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Abstract: The detection and monitoring of surface water and its extent are critical for understanding
floodwater hazards. Flooding and undermining caused by surface water flow can result in damage
to critical infrastructure and changes in ecosystems. Along major transportation corridors, such as
railways, even small bodies of water can pose significant hazards resulting in eroded or washed
out tracks. In this study, heterogeneous data from synthetic aperture radar (SAR) satellite missions,
optical satellite-based imagery and airborne light detection and ranging (LiDAR) were fused for
surface water detection. Each dataset was independently classified for surface water and then fused
classification models of the three datasets were created. A multi-level decision tree was developed
to create an optimal water mask by minimizing the differences between models originating from
single datasets. Results show a water classification uncertainty of 4–9% using the final fused models
compared to 17–23% uncertainty using single polarization SAR. Of note is the use of a high resolution
LiDAR digital elevation model (DEM) to remove shadow and layover effects in the SAR observations,
which reduces overestimation of surface water with growing vegetation. Overall, the results highlight
the advantages of fusing multiple heterogeneous remote sensing techniques to detect surface water
in a predominantly natural landscape.
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1. Introduction

Synthetic aperture radar (SAR), light detection and ranging (LiDAR) and multispectral
imaging are established remote sensing techniques for use in land cover classification models [1–3].
Many studies assess the ability to integrate two remote sensing techniques to detect wetlands [4–12].
However, fewer studies discuss the ability to integrate all three [13,14]. A number of studies assess
the ability of an integrated model to detect wetlands, e.g., in [13], the focus is on prairie grasslands
and LiDAR is used to correct terrain effects in the SAR models. The objectives of this study are
to: (1) develop a synergistic water classification model by integrating models derived from three
independent sensors, SAR, optical, and LiDAR; (2) compare the integrated models to those derived
from individual remote sensing techniques; and (3) investigate discrepancies in land cover classification
between the individual techniques and the integrated models, with a focus on surface water.

SAR detects differences in the dielectric and geometric properties of target surfaces, which affects
the intensity of the backscatter signal. Water has a high dielectric constant and generally acts as
a specular reflector, thus it is differentiable in SAR imagery appearing dark with low backscatter.
Misclassification errors of omission can occur due to wind (which creates waves on the water surface),
flooding of vegetated areas, or ice cover [1]. Several studies demonstrate the utility of single polarization
SAR data for analyzing surface water extent and changes. SAR observations can also penetrate
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vegetation, to varying degrees, depending on the wavelength, vegetation type and canopy conditions.
However, due to the side looking nature of SAR, some areas on the ground surface may be misclassified
when terrain, urban agglomerates, or vegetation create regions of radar shadow (commission error)
and layover (omission error) [15]. Regional studies including RADARSAT-1, RADARSAT-2 and
TerraSAR-X (TSX) data for mapping open water can be found in [16–18]. For the purpose of flood
mapping, single polarization SAR imagery is used to create time-series of water changes [19,20] and
fully automated processing chains using TSX and ENVISAT SAR [18,21]. Processing techniques applied
to SAR in order to map surface water include multi-temporal interferometric SAR coherence, active
contour modeling, and texture-based classification. The most commonly used approach, also used
herein, is Grey-level thresholding [1,21].

Airborne LiDAR scanning (ALS) surveys use laser pulses to collect both positional and intensity
information for each reflector point [22]. Associated with each data point is an intensity value, which is
a measure of the strength of the backscattered signal. This intensity value is influenced by the
spectral characteristics of the material at the wavelength used by the LiDAR instrument. As an active
remote sensing technique, data can be acquired during the day or night. Although surveys should be
performed in cloud- and fog-free conditions, the survey can often be flown beneath the cloud ceiling for
land cover classification studies. Other environmental variables, such as wind, can affect the collected
data [23]. An advantage of ALS surveys is their customizability. Spatial coverage and resolution of
the data can be controlled, and is mainly dependent on the height of the LiDAR platform, aircraft
speed, scanning frequency and pulse repetition frequency of the instrument, and swath width [24].
The ability to record more than one return signal per emitted pulse also enables LiDAR to generate a
three-dimensional model of the landscape. In temperate forests, the signal is able to penetrate through
the tree canopy and provide information about the forest floor. This creates the potential for LiDAR
to detect inundation below a forest canopy [25]. Water is typically characterized by: (i) having a low
elevation when compared to the immediately neighboring landscape; (ii) low elevation variability;
(iii) a low intensity signature at high incidence angles [25] and (iv) a high intensity signature at low
scan angles [26], both related to the specular nature of calm water [27]; (v) a high incidence of laser
point “dropouts” which occur when the return signal is too weak to detect [2]; and (vi) as a result
of the high rate of dropouts, water bodies tend to have a lower point density [2]. Misclassifications
can arise from the variability in the intensity signature which lead to portions of water bodies being
misclassified as fields or similar land cover classes. Flat areas including roads and agricultural land
cover that have similarly low intensity signatures can also be misclassified as water.

Much progress has been made in using LiDAR intensity data to classify land cover from the first
proof of concept study performed by [28]. This study uses a pixel-based decision tree classification
system which incorporates parameters derived from both the positional and intensity data to identify
bodies of water [2,29]. Both intensity and positional data were used as inputs to the model to capitalize
on the wealth of data provided by LiDAR surveys.

Since the launch of Landsat in 1972 [6], multispectral imagery has been the principle data type
for land cover classification studies. Current multispectral satellite missions include up to eight
spectral bands in the visible-to-near infrared (NIR) wavelengths, an average revisit period of 1.1 days,
and a spatial resolution reaching 0.3–0.5 m [30]. Water is characterized in multispectral imagery
as having a low reflectance, especially in the NIR wavelengths. For this reason, some land cover
classification studies use the NIR band to separate water from land [31]; others use band ratios to
extract water bodies [32–34] and supervised classification techniques [35]. However, these techniques
can be confounded by shadows, which can be misclassified as water [36–38]. Optical imaging is unable
to penetrate vegetative cover, which results in challenges with detecting areas of inundation below
forest canopies. While some of these limitations may affect the ability of optical imagery to correctly
classify all bodies of water, in a cloud-free scene optical imagery has proved to classify open bodies of
water successfully.
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In this study, TSX scenes were combined with airborne LiDAR and optical imagery using a pixel
based decision tree analysis to classify areas of water and non-water and identify areas where the
classification was uncertain. TSX has a repeat period of 11 days and a resolution of up to 0.24 m
in staring spotlight beam mode [39,40], allowing for frequent monitoring of small water bodies.
The methodology, processing techniques and decision tree analysis used to exploit the strengths of
each sensor are described in the following sections. The fused water models are visualized, analyzed
and compared to the single sensor models in order to identify discrepancies. Ultimately, the percent
of water and uncertainty of each model is determined in order to understand the influence of using
multiple data sets to classify surface water.

2. Materials and Methods

2.1. Study Area and Data Description

The study area is located at the Queen’s University Biological Station (QUBS) in Kingston, Ontario,
Canada, approximately 50 km north of the eastern end of Lake Ontario. QUBS was chosen due to
the abundance of water bodies that vary in size from small inundated forests to large open bodies of
water. The 2 km × 2 km square area where the SAR, LiDAR and optical data sets overlap is shown
in Figure 1.
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Figure 1. Map showing the extent of synthetic aperture radar (SAR) scenes (dark blue), light detection
and ranging (LiDAR) airborne survey (red), optical imagery (yellow), the study area (black), lakes (blue)
and land (white) mapped by the Ontario Ministry of Natural Resources.

Five TSX staring spotlight mode scenes were acquired over QUBS from April to September 2016.
These scenes represent single look slant range (SSC) products of descending path, single polarization
(HH), right looking with an incidence angle of 44◦. They have a slant range and azimuth resolution
of up to 0.6 m and 0.24 m, respectively. The LiDAR data were acquired using an Optech Gemini
ALTM, which is a small-footprint, single wavelength, discrete return system. The survey was flown in
June 2015 at an altitude of 1200 m, and resulted in a spatial resolution of 1 pt/m2. WorldView-2 imagery
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was acquired in August 2016 consisting of 8-band multispectral optical images with a resolution of
2 m. Table 1 outlines the data sets used in this study.

Table 1. Summary of TSX, airborne LiDAR and satellite-based optical imagery data used in this study.

Data Type Date Acquired Platform/Mission Details

Optical 26 August 2016 WorldView-2 multispectral imagery (8-band)
LiDAR 10–11 June 2015 Airborne LiDAR
SAR 1 2 April 2016 TSX staring spotlight mode
SAR 2 24 April 2016 TSX staring spotlight mode
SAR 3 5 May 2016 TSX staring spotlight mode
SAR 4 10 July 2016 TSX staring spotlight mode
SAR 5 3 September 2016 TSX staring spotlight mode

Field Investigation 1 2 April 2016 Photographs and GPS coordinates
Field Investigation 2 5 May 2016 Photographs and GPS coordinates
Field Investigation 3 10 July 2016 Photographs and GPS coordinates

In situ field investigations were performed on three different occasions, which overlap with three
of the five SAR acquisition dates. During these field investigations to five chosen study locations,
GPS coordinates were recorded as well as water and site conditions, including the presence of
open water, flooded vegetation, and the dominant vegetation type such as reeds, shrubs or forest.
The five sites were chosen for having different environmental and surface water conditions as follows:

A. Poole Lake: A large, open body of water bordered by wetlands and mixed forest.
B. Marsh A: A dense cattail marsh connected to a small lake, with the potential to be flooded

during parts of the year. A small stream runs along the periphery of the marsh.
C. Inundated Forest: A small area of observed inundation beneath a mixed forest canopy with

some emergent shrubbery. Depth of water in April was approximately 1 m.
D. Marsh B: A small pond bordered by a sparse cattail marsh, which immediately backs onto a flat

field to one side and a forest to the other side. The forested side is beyond the chosen study area.
Water level was observed to be highest in the spring and receded throughout summer.

E. Vegetated Lake: A wetland composed of a central pond/marsh, transitioning into a dense cattail
marsh along the periphery. In the central pond/marsh, there are sparse cattails and the remnant
trucks of dead trees. A central stream cuts through the marsh, connected to peripheral streams
throughout the marsh.

The locations of these sub-areas are shown in Figure 2.
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2.2. SAR Processing

The single-polarization TSX staring spotlight mode scenes were processed to create five SAR
water masks that each contain five different classes. The TSX intensity data were calibrated and
speckle filtered using a Refined Lee 7 × 7 speckle filter three times to optimally reduce speckle while
maintaining edges and histogram form [41]. A Range-Doppler Terrain correction was applied to
geometrically correct the TSX data using STRM DEM [42], producing a processed SAR intensity
image (Figure 3A).
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image, greyscale with black representing low intensity values (−25 dB) and white representing high
intensity values (0 dB); (B) SAR threshold water mask showing three classes—water (blue), uncertain
(black), and non-water (white); (C) Error mask showing three classes; shadow commission zones in
blue, layover omission zones in red, and no error in white; and (D) Final SAR water mask showing
five classes representing the probability that a pixel is water.

Grey-level thresholding was used to classify the image into water, uncertain and non-water.
This technique classifies all pixels with a value less than this threshold as water. The histogram
of the backscatter intensity data from each SAR scene was used to calculate the threshold values.
The histogram is bimodal, with one mode largely representing water and the other representing dry
land. The local minimum between the two modes represents the area of transition between water
and non-water. Two thresholds were chosen which could separate classes of water and uncertain,
and uncertain and non-water. Three normal distribution curves were fit to the histogram data.
Since the left mode (representing water) was skewed to the left, two normal distribution curves were
fit to this, one using the variance and one using the mean. Where these two curves intersected with the
right mode’s normal distribution fitted curve represents the two threshold values. Intensity values
in-between the two thresholds were marked as the class “uncertain”. Values greater than the thresholds
were classified as “non-water” and values less than were classified as “water”. Figure 3B displays the
SAR threshold water mask.

The next step in SAR processing involved determining the shadow and layover zones, which exist
in the SAR scenes and can confound classification using intensity values [15]. Areas of shadow occur
where the radar wave is blocked from reaching the ground surface. This creates areas of false positives
for water (error of commission). Layover zones occur where the returns from two surfaces with equal
distances to the sensor are received simultaneously, creating errors of omission. The approach to
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shadow and layover zones used in this study were adapted from Mason et al. (2010). This includes the
traditional shadow and layover zones created by terrain geometry, but also includes occluded areas
caused by tall vegetation [15]. Due to the varying degrees of canopy (density, canopy closure, growth
state, and tree type) throughout the SAR scenes, and signal attenuations from leaves, the assumption
is made that the tree canopy is impenetrable, similar to urban infrastructure and terrain. Therefore,
a shadow and layover mask was generated using the satellites geometric parameters (incidence angle
and azimuth) and a LiDAR digital elevation model (DEM), combining the affects from both the terrain
elevation and vegetation height. It is noted that, if LiDAR surveys are conducted in concert with the
SAR scenes, further vegetative parameters such as density derived from the intensity and positional
data from the surveys can be used to further refine the shadow and layover mask. However, due to the
disparate acquisition dates of these data, and the seasonality of vegetation cover in the study area, only
the parameter of vegetation height, integrated in the DEM, was considered. Figure 3C shows the error
mask delineated into three classes: shadow region (blue), layover region (red), and no error (white).

Finally, the SAR classified water mask and the error mask were combined to create a final SAR
water mask for five different classes with each class representing the estimated probability that the
pixel is water. The estimated probability values were assigned as 0, 25, 50, 75 and 100 to represent the
five different classes evenly distributed between 0% and 100%. Figure 4 outlines the decision tree used
to classify each pixel in the SAR model. For instance, pixels in the uncertain zone between thresholds
that were also within a shadow error of commission zone were assigned a probability of 25% water
(highlighted in Figure 4). Five final SAR water masks were created; one for each acquisition date.
Figure 3D shows the final SAR water mask for the 2 April 2016 TSX acquisition.
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2.3. LiDAR Processing

As noted in Table 1, airborne LiDAR data were acquired over QUBS in June 2016 using an Optech
Gemini ALTM, which is a small footprint, discrete return LiDAR instrument capable of recording
4 return pulses per emitted pulse, each with an associated intensity value. The LiDAR data provided
was filtered for outliers and ground classified. The original point cloud was rasterized into 3 m × 3 m
pixels for further processing. Rasterization was performed for each input parameter individually.
A tiered decision tree classifier (adapted after [29]), was used to classify water in the study area using
both the positional and intensity data available in the LiDAR dataset.

The six input parameters used for this study are: (1) point density; (2) intensity; (3) scan angle;
(4) standard deviation of intensity; (5) standard deviation of elevation; and (6) pulse density of only
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ground classified points; these parameters are illustrated in Figure 5. Subsets of these parameters were
combined into four intermediate water masks as illustrated in Figure 6:

A. The Density Mask (Mask DEN) was generated using only point density; due to the specular
reflection of water, open bodies of water have a high rate of point dropouts and thus a low point
density [2]. This is contrasted with forested areas which commonly have more than one return
signal per emitted signal, and open fields which do not generally produce point dropouts.

B. The Scan Angle/Intensity Mask (Mask SCI) was generated using scan angle and intensity data;
because of its properties as a specular reflector, open water bodies typically have low intensity
at high incidence angles and high intensity beneath the nadir of the platform and at smaller
incidence angles.

C. The Standard Deviation Mask (Mask STD) incorporates the standard deviations of intensity
and elevation; open bodies of water are by definition flat, and so have a low variation in
elevation. They are also characterized as having a low standard deviation of intensity at
moderate scan angles because of the consistent reflection of the laser signal away from the
receiver and subsequent low intensity returns and dropouts, and a high standard deviation of
intensity at low scan angles because of the contrasting high intensity returns beneath the nadir
of the plane and low intensity returns from the neighboring flight strips due to the effects of
flight strip overlap [2,29].

D. The Inundation Mask (Mask IND) was generated to highlight forested areas that have the
potential to be inundated and was generated by integrating the pulse density of ground points,
elevation standard deviation, and intensity; this mask was made by visually inspecting the
raster of each individual parameter to identify patters in the study area. A region of moderately
low intensity within a forested area was noted. The low intensity could be indicative of water
cover beneath the forest canopy, which would lower the average intensity of the returns from
that area. Pulse density was used to identify areas where the LiDAR signal was routinely able to
penetrate the forest canopy and correctly classify ground points. A forest which is flooded for
a significant portion of the year is likely to be unhealthier than the surrounding forest, allowing
more laser pulses to reach the ground surface beneath the canopy [43].
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Finally, once the inundated forest model was created, it was checked visually against optical
imagery of the area and a DEM created from the LiDAR data. Visual inspection of the optical imagery
did not reveal any indication of the forest being flooded. However, on inspection of the DEM it was
observed that the area of inundation is flat, occurs in a local elevation minima, and most notably it
appears to connect the lakes in the study area with Lake Opinicon, a larger lake east of the study
area. Along with connecting those water bodies, the elevation of the area suspected of inundation is
intermediate between that of the lakes in the study area and Lake Opinicon.

The final water mask was generated through a decision tree using each of the intermediate water
masks as inputs (Figure 7). Because water does not have one distinctive elevation, intensity, or point
density signature, each of the intermediate water masks was developed to isolate one or more sections
of the water body. Each of the masks was optimized to minimize noise and errors of commission
(false positives). Therefore, when generating the final water mask, a pixel was classified as 100% water
if either the SCI mask or the STD mask classified it as water. Due to artifacts introduced into the density
mask from the variations in airplane orientation throughout the flight, and through a miscalculation in
flight trajectory, the density mask could not be directly input into the final mask. Instead, the DEN
mask was filtered to only classify pixels as water if they had both a low standard deviation of elevation
and had a low point density. Pixels that were identified as being potentially inundated were assigned
a value of 50% in the final LiDAR water mask.



Remote Sens. 2017, 9, 890 9 of 18Remote Sens. 2017, 8, 890 9 of 19 

 

 

Figure 7. Intermediate water masks derived from the input parameters using a decision tree, and the 
final water mask generated using LiDAR data: (A) Density water mask; (B) Intensity and Scan Angle 
water mask; (C) Standard Deviation water mask; (D) Inundation water mask; and (E) Final water 
mask classified using a decision tree with the intermediate water masks as input. 

2.4. Optical Imagery Processing 

WorldView-2 8-band multispectral imagery was used to create a water mask using the 
Normalized Difference Water Index (NDWI) and the Normalized Difference Vegetation Index 
(NDVI) seen in Equations (1) and (2), respectively. NDWI = Coastal − NIR2Coastal + NIR2 (1) 

NDVI = NIR2 − RedNIR2 + Red (2) 

These equations utilize the coastal and NIR2 bands unique to WorldView-2, which provide a 
larger difference in wavelength, resulting in a more discrete threshold for detecting water and 
vegetation [30,44,45]. The NDWI is used to identify areas of water, which is characterized by high 
values, since the coastal band maximized the reflectance of water and the NIR2 band minimizes the 
reflectance of water (Figure 8A). The NDVI is used to identify vegetation, where higher values 
characterize healthier growth (Figure 8C). The red band is traditionally used as it is absorbed by 
chlorophyll in healthy plant materials, and again the NIR2 band is used, as it is strongly absorbed by 
water and reflected by terrestrial vegetation and soil [32,44,46,47]. The histograms of both the NDWI 
and the NDVI are bimodal and range from −1 to +1, where the higher value mode represents water 
and healthy vegetation, respectively. A threshold value was chosen to segment the indices into two 
classes by fitting a normal distribution curve to the mode and choosing the value where the slope of 
the mode becomes zero. The threshold for the NDWI was 0.58, where pixels greater than the 
threshold were classified as water, and pixels below were marked as non-water (Figure 8B). The 
NDVI was used to create an error mask, where a threshold of 0.54 was used to classify areas of canopy 
(above) and areas of non-canopy (below). This error mask represents the areas where the signal from 
optical remote sensing would be obstructed and water on the ground surface under vegetation could 
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Figure 7. Intermediate water masks derived from the input parameters using a decision tree, and the
final water mask generated using LiDAR data: (A) Density water mask; (B) Intensity and Scan Angle
water mask; (C) Standard Deviation water mask; (D) Inundation water mask; and (E) Final water mask
classified using a decision tree with the intermediate water masks as input.

2.4. Optical Imagery Processing

WorldView-2 8-band multispectral imagery was used to create a water mask using the Normalized
Difference Water Index (NDWI) and the Normalized Difference Vegetation Index (NDVI) seen in
Equations (1) and (2), respectively.

NDWI =
Coastal − NIR2
Coastal + NIR2

(1)

NDVI =
NIR2 − Red
NIR2 + Red

(2)

These equations utilize the coastal and NIR2 bands unique to WorldView-2, which provide
a larger difference in wavelength, resulting in a more discrete threshold for detecting water and
vegetation [30,44,45]. The NDWI is used to identify areas of water, which is characterized by high
values, since the coastal band maximized the reflectance of water and the NIR2 band minimizes
the reflectance of water (Figure 8A). The NDVI is used to identify vegetation, where higher values
characterize healthier growth (Figure 8C). The red band is traditionally used as it is absorbed by
chlorophyll in healthy plant materials, and again the NIR2 band is used, as it is strongly absorbed
by water and reflected by terrestrial vegetation and soil [32,44,46,47]. The histograms of both the
NDWI and the NDVI are bimodal and range from −1 to +1, where the higher value mode represents
water and healthy vegetation, respectively. A threshold value was chosen to segment the indices
into two classes by fitting a normal distribution curve to the mode and choosing the value where the
slope of the mode becomes zero. The threshold for the NDWI was 0.58, where pixels greater than the
threshold were classified as water, and pixels below were marked as non-water (Figure 8B). The NDVI
was used to create an error mask, where a threshold of 0.54 was used to classify areas of canopy (above)
and areas of non-canopy (below). This error mask represents the areas where the signal from optical
remote sensing would be obstructed and water on the ground surface under vegetation could not be
detected (Figure 8D).
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Figure 8. Masks created using 8-band multispectral WorldView-2 imagery from 26 August 2016:
(A) NDWI (Low values are in black, high values are in white); (B) Optical water mask showing two
classes; water (blue), non-water (white); (C) NDVI (Low values are in black, high values are in white);
(D) Error mask showing two classes; error/canopy zones in black, and no error in white; and (E) Final
optical water mask showing three classes representing the probability that a pixel is water.

Finally, the optical water mask and the optical error mask were combined to create a final
optical water mask with three classes. Pixels were assigned a probability of that pixel being water.
Areas where non-water was classified and where no tree canopy exists were marked as 0% probability
water. Pixels within the error zone were assigned a 50% probability of being water due to the inability
of the instrumentation to correctly classify land cover type beneath the canopy. The remaining pixels,
representing where water was classified with no error, were given a value of 100% water. The final
optical water mask can be seen in Figure 8E.

2.5. Fused Water Model

The final water masks created from all three datasets result in a fused water model that exploits the
strengths and compensate for the weaknesses of SAR, airborne LiDAR and optical imagery. Since there
were five different SAR acquisitions and water masks, each of these was combined with LiDAR
and optical to create five different fused water models, each representing a different point in time.
This fused model classifies pixels based on the agreement of the sensors at each pixel. As a measure of
agreement, each of the masks generated from the different remote sensing techniques were differenced
from each other. The absolute values of these differences were used in a decision tree analysis (Figure 9)
to determine the value of the pixel in the final fused water model.

In the decision tree classifier, if the absolute difference between two sensors exceeded 25%, then the
sensors did not agree on their classifications; for example, one sensor classified water and the other
sensor did not. If the absolute difference between two sensors was less than 25%, the two sensors
agreed and classified the pixel similarly (e.g., both sensors classified water). The value of 25% was
chose, n as it is the difference between classes in the individual water masks. Using this principle, there
were eight different possible outcomes, of which five occurred. If all sensors agreed (all differences
were less than 25%), then the median values of the pixels were used in the fused water model. Similarly,
if all sensors disagreed (all differences were greater than 25%), then the median values of the pixels
were used. Finally, if only a single sensor disagreed, then the mask generated from that sensor was
disregarded and the average of the two remaining sensors was used. When a shadow or layover zone
in SAR overlapped with the tree canopy in the optical mask, both the optical and SAR were within an
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error zone. In this case, the LiDAR mask was used for classification in the final fused water model
since it would be the most reliable sensor in that situation.
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Figure 9. Decision tree classifier used to create five fused water models from each of the SAR water
masks combined with the LiDAR and optical water masks. The absolute differences at the pixel value
of each water mask (PS, PL and PO) were calculated, and used to create eight different outcomes of
which five occurred (white) and three did not occur (grey).

3. Results

A fused model was developed by exploiting the strengths of three unique remote sensing
techniques. Five different fused water models were created, representing the timeline during which
the SAR scenes were acquired. These five models can be seen in Figure 10. Pixels shown in blue
represent water, gray represents uncertain areas, and white pixels show non-water.
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Figure 10. Five fused water models created for the five SAR acquisition dates: 2 April, 24 April,
5 May, 10 July, and 3 September 2016. The three classes shown are non-water (white), uncertain (grey),
water (blue). Rectangles outline the five study sub-areas.
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Photographs from the in situ field investigations in April, May and July 2016 can be seen
in Figure 11. Observations made from the three field investigations were used to correlate the
temporal changes in the fused models to seasonal changes. Seasonal changes from spring to summer
in the study area are representative for a mid-continental climate and characterized by increasing
temperature and vegetation cover, a decrease in precipitation, and a consequent recession of shorelines.
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Figure 11. Photographs from in situ fieldwork performed on three of the five SAR acquisition dates:
in April, May and July 2016: (A) Poole Lake; (B) Marsh A; (C) Inundated Forest; (D) Marsh B;
and (E) Vegetated Lake. This location was first observed on 5 May and also shows a photogrammetric
model created using images captured from UAV.

All five monitored locations observed a decrease in surface water extent from April to July.
From April through May to July, the tree canopy was observed to be bare, budding, and in full bloom,
respectively. Throughout the study area, the number of uncertain pixels in the fused models increases
from 6 to 9% from April to September. The percent of water classified in the fused models is seen
to decrease from 18 to 17% from April to September. Specifically, Poole Lake remained relatively
unchanged throughout the season since it is a relatively large, deep body of water with steep shorelines
(Yellow box in Figure 10). Similarly, water levels at Marsh A remained low throughout the season,
although in some areas the mud was observed to be wet (Red box in Figure 10). The classification of
Inundated Forest is also unchanged throughout the season (Green box in Figure 10), although this
is because of the fact that LiDAR was only captured once for the study area, and in areas which are
both covered by canopy and in shadow, the fused model defers to the LiDAR model. Marsh B receded
through time with the shoreline transitioning from muddy and wet to hard and dry, a recession
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which is also seen in the fused models (Purple box in Figure 10). The Vegetated Lake also becomes
drier through time which is observed in the field investigations and in the fused models (Blue box
in Figure 10).

Figures 12 and 13 represent each of the five outcomes of the decision tree classifier, as well as
the areas where the conditional LiDAR mask was applied when both optical and SAR are in shadow.
These figures highlight the areas over which each of the outcomes occur, indicating whether all
sensors agree, all sensors disagree, and where either SAR or LiDAR or optical disagree with the other
two techniques. Figure 12 shows the sensor agreement models for the first acquisition date (April 2016)
and Figure 13 shows the sensor agreement models for the last acquisition date (September 2016).
In each of these models, the black pixels represent the areas in which the labeled outcome occurred
and the white areas represent where it did not.Remote Sens. 2017, 8, 890 14 of 19 
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only areas from the sensor agreement models plotted through time. Several trends were noticed. The 
areas where all sensors agree, mainly open water bodies and fields, remains stable through time; this 
is expected because these areas experience little to no seasonal fluctuation in water extent. Pixels at 
which all sensors disagree, principally along shorelines and over wetlands, increase through time 
which relates to the increase in tree canopy causing a shadow and layover error. Optical disagreement 
lessens while LiDAR disagreement increases and SAR disagreement remains stable. Finally, LiDAR 
only increases as the number of commission error of water increases from the growing tree canopy 
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Figure 12. Five outcomes from the decision tree classifier and the LiDAR only additional statement
showing the spatial extent of the sensor agreement from 2 April 2016. Black pixels represent areas
where outcome occurred, white pixels represent areas where outcome did not occur: (A) All agree;
(B) All disagree; (C) SAR disagree; (D) Optical disagree; (E) LiDAR disagree; and (F) LiDAR only.
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Figure 13. Five outcomes from the decision tree classifier and the LiDAR only additional statement
showing the spatial extent of the sensor agreement from 3 September 2016. Black pixels represent areas
where outcome occurred, white pixels represent areas where outcome did not occur: (A) All agree;
(B) All disagree; (C) SAR disagree; (D) Optical disagree; (E) LiDAR disagree; and (F) LiDAR only.
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All sensors agreed in areas with open bodies of water and fields. Disagreement was most common
along shorelines, shallow bodies of water and over wetlands, i.e. areas that experience the most
seasonal change. Areas over which the SAR classification disagreed, but LiDAR and optical agreed
were concentrated around shorelines and within shadow and layover zones. Optical disagreed under
tree cover, over flooded vegetation and over the wetlands surrounding Poole Lake. LiDAR disagreed
in a few areas where classification of water was confounded by a systematic error introduced by the
swaying of the aircraft during data acquisition, compounded with the variable intensity signature
of water.

The graph in Figure 14 displays the percent of pixels of the five different outcomes and LiDAR
only areas from the sensor agreement models plotted through time. Several trends were noticed.
The areas where all sensors agree, mainly open water bodies and fields, remains stable through time;
this is expected because these areas experience little to no seasonal fluctuation in water extent. Pixels
at which all sensors disagree, principally along shorelines and over wetlands, increase through time
which relates to the increase in tree canopy causing a shadow and layover error. Optical disagreement
lessens while LiDAR disagreement increases and SAR disagreement remains stable. Finally, LiDAR
only increases as the number of commission error of water increases from the growing tree canopy
throughout the season.Remote Sens. 2017, 8, 890 15 of 19 
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Figure 14. Percent of pixels of the five outcomes from the sensor agreement models and the LiDAR
only additional statement through time of SAR acquisition dates, also showing LiDAR acquisition
month (June) and optical acquisition month (August).

Table 2 outlines the percentages of water, uncertainty, and non-water comparing each of the input
water masks from the individual remote sensing techniques, and the five fused models. By fusing the
three sensors together, the uncertainty within the individual SAR models was decreased from 17–23%
to 4–9%. The uncertainty in the optical data was originally 75%, but, by combining with LiDAR and
SAR, the uncertainty in the fused models is reduced. Although the single LiDAR model uncertainty
was 4%, which is lower than the fused models uncertainty, the artifacts in the LiDAR model (such as
the incorrectly identified strips over open bodies of water) were corrected for by combining the SAR
and optical with the LiDAR.
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Table 2. Percent of water, uncertainty and non-water of all models.

Model Percent (%)

Name 100% water Uncertain (13 to 88%) 0% water Total (%)
1 Single: SAR 2 April 19 17 64 100
2 Single: SAR 24 April 18 17 65 100
3 Single: SAR 5 May 18 17 65 100
4 Single: SAR 10 July 19 22 58 100

5 Single: SAR 3
September 20 23 57 100

6 Single: LiDAR 20 4 76 100
7 Single: Optical 11 75 13 100
8 Fused (2 April) 18 6 76 100
9 Fused (24 April) 18 4 78 100

10 Fused (5 May) 18 6 76 100
11 Fused (10 July) 18 8 75 100
12 Fused (3 September) 17 9 74 100

4. Discussion of Results

The fused classification models indicate a decline in the extent of surface water throughout the
study period, which is consistent with seasonal changes observed during field investigations. However,
the uncertainty rate also increases, which could be due to the increase in tree canopy through the
season, causing an increase in false positives for water, an interpretation which is corroborated by the
field investigations. This ability of the fused models to correctly interpret seasonal trends in water
extent fluctuations highlights its applicability for flood hazard monitoring. The models also worked
over wetlands and water bodies of various depths and types of flooded vegetation.

The disagreement of the individual remote sensing techniques over wetlands and at the shorelines
of larger water bodies highlights the weaknesses of each technique and the advantage of integrating
SAR, LiDAR and optical remote sensing into a fused water classification model. Considering that
wetlands are important indicators for flooding events and water extent change, they are one of the
most relevant areas when planning a flood monitoring strategy. While the SAR only models disagreed
largely in zones of shadow or layover, the disagreement of the optical models along the edge of Poole
Lake may be due to those areas being shallow or having a thin vegetation cover. The ability of LiDAR
to penetrate tree canopy further improves this model by being able to identify potential areas of
inundated forests, and the artifacts introduced from flight conditions during data acquisition can be
corrected by SAR and optical data. When comparing the spatial extent of the sensor agreement models
from April (Figure 12) to September (Figure 13), the main changes seen are due to seasonal variations
in the models and are located in areas where there are significant fluctuations in surface water extent
due to shallow water bodies and wetlands.

The agreement between sensors over the course of the study period can mostly be explained by
the dissimilar seasons in which each of the remote sensing data was acquired (Figure 14). Since LiDAR
was acquired in June, LiDAR disagreement increases as it diverges from its June acquisition date.
Similarly, Optical disagreement decreases as the study period progresses and converges upon its
August acquisition date. SAR disagreement remains stable which is expected due to the increasing
disagreement with LiDAR, but increasing agreement with optical. While temporal disagreements
between sensors could be mitigated by acquiring all remote sensing data coincidently, this study
demonstrates that it is not necessary for all data to be collected concurrently in order to exploit their
synergies and integrate these data into a fused water extent model. This is important to note, as most
remote sensing projects will not have access to all three remote sensing observation types acquired at
the same time.

Ultimately, the fused model benefitted from all individual sensor and their synergies. The increase
in water from 19 to 20% through time seen in the individual SAR scenes does not correlate to seasonal
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effects that were observed at the individual study sites, which were characterized by a progressive
recession of the shallow water bodies. This increase in classifying water pixels in the SAR masks
is theorized to correspond to the increase in tree canopy cover which would increase the number
and extent of shadow zones, which can be misclassified as water. In the fused models, percentage of
classified water decreases from 18 to 17%, which is not statistically significant.

5. Conclusions

In this study, TSX scenes were combined with airborne LiDAR and optical images using a pixel
based decision tree analysis to classify areas of water and non-water and identify areas where
the classification remains uncertain. This fusion technique exploits the strengths and weaknesses
of each sensor and allows for an optimized fused water extent classifier which decreases the
uncertainty. It was found that although the optical, SAR and LiDAR data were collected in different
seasons, the uncertainty of the fused model was lower than the uncertainty of any single technique.
The uncertainty in the final fused models was between 4% and 9%, compared to 17–23% from the
single polarization SAR classified water models. The development of a SAR only time series of
water coverage is hindered by processes including vegetation growth (leading to different errors of
commission due to shadow and omission due to layover zones over time) and land cover changes
which change the backscatter (and threshold per scene). Optical and LiDAR data can enhance a time
series by removing some of these competing processes. In addition, the water model could be enhanced
by using multi-polarization SAR to better classify areas of different scattering mechanisms, including
flooded vegetation. A monitoring strategy for surface water thus needs to analyze the spatio-temporal
processes of land cover change first, and then design an acquisition plan which includes optical
and LiDAR acquisitions and continuous SAR acquisitions. The benefit of having access to three
independent observation types was demonstrated herein, and will be used to create a flooding hazard
monitoring strategy in the future.
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