aqua 2005 118-04/28 04:45 Terra 2002 097-04/07 02:00
Aqua 2005 118-04/28 06:25 Terra 2002 097-04/07 03:40
Aqua 2005 119-04/29 03:50 Terra 2002 113-04/23 05:20
Aqua 2005 119-04/29 05:20 Terra 2002 120-04/30 05:25
Aqua 2005 120-04/30 02:55 Terra 2004 330-11/25 04:10
Aqua 2005 121-05/01 03:35 Terra 2004 330-11/25 05:45
Aqua 2005 173-06/22 04:55 Terra 2005 118-04/28 04:45
Aqua 2006 043-02/12 06:10 Terra 2005 119-04/29 02:10
Aqua 2006 096-04/06 04:45 Terra 2005 119-04/29 03:50
Aqua 2006 100-04/10 06:05 Terra 2005 120-04/30 01:15
Aqua 2006 102-04/12 04:15 Terra 2005 120-04/30 02:25
Aqua 2006 107-04/17 04:35 Terra 2005 173-06/22 03:15
Aqua 2006 108-04/18 05:15 Terra 2005 177-06/26 06:05
Aqua 2006 109-04/19 04:20 Terra 2005 198-07/17 04:45
Aqua 2006 113-04/23 07:15 Terra 2005 310-11/06 03:05
Aqua 2006 149-05/29 05:10 Terra 2006 091-04/01 03:00
Aqua 2006 149-05/29 05:15 Terra 2006 097-04/07 02:15
Aqua 2007 083-03/24 04:55 Terra 2006 102-04/12 04:15
Aqua 2007 089-03/30 05:55 Terra 2006 107-04/17 02:55
Aqua 2007 089-03/30 06:00 Terra 2006 120-04/30 05:40
Aqua 2007 090-03/31 05:00 Terra 2006 124-05/04 05:20
Aqua 2007 106-03/16 08:20 Terra 2007 090-03/31 03:20
Aqua 2007 113-03/23 06:45 Terra 2007 091-04/01 05:45
Terra 2001 106-03/16 06:25 Terra 2007 120-04/30 01:55
Terra 2001 061-03/02 03:40 Terra 2007 120-04/30 03:30
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Table 4. Clear scenes selected as training data for spectral and statistical analyses.

Dark Clear Pixels Bright Clear Pixels

MODIS Year Julian/Calendar Time MODIS Year Julian/Calendar Time

Aqua 2004 087-03/27 05:15 Aqua 2002 239-08/27 07:10
Aqua 2004 119-04/28 05:10 Terra 2001 238-08/26 05:25
Aqua 2006 097-04/07 05:35 Terra 2001 298-10/25 05:50
Aqua 2006 098-04/08 04:40 Terra 2001 300-10/27 05:35
Aqua 2006 149-05/29 05:10 Terra 2002 006-01/06 05:40
Terra 2001 079-03/20 02:55 Terra 2002 120-04/30 05:25
Terra 2001 107-04/17 03:20 Terra 2006 119-04/29 05:00
Terra 2002 091-04/01 02:40 Terra 2006 124-05/04 05:20
Terra 2005 118-04/18 03:10 Terra 2006 133-05/13 05:10
Terra 2005 119-04/19 02:10 Terra 2007 113-04/23 05:05
Terra 2005 173-06/22 03:15 Terra 2007 130-05/10 0550
Terra 2005 310-11/06 03:05 Terra 2007 131-05/11 04:55
Terra 2007 120-04/30 03:30

2.1.2. Ozone Monitoring Instrument (OMI)

OMI was also onboard Aura. OMI views the Earth with a wide view angle of ±57◦ relative to
the nadir. The large swath (up to 2600 km in scan direction) enables OMI to achieve almost daily global
coverage in 14 orbits [22,23]. OMI was designed for monitoring the ozone and other atmospheric species
including aerosols, and is a hyperspectral sensor that observes solar backscatter radiation in the ultraviolet
(UV) and visible spectrum (range from 270 nm to 500 nm) at a spectral resolution of about 0.5 nm [23,24].

The wavelengths and algorithms used for retrieving OMI aerosol parameters are significantly
different from those of MODIS. These differences do produce some advantages, such as the high
sensitivity of the OMI UV retrieval algorithm to aerosol absorption and the ability to retrieve aerosol
information over bright surfaces and clouds [25]. The OMI Ultra Violet Aerosol Index (UVAI) is
an effective index to reflect the presence of absorbing aerosols. Therefore, a UVAI product was adopted
for the quantitative validation of dust detection derived from MODIS measurements. The UVAI
product can be obtained from Goddard Earth Sciences Data and Information Services Center (GES
DISC) server at http://disc.sci.gsfc.nasa.gov/SSW/.

2.1.3. Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)

CALIOP, on board Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO),
was launched on 28 April 2006. It flies along the same orbit as the Aqua spacecraft and is 1 min and
15 s behind. CALIOP is a two-wavelength polarization-sensitive Lidar that is designed to acquire
the vertical profiles of aerosols with a backscatter signal at 532 nm and 1064 nm both day and night,
as well as profiles of linear depolarization at 532 nm [26]. The Vertical Feature Mask (VFM)—one
of the CALIOP level 2 products—provides scene classification in a 16-bit integer for each altitude
resolution element. The VFM classifies various scene features into several types such as clear air, cloud,
aerosol, surface, and so on. Based on these types, it can separate airborne dust from ground dust with
the vertical information of aerosol and cloud layers. Therefore, the CALIOP VFM was used to validate
the dust detection derived with MODIS measurements, and can be obtained from the Atmospheric
Science Data Center (ASDC) server at https://eosweb.larc.nasa.gov/JORDER/ceres.html.

2.2. Methodology

2.2.1. Algorithm Development

According to selected cases, most Asian dust storms originate and dissipate within inland areas.
Therefore, the training data of dust events (shown in Table 2) can be roughly divided into two categories
by underlying land surface type: dust storm over bright surface, or over dark surface. The spectral

http://disc.sci.gsfc. nasa.gov/SSW/
https://eosweb.larc.nasa.gov/JORDER/ceres.html
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curves of these two categories of dust storms are shown in Figure 1, as well as clouds. Figures 2 and 3
represent the spectral curve comparisons between dust and clear conditions over dark and bright
surfaces separately. The spectral response at each band is the statistical mean value of all training data,
as well as the standard deviation.

In Figure 1, cloud shows a high reflectivity in band 3 (469 nm) and a low reflectivity in band 7
(2130 nm), while dust displays a reverse trend. In the thermal spectrum, cloud had a much lower
brightness temperature than dust. This difference assists their separation significantly. In Figures 2 and 3,
the relatively large response difference between the dust and clear scenes over both dark and bright
surfaces was found at band 1 (red band 645 nm). Additionally, the Bright Temperature Difference (BTD)
(3.7, 11) value of dust was larger than that of clear scenes.

In Figure 1, the brightness temperature in the thermal spectrum between dust and cloud was
obviously different. Ackerman [14] proposed an IR split windows technique to discriminate the dust
storm layer from cloud using the brightness temperature difference between the 11 and the 12 µm
regions of the spectrum. Based on Ackerman’s conclusion, the BTD (12, 11) value was negative
for cloud and positive for dust. Meanwhile, the spectral curves in Figure 1 exhibited the same
characteristics. Furthermore, dust had a high reflectivity at band 7, but a low reflectivity at band 3
(blue band 469 nm). In contrast, the blue band was sensitive to cloud, but band 7 was insensitive to
cloud. These inverse spectral features greatly helped to distinguish between dust and cloud.

Qu et al. [15] raised a Normalized Difference Dust Index (NDDI) to detect dust, with the formula
NDDI = (R3 − R7)/(R3 + R7), and the BTD (3.7, 11) was selected to separate dust from surface scenes.
From Figures 2 and 3, we can see that both dust and surface scenes had a similar BT at band 20 (3.7 µm),
but dust had a much lower BT at the thermal spectrum than surface scenes. Additionally, the BTD
of band 31 (11 µm) relative to band 20 had the largest statistical difference between dust and surface
scenes. Moreover, in a reflective solar spectrum, the relative large reflectance difference between
the dust and surface scenes (both bright and dark surfaces) was found at band 1. Therefore, the single
reflectance of band 1 was picked up to differentiate dust from surface scenes.

Overall, the BTD (12, 11) and NDDI were chosen to discriminate between dust and cloud, while
the BTD (3.7, 11) and the single reflectance of band 1 were chosen to identify dust over both dark and
bright surfaces.
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Figure 3. Response curves of dust and clear bright pixels.

2.2.2. Training Process and Flowchart

Based on the above analysis, we chose four indices to detect dust: NDDI, BTD (12, 11), BTD (3.7, 11),
and the logarithm of the single reflectance of band 1. To determine the thresholds of the four indices,
we calculated and tested all training data. Figure 4 shows the scatterplot of the four indices separately,
in which each data point was the average value of one dust storm event, along with the standard deviation.

Figure 4a,b show a large difference in the NDDI and BTD (12, 11) values between cloud and
dust. Clearly, cloud had negative BTD (12, 11) and NDDI values, while in contrast, dust had positive
values of these two indices. Meanwhile, dust had larger BTD (3.7, 11) values than clear bright surfaces
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(Figure 4c) and clear dark surfaces (Figure 4e). Among them, the BTD (3.7, 11) values of the dark
surface was smallest, generally less than 20 K. In Figure 4d,f, the logarithm of the single reflectance of
the red band was introduced to separate dust from surface scenes. This indicated that using logarithm
could enhance the resolving power of this index, especially in a small reflectance range. Obviously,
the Ln (R1) of most dust pixels was larger than −1.2 over bright surfaces, and −1.6 over dark surfaces.

Remote Sens. 2017, 9, 869  8 of 17 

 

(Figure 4c) and clear dark surfaces (Figure 4e). Among them, the BTD (3.7, 11) values of the dark 
surface was smallest, generally less than 20 K. In Figure 4d,f, the logarithm of the single reflectance 
of the red band was introduced to separate dust from surface scenes. This indicated that using 
logarithm could enhance the resolving power of this index, especially in a small reflectance range. 
Obviously, the Ln (R1) of most dust pixels was larger than −1.2 over bright surfaces, and −1.6 over 
dark surfaces. 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 4. Statistical analyses of training data for deciding thresholds. (a) Bright Temperature 
Difference (BTD) (12, 11) values for dust and cloud; (b) Normalized Difference Dust Index (NDDI) 
values for dust and cloud; (c) BTD (3.7, 11) values for dust and clear pixels over bright surfaces; (d) 
Ln (R1) values for dust and clear pixels over bright surfaces; (e) BTD (3.7, 11) values for dust and clear 
pixels over dark surfaces; and (f) Ln (R1) values for dust and dark pixels over dark surfaces. 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
-2

-1

0

1

2

3

4

5

6

7

NDDI

B
T

12
 -

 B
T

11

Dust pixel
Cloud pixel

-2 -1 0 1 2 3 4 5 6
-1

-0.5

0

0.5

BT12 - BT11

N
D

D
I

Dust pixel
Cloud pixel

-1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7
0

10

20

30

40

50

60

70

80

Ln (R1)

B
T

3.
7 

- 
B

T
11

Dust pixel over bright surface
Clear pixel of bright surface

10 20 30 40 50 60 70
-1.5

-1.4

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

BT3.7 - BT11

L
n

 (
R

1)

Dust pixel over bright surface
Clear pixel of bright surface

-2.5 -2 -1.5 -1 -0.5
0

10

20

30

40

50

60

70

Ln (R1)

B
T

3.
7 

- 
B

T
11

Clear pixel of dark surface
Dust pixel over dark surface

0 10 20 30 40 50 60 70
-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

BT3.7 - BT11

L
n

 (
R

1)

Clear pixel of dark surface
Dust pixel over dark surface

Figure 4. Statistical analyses of training data for deciding thresholds. (a) Bright Temperature Difference
(BTD) (12, 11) values for dust and cloud; (b) Normalized Difference Dust Index (NDDI) values for dust
and cloud; (c) BTD (3.7, 11) values for dust and clear pixels over bright surfaces; (d) Ln (R1) values for
dust and clear pixels over bright surfaces; (e) BTD (3.7, 11) values for dust and clear pixels over dark
surfaces; and (f) Ln (R1) values for dust and dark pixels over dark surfaces.
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The detailed thresholds of each index are summarized in the Table 5. It should be noted that
the errors listed in Table 5 represent (when using the corresponding thresholds to determine dust
or cloud) the percentage of misclassified pixels. The largest error appeared at the separation of dust
from cloud over dark surfaces in the reflective solar spectrum, which was up to 12.5%. This large
error was possibly caused by light dust pixels suspended over water. Considering that some pixels
could be counted repeatedly, the total errors of both over bright and dark surfaces were not equal to
the summation of the errors from each test.

Table 5. The tests and thresholds used for detecting dust storms; and the sensitivity analysis based on
the selected dust storm events in China during the period of 2001–2007.

Class Type Threshold Test
Bright Surfaces Dark Surfaces

Value Error (%) Value Error (%)

Dust over land
BT 3.7–BT 11 25 K 2.8 20 K 2.6

Ln (R1) −1.2 2.3 −1.6 4.4

Cloud
BT 12–BT 11 0 K 0.31.9 0 K 0.8

(R7 − R3)/(R3 + R7) 0.0 1.9 0.0 12.5

Total 1 1 6.0 1 17.7
1 The total errors of both over bright and dark surfaces were not equal to the summation of errors from each test
because an overlap existed among the tests.

Based on the above analysis and the thresholds listed in Table 5, an algorithm based on
the multi-spectral technique for detecting dust aerosol was developed. The flowchart of this dust
detection algorithm is shown in Figure 5. First, the MODIS L1B measurements were input into the cloud
module to filter out cloud by employing BTD (12, 11) and NDDI. Next, the remaining pixels were
divided into two branches based on pre-stored surface type information: dust over bright surfaces and
over dark surfaces. Third, the BTD (3.7, 11) and the logarithm of reflectance at band 1 were applied in
both branches with respective thresholds. At the end of the process, an additional test was executed to
further filter out discrete pixels. In view of the dust continuity, if a pixel was identified as a dust pixel
but was not close to other dust pixels, this pixel was considered as noise and deleted from the dust
images. It should be noted that since dust aerosol detection is based on the MODIS measurements
pixel by pixel, the spatial resolution of dust aerosol detection results was up to 1 km.
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3. Results and Discussion

In this section, we conducted the dust storm detection test with MODIS RSB and TEB
measurements based on the algorithm shown in Figure 5. Furthermore, the quantitative validation of
the dust detection results with OMI and CALIOP was also executed.

3.1. Algorithm Test Cases

We selected three MODIS measurements to represent the dust events occurring in different
locations, the results of which are shown in Figures 6–8, respectively. Figure 6 represents the dust
storm above the Taklimakan Desert, captured by Terra MODIS on 25 June 2005. From Figure 6a
(MODIS true color image), we can see that the dust storm was blown in a long, narrow shape, while
in Figure 6b the detected dusts were marked with a black color, which had good agreement with the
MODIS true color image. The dust in Figure 7 was a large dust storm that covered most of Northeastern
China, captured by Terra MODIS on 7 April 2001. It is worth noting that the dust storm was mixed
with cloud, clearly shown in Figure 7a. Nevertheless, in Figure 7b, the dust pixels were obviously
separated from the cloud through a comparison with the MODIS true color image. This indicated
that our multi-spectral dust detection technique could distinguish between dust and cloud extremely
well. Only a small part of dust aerosol pixels over the ocean (left bottom corner) was missed as the
algorithm mainly focuses on the land area. In Figure 8, the dust storm spread across two countries,
Pakistan and Afghanistan, on 10 August 2008. Two strings of dust plumes in the middle of the image
were identified successfully, and another small dust storm in the right upper corner was also detected.
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The MODIS Aerosol Optical Depth (AOD) images in the same region were displayed for
comparison, as shown in Figure 6c, Figure 7c, and Figure 8c. In the AOD images, the AOD was
not accurately retrieved for the areas with heavy dust loading as the aerosol inversion algorithm taken
by the MODIS usually failed to retrieve AOD when there was a high concentration of aerosols [27].
Therefore, in this condition, the detecting results of the algorithm described in Figure 5 could provide
more accurate information about the dust aerosols than the MODIS AOD product.

3.2. Validation of Dust Storm Detection with OMI

The OMI instrument can distinguish between aerosol types such as smoke, dust, and sulfates.
The UVAI is an index to measure how much the wavelength depends on the backscattered UV radiation
as an atmosphere containing aerosols (Mie scattering, Rayleigh scattering, and absorption) differs
from that of a pure molecular atmosphere (pure Rayleigh scattering). It is a qualitative indicator of
the presence of the absorbing aerosols, defined as UVAI = −100 log10 (I360Meas/I360Calc), where
I360Meas is the measured 360 nm OMI radiance and I360Calc is the calculated 360 nm OMI radiance
for a Rayleigh atmosphere [27,28]. Since the UVAI is only sensitive to absorbing aerosols, it is able to
identify absorbing aerosols (such as dust) from weakly or non-absorbing particles. Usually, aerosols
that absorb in the UV range yield positive UVAI values. Near-zero UVAI values appear when the sky
is clear or there are large non-absorbing aerosols and clouds which have a nearly zero Angstrom
coefficient. The non-absorbing small particle aerosols are the main source of negative UVAI values
due to their non-zero Angstrom coefficients [29]. Hence, in this section the dust detection result was
validated by OMI UVAI.

The Aqua MODIS measurements on 23 October 2007 at UTC time 04:55 were selected to conduct
dust detection based on the multi-spectral dust detection technique illustrated in Section 2 (Figure 5).
Figure 9a represents the MODIS true color image, which shows that a dust storm was raging in central
China. Figure 9b shows the dust detection results. The UVAI values associated with dust aerosol are
usually larger than 1.2, according to the procedure of aerosol selection in the OMAERUV README file.
Therefore, only areas with UVAI values larger than 1.2 in the OMI UVAI image are shown in Figure 9c.

Validation was executed by matching pixels from two sensors (MODIS and OMI) with their
geolocation measurements in the overlapping region. Table 6 shows the statistics of the difference
between the dust detection results and the UVAI. With comparison, a total of about 187,472 pixels were
labeled as dust with the OMI UVAI product. Among these pixels, 137,554 pixels (70.77%) were labeled
as dust in the MODIS dust image, but 49,918 pixels (25.68%) were undetected. Furthermore, 6871 pixels
(3.55%) were identified as dust in the MODIS dust image, but labeled as non-dust pixels in the OMI
UVAI image. Figure 9d gives the spatial distribution of all identified, unidentified, and misidentified
pixels and also shows that the center part of the dust storm was detected by both images (Figure 9b,c).
The major difference existed at the edge of the dust storm, where many pixels were labeled as dust
aerosol in the OMI UVAI image. This difference may be attributed to the different spatial resolutions
between the two sensors. However, due to the different spatial resolutions, the number of dust pixels in
the MODIS dust image (1 km) was not enough to aggregate a corresponding pixel in the OMI UVAI
image (10 km). In other words, some dust pixels in the OMI UVAI image were not filled with dust pixels
in the MODIS dust image. Statistically, at the margin area, more than 5% difference could be attributed
to the spatial resolution differences between two sensors. Moreover, the small clouds that floated above
the dust storm contributed another 3% of errors, which were too small to be detected by the OMI sensor.

Table 6. The error analysis in the comparisons between MODIS dust image and OMI UVAI images
with different UVAI values.

MODIS Dust Image

Non-Dust Pixels Dust Pixels

OMI UVAI image Non-dust pixels (UVAI ≤ 1.2) 6871
Dust pixels (UVAI > 1.2) 49,918 137,554
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(d) the difference between UVAI and dust image.

3.3. Validation of Dust Storm Detection with CALIOP

CALIOP can separate airborne dust from ground dust with the vertical information of aerosol
and cloud layers. The CALIOP VFM classifies various scene features into seven types: invalid (bad or
missing data), clear air, cloud, aerosol, stratospheric feature (polar stratospheric cloud or stratospheric
aerosol), surface, and no signal. These types can be used for the quantitative validation of dust
detection results.

Aqua MODIS measurements over the Taklimakan Desert on 26 July 2006 were selected to conduct
dust detection, based on the multi-spectral dust detection technique illustrated in Section 2 (Figure 5).
Figure 10a shows the MODIS true color image, which was generated with measurements extracted
from two swaths at the UTC times of 7:25 and 7:30. The dust aerosol was located in the eastern part of
the desert. Meanwhile, the blue dash line represented the footprint of CALIOP in this area. Figure 10b
shows the dust detection result and the footprint of CALIOP in the blue dash line. The VFM product
of the region marked by the blue dash line is shown in Figure 11.

It is worth noting that the CALIOP VFM may misclassify dust aerosols as cloud, which is observed
in Figure 11. The black circle represents the dust aerosol layer misclassified as cloud. To avoid the
impact of misclassification (while considering the difference between VFM’s more than one vertical
layer and MODIS’s single layer), we redefined the VFM types so that when dust was marked in one
layer, the whole layer was recognized as dust. After the types were redefined, the pixels of CALIOP
and MODIS were matched based on their geolocation.
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Figure 10. (a) The MODIS true color image of the dust storm over the Taklimakan Desert on 26 July 2006.
The blue solid line is the footprint of CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization);
(b) The dust image of the dust storm in the Taklimakan Desert on 26 July 2006.
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Figure 11. The CALIOP Vertical Feature Mask (VFM) data product on 26 July 2006 at UTC time
07:30. The colors stand for different scene features listed as follows: 1 = invalid (bad or missing data);
2 = clear air; 3 = cloud; 4 = aerosol; 5 = stratospheric feature; polar stratospheric cloud or stratospheric
aerosol; 6 = surface; and 7 = no signal.

Error analysis was performed to count the number of pixels identified (pixels labeled as dust
aerosols with both sensors), unidentified (pixels labeled as dust aerosols with only CALIOP, but
undetected with MODIS), and misidentified (pixels labeled as non-dust aerosol pixels with CALIOP,
but detected with MODIS). Generally, the stronger the dust storm, the higher reflectance in the red band.
Therefore, the dust aerosol pixels were sorted into several categories according to their reflectance at
the red band, as seen in Figure 12. There were 204 pixels identified and only 18 pixels unidentified.
Approximately 91.89% of the dust aerosol pixels obtained from the proposed multi-spectral detection
algorithm were correctly identified in a comparison with the CALIOP VFM data product. Additionally,
there were 21 pixels misidentified. In reality, the statistical analysis showed that most of the heavy
dust aerosol pixels were identified. Unidentified and misidentified dust aerosol pixels were mostly
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concentrated in the low reflectance range at the red band, namely low dust aerosol loading. Figure 13
displays the profile of the dust storm in the sensor motion direction using the reflectance at the red
band. In Figure 13, the errors (unidentified or misidentified) were located only at the margin of the
dust storm with light aerosol loading. Consequently, the multi-spectral algorithm of MODIS could be
used for dust aerosol detection over a bright surface.
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Figure 12. The error statistics of validating MODIS dust aerosol detection results with CALIOP Vertical
Feature Mask (VFM) data product.
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4. Conclusions

In this paper, a multi-spectral algorithm for observing and monitoring dust aerosols over both
bright and dark surfaces was developed by combining measurements of the MODIS solar (RSB) and
thermal bands (TEB).

The spectral curves of several major scene types, such as dust, cloud, vegetated surface, and
non-vegetated surface, were derived statistically from a large quantity of training data. According to
spectral analysis, the algorithm was divided into bright surface and dark surface branches for dust
detection. In the algorithm, the thermal bands were mainly used for filtering out cloud, as well as
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a water vapor band, while the RSBs were selected for separating dust aerosols from other scene types.
Well-developed indices from other previous studies were adopted directly, and some tests were proposed
for the first time, including the reflectance of the red band used for dust detection. By comparing
the MODIS true color image, the core part of the dust pixels was correctly identified, except for some
missing pixels that had relatively low intensity. Meanwhile, OMI UVAI and CALIOP were selected for
quantitative validation. The validation by OMI UVAI showed that most plumes (more than 70%) were
detected. One main factor that impacted the accuracy of the algorithm may be attributed to the spatial
resolution difference between the two sensors. The validation by CALIOP VFM showed that more
than 90% of dust aerosol pixels were identified correctly in the selected case. Although there were
some misclassified pixels, most of them were concentrated at the edge of the dust storm with light dust
aerosol loading. Statistical analysis of the training data was the primary method used in this research to
achieve the desired spectral features of the dust. Although the statistical analysis provided reasonable
results, its accuracy was dependent on the number of training data. Moreover, the thresholds used in
the algorithm were usually site-specific, which limited the application of the algorithm.

This approach for detecting dust aerosols with satellite remote sensing could be enhanced with
further studies such as adding more precise site-specific information. Currently, the surface has only
been separated into dark and bright surfaces for dust storm monitoring, thus a stricter classification of
surface features and site-specific thresholds could enhance the accuracy of the algorithm significantly.
It would be of great value to build a lookup table to store the site-specific thresholds for the entire
global dataset. On the other hand, some useful research aims to be implemented based on this
dissertation in the near future include: (1) tentative retrieving of the AOD based on the detection results;
and (2) gathering dust information over a long time range. With long-term aerosol information, it is
feasible to analyze their distribution, as well as their motion, height, width, and even seasonal variation.
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