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Abstract: The protective effects of a dietary intervention as a useful tool in the prevention of
atherosclerosis disease has gained greater attention in recent years. Several epidemiological studies
have demonstrated the importance of diet in reducing expensive treatments or possible undesirable
side effects. The main aim of this review is to examine the effects of specific nutrients on the
development and progression of atherosclerosis in patients with cardiovascular disease. Various
mechanisms have been proposed to explain the cardioprotective effect of different nutrients. In this
sense, results have shown stabilization of vulnerable atherosclerotic plaques or downregulation of
biomarkers related to inflammation through nutrients such as Omega-3 polyunsaturated fatty acids,
hydroxytyrosol of extra virgin olive oil, lycopen, phytosterols of plants, or flavonols of fruits and
vegetables, among others. The accumulated evidence on the anti-inflammatory effects related to
these nutrients is summarized in the present review.
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1. Introduction

Atherosclerosis is characterized by a multifactorial low-chronic inflammatory process in the
arterial wall. Endothelial dysfunction is the first step of this process, which involves some important
events including: upregulation of adhesion molecules (E-selectin, vascular cell adhesion molecule-1
(VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), etc.) leading to recruitment and attachment
of circulating monocytes which progressively accumulate low density lipoprotein (LDL) particles
and are later oxidized. This is followed by transmigration of monocytes and their conversion
to macrophages [1,2]. A large number of chemotactic and growth factors are secreted in this
pro-inflammatory scenario in addition to promoting the proliferation of vascular smooth muscle
cells (VSMCs) and the progression of atheroma plaque [1,2].

Despite the steady decrease in the global burden of cardiovascular disease (CVD) (28.8%) during
the last 10 years, this disease remains the leading cause of death in developed countries (>17.3 million
deaths per year in 2013 or 31% of all global deaths) [3,4]. Nonetheless, this trend has slowed due
to the presence of risk factors—such as obesity, hyperlipidemia, and diabetes mellitus—which have
progressively developed in the global population since the 1980s [5]. It is estimated that one out
of every three American adults, that is 85.6 million individuals, has ≥1 type of CVD (concretely,
43.7 million are ≥60 years of age) [4]. Therefore, the leading cause of death attributable to CVD in
the United States is coronary heart disease (CHD) with 43.8%, followed by stroke (16.8%), high blood
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pressure (BP) (9.4%), heart failure (9.0%), diseases of the arteries (3.1%), and other CVDs (17.9%) [3].
In Europe, each year CVD causes 3.9 million deaths and in the European Union, this number is
increased by 1.8 million deaths [6]. Indeed, by 2035 these rates are expected to reach 130 million among
American deaths by some form of CVD (45.1%) and the total costs of CVD are expected to reach $1.1
trillion [3]. The National Institute of Health estimated that the annual cost of CVD and stroke was
$329.7 billion from 2013 to 2014 in the United States [3], being €210 billion a year in the European
Union [5]. According to the World Health Organization, 61% of cardiovascular deaths in the world can
be explained by eight risk factors—mainly alcohol and tobacco use, high BP, high body mass index
(BMI), high blood cholesterol and glucose, low fruit and vegetable intake, and physical inactivity.
A reduction of these risk factors can increase the global life expectancy by five years [6,7]. Indeed,
according to the US Centers for Disease Control and Prevention, 25% of all deaths by CVD yearly are
avoidable. Diet and physical activity are related to seven of the eight risk factors. Accordingly, there is
increasing scientific evidence that changes in diet and life habits can prevent the development (primary
prevention) or progression (secondary prevention) of CVD, reducing cardiovascular morbidity and
mortality [8–11].

With respect to diet, it seems to play a key role in the prevention of atherosclerosis. In fact,
nutrition is likely to exert its cardioprotective effects in early stages of atherosclerosis development [12].
In recent years, dietary guidelines are more aimed at promoting the consumption of specific nutrients
of natural food sources to obtain better cardiovascular health than simple dietary advice based on
the reduction of the consumption of salt, saturated fats, or refined sugar [13]. In fact, there is vast
scientific information (clinical data, and epidemiological and experimental studies) suggesting a
positive effect between the consumption of specific foods, nutrients and bioactive compounds (mainly
antioxidants) and cardiovascular health. Furthermore, low intake or circulatory levels of specific
micronutrients—such as magnesium (Mg), phosphorus (P), and calcium (Ca) as well as vitamins A,
D or E and the vitamin B group, among others—may also be associated with a greater prevalence
of atherosclerosis [14–16]. Figure 1 summarizes the main health effects of the bioactive nutrients
described throughout this review and their potential effects on the prevention of atherosclerosis.
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Figure 1. Summary of the main health effects of the nutrients described and their potential effects on
the prevention of atherosclerosis. Abbreviations: AtherOx: oxidized low-density lipoprotein (LDL)-β2
glycoprotein1 complex; FMD: flow-mediated dilatation; HDL-c: high-density lipoprotein cholesterol;
IMT: intima-media thickness; LDL-c: low-density lipoprotein-cholesterol; NF-κβ: nuclear factor κβ;
SBP: systolic blood pressure; sTAC: serum total antioxidant capacity.
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The aim of this review therefore is to understand how the possible molecular mechanisms are
used by dietary components and how a specific nutrient or bioactive compound is involved in the
prevention of atherosclerotic disease. In particular, we have included information about the foods,
nutrients, or bioactive compounds which are most frequently reported in the scientific literature and
have shown a greater effect on the prevention and treatment of atherosclerosis.

2. Nutrients in Atherosclerotic Disease

It is important to focus on the possible benefits of the intake of specific nutrients to avoid possible
deficiencies of these nutrients which can lead to the development of atherosclerotic disease. We have
only included information about fiber, some vitamins, and minerals but no other nutrients—such as
carbohydrates, fats. or proteins—which have also been demonstrated to have a certain effect on the
risk of developing atherosclerosis.

2.1. Fiber

A large number of studies have shown an inverse correlation between diets with a high fiber
content and CVD risk [17–19]. In addition, a pooled analysis of 18 cohort studies investigated dietary
fiber intake and any potential dose–response association with CHD (including 672,408 individuals)
and found that higher fiber intake had a significant inverse link with CHD risk in both incidence
(7% reduction) and mortality (17% reduction). In addition, the dose–response analysis showed that for
each 10 g/day increment in dietary fiber, there is an 8% reduction of all coronary events and a 24%
reduction in the risk of death [20]. The authors [20] suggested that the protective factor against CHD
was the fiber content of fruit, while vegetable fiber did not show this protection. Fruit fiber decreased
CHD risk by 8% (relative risk (RR) = 0.92 95% confidence interval (CI) (0.89–1.01), p = 0.01). Other
meta-analyses have also described similar results. Threapleton et al. [21] reported a 9% reduction
in the risk of CHD (RR = 0.81 95%CI (0.68-0.94)) and CVD (RR = 0.81 95%CI (0.88-0.94)) for each
7 g/day increment in dietary fiber. Another meta-analysis that included 23 studies (involving 937,665
participants and 18,047 patients with CHD) [22] reported a reduction of 16% (RR = 0.84 95%CI
(0.82–0.91)) for the intake of fruit per day or 13% (RR = 0.87 95%CI (0.81–0.93)) for the intake of
vegetables. Moreover, the dose–response analysis showed reductions of 16% and 18% in CHD after
300 g/day of fruit or 400 g/day of vegetable consumption.

Nonetheless, the number of clinical trials that have shown that fiber intake exerts a protective
effect on the progression of atherosclerotic disease still remains limited (Table 1). Chiavaroli et al. [23]
carried out a cross-sectional analysis with baseline data from three randomized controlled trials (RCTs).
The authors found a significant inverse association between carotid intima media thickness (CIMT)
and legume intake, available carbohydrates, glycemic load, and starch but not with dietary fiber after
analyzing 325 participants with type 2 diabetes [23]. On the other hand, the results of the PREDIMED
(prevention with Mediterranean diet) study [24] pointed out that high fiber intake was inversely
associated with carotid atherosclerosis on multivariate analyses (p < 0.03). The insulin resistance
atherosclerosis study [25] also showed a strong inverse association between whole-grain intake and
intima media thickness (IMT) (p = 0.005) which even remained significant after adjustment for lipids,
adiposity, insulin resistance, nutrient constituents, and a principal components-derived healthy dietary
pattern. The cardioprotective effect of fiber on atherosclerotic disease could be explained by the
reduction of total serum and low-density lipoprotein cholesterol (LDL-c) concentrations of 9.3 to
14.7 mg/dL and 10.8 to 13.5 mg/dL, respectively [26]. No changes in high-density lipoprotein
cholesterol (HDL-c) or triglyceride (TG) concentrations were observed. Additionally, Zhou et al. [27]
reported a dose–response answer between increased dietary fiber intake and increased HDL-c.
Thus, when the average dietary fiber intake was higher than 30 g/day, HDL-c increased by 10.1%.
Other mechanisms attributed to fiber intake and cardiovascular protection might be attributed to a
reduction of BP [24,28], improved insulin sensitivity [29], or the prevention of weight gain [24,29].
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2.2. Micronutrients

Nowadays, there is a vast amount of experimental, epidemiological, and clinical evidence
suggesting that micronutrient intake, specifically micronutrients with antioxidant properties, may
lower the risk of CVD. Low common carotid arteries (CCA)-IMT may be associated with a high intake
and/or circulatory levels of vitamin D and the vitamin B group or Mg [30]. However, this association
has not been observed between vitamin E and C and CCA-IMT. Although several meta-analyses
reported a possible association between vitamin E and the incidence of CVD [31], many others based
on interventional studies found that vitamin E supplementation failed to be atheroprotective in
clinical trials in humans [32]. Similar results were shown in a RCT, in which neither supplementation
with 400 IU of vitamin E every other day nor 500 mg of vitamin C daily reduced the risk of major
cardiovascular events [33]. To the contrary, a recent meta-analysis of 44 RCTs with vitamin C
supplementation revealed an improvement in endothelial function in patients with atherosclerosis [34].
On the other hand, a recent systematic review analyzed the link between CIMT and vitamin E (doses
varied from 400 to 1200 IU/day), vitamin C (≥250 mg/day) or a combined supplementation of
vitamin C and E [35]. This review included 11,307 individuals from the cross-sectional study and 2383
participants with a mean follow-up of 3.1 years. The results did not find any significant association
between vitamin C and E supplementation and CCA-IMT. However, a combination of both vitamins
might be more effective than their individual effects on the progression of CCA-IMT.

With regard to vitamin D, several epidemiological studies have shown that vitamin D exerts
protective effects against atherosclerotic disease through different mechanisms such as modulating
immune system response, protecting against endothelial dysfunction, and avoiding VSMC proliferation
or migration [36]. Some studies with vitamin D supplementation have described a possible association
between supplementation and microvascular calcification [37] contrary to other studies which did not
find any significant effect [38]. A cross-sectional study of 107,811 patients reported that patients with
optimal vitamin D levels (≥30 ng/mL) had a lower mean total cholesterol (−1.9 mg/dL), lower LDL-c
(−5.2 mg/dL), higher HDL-c (4.8 mg/dL), and lower TG concentrations (−7.5 mg/dL) compared with
vitamin D deficient patients (<20 ng/mL) [39].

In relation to vitamin E, several human clinical trials have shown a significant decrease in plasma
C-reactive protein (CRP), a marker of cardiovascular risk, suggesting that vitamin E and other nutrients
also studied, such as fish oil, oleic acid, folic acid, and vitamin B, could reduce cardiovascular risk
factors [40] contrary to other studies in which CRP was reduced after carotenoid (vitamin A) and
vitamin C consumption but not vitamin E [41]. Finally, De Oliveira et al. [42] examined the associations
of dietary micronutrients (heme iron, nonheme iron, zinc (Zn), Mg, β-carotene, vitamin C, and vitamin
E) with markers of inflammation and subclinical atherosclerosis (CRP, IL-6, total homocysteine (tHcy),
fibrinogen, coronary artery calcium, and common and internal carotid artery IMT). Nonetheless,
the authors did not find a strong association between micronutrients and markers of inflammation
and subclinical atherosclerosis. On one hand, they found that dietary nonheme iron and Mg intake
was inversely associated with tHcy concentrations, while dietary Zn and heme iron were positively
associated with CRP levels. On the other hand, no association was found between the dietary intake of
β-carotene or vitamin E and markers of inflammation. In addition, vitamin C was positively associated
with tHcy concentrations while only Mg showed an inverse association with CCA-IMT.

3. Bioactive Compounds and Atherosclerosis

It is known that atherosclerosis burden can be reduced through bioactive compounds such as
omega-3 fatty acids, lycopene, or polyphenols, which are natural molecules with great potential to
reduce inflammation, LDL-c, and oxidative stress. It should be noted that these molecules can easily be
incorporated into the daily diet. In this review, we analyze the bioactive compounds most frequently
reported and their effects on atherosclerosis in different epidemiological studies.
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3.1. Omega-3 Fatty Acids

There is substantial evidence regarding the efficacy of polyunsaturated fatty acids (PUFAs)—such
as n-3 fatty acid (n-3 PUFA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic
acid (DHA)—as potential anti-atherogenic agents of atherosclerotic disease [43]. Some of the
mechanisms implicated may be related to the stabilization of vulnerable atherosclerotic plaque,
reduced platelet aggregation, or TG levels as well as anti-inflammatory effects. [44,45]. Thus, marine
n-3 PUFA may lead to decreased infiltration of inflammatory and immune cells such as monocytes
or lymphocytes into the plaque and/or immunomodulation of these cells, thereby decreasing their
proinflammatory activity [46]. In an interventional study in patients awaiting carotid endarterectomy,
Thies et al. [47] showed that administering marine n-3 PUFA (1.4 g EPA + DHA/day) as dietary fish oil
supplements in patients with advanced atherosclerotic plaque was associated with increased plaque
stability, and less inflammation and infiltration of macrophages and lymphocytes. Similar results were
found in the Omacor Carotid EnArterectomy iNtervention (OCEAN) study, which found mRNA levels
for matrix metalloproteinases (MMP) MMP-7, MMP-9, and MMP-12 to be lower in plaque from patients
who had received marine n-3 PUFA with the administration of 1.8 g EPA + DHA/day [48]. Indeed,
MMPs play a significant role in weakening the fibrous cap and promoting plaque vulnerability [2].
Some cross-sectional studies have shown that n-3 PUFA are inversely associated with CCA-IMT,
a marker of atherosclerosis and a predictor of cardiovascular risk [49]. For example, He et al. [50]
analyzed 5480 adults aged 45–84 years who were free of CVD and found that the dietary intake
of long-chain n-3 PUFAs (0.69 (95% CI: 0.55, 0.86; p < 0.01)) or non-fried fish (0.80 (95% CI: 0.64,
1.01; p = 0.054)) was inversely associated with CCA-IMT as a marker of subclinical atherosclerosis,
with the results being dependent on the type of fish consumed. In addition, an observational case
series study of a cohort of 600 men with CVD who received fish oil supplementation showed reduced
markers of atherothrombotic risk [51]. Moreover, a retrospective study in 160 Japanese volunteers with
CVD reported that low DHA levels were correlated with reduced endothelial function, measured as
flow-mediated dilation (FMD) [52]. This observation was similar to an earlier study that reported an
improvement of endothelial function and arterial stiffness with a parallel anti-inflammatory effect after
treatment with n-3 PUFAs in patients with metabolic syndrome (MetS) [53]. However, a recent study
in patients with type 2 diabetes mellitus (T2DM) and established atherosclerotic CVD did not find
an improvement in the endothelial function indices (FMD and nitroglycerin-mediated dilation) after
three months of high-dose n-3 PUFA treatment [54]. A meta-analysis of 38 clinical intervention studies
reported that increased consumption of EPA and DHA through either supplementation or consumption
of enriched foods was associated with a 20–30% reduction in serum TG levels (≥4 g/day) in healthy
patients and in patients with borderline hyperlipidemia [55]. More recently, Hidayat et al. [56] observed
a reduction in heart rate with n-3 long-chain PUFA supplementation. However, when DHA or EPA
was administered alone, the heart rate was slowed by DHA but not EPA.

3.2. Lycopene

Lycopene is a carotenoid present in tomatoes and tomato products, grapefruit, watermelon,
and papaya. Several studies have reported that lycopene may protect against the development of
atherosclerosis because of its antioxidant effects [57]. In this sense, some authors have suggested that
high carotenoid levels in serum may slow early stages of atherosclerosis progression [58]. Xu et al. [58]
found serum lutein to be inversely associated with IL-6 (p < 0.001) and zeaxanthin with VCAM-1
(p = 0.001) and apoE (p = 0.022), and finally, lycopene was inversely associated with VCAM-1(p = 0.011)
and LDL-c (p = 0.046). Karppi et al. [59] suggested that lycopene or processed tomato intake may
reduce CCA-IMT in vessel walls after examining the effect of carotenoids on the early development of
atherosclerosis. However, Sesso et al. [60] did not find any correlation between the risk of CVD and
higher plasma lycopene concentrations after examining 499 cases of CVD and an equal number of
older men (69.7 ± 8.1 years) free of CVD over a follow-up period of 2.1 years. These same authors [61]
conducted a study in 28,345 women free of CVD and cancer over a mean follow-up of 4.8 years and
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found higher plasma lycopene concentrations to be associated with a lower risk of CVD in women.
Interventional studies analyzing the possible cardioprotective effect of raw tomatoes and tomato sauce
intake on proinflammatory biomarkers and leukocyte molecules related to the early development of
atherosclerosis also concluded that tomato intake has beneficial effects on cardiovascular risk factors,
especially cooked tomatoes enriched with oil [62]. However, on assessing whether the consumption of
tomato-based foods affects recognized biomarkers of CVD risk in 225 healthy middle-aged participants,
Thies et al. [63] did not find any changes in inflammatory markers, markers of insulin resistance and
sensitivity, lipid concentrations or arterial stiffness after dietary intervention with a control diet
(low in tomato-based foods), a high-tomato-based diet, or a control diet supplemented with lycopene
capsules (10 mg/day) for 12 weeks. In addition, several studies have reported an improvement
of oxidized-LDL (oxLDL) cholesterol levels after lycopene intake, suggesting the possible role of
lycopene in the prevention of oxidative stress-related diseases [30,64]. Abete et al. [64] evaluated the
effects of the consumption of 160 g of two tomato sauces with different concentrations of lycopene
on oxidative stress markers and found that regular consumption of the high-lycopene tomato sauce
induced a significant reduction in oxLDL cholesterol levels (−9.27 ± 16.8%; p < 0.05), demonstrating
the preventive effects of lycopene against oxidative stress-related diseases.

3.3. Plant Sterols and Stanols

Phytosterols (plant sterols) are natural sterols of plant origin, the most abundant being
sitosterol [57]. The main natural sources of phytosterols are vegetable oils [57]. Sitosterol has a structure
similar to that of cholesterol, but this sterol contains an extra ethyl group at position C-24, lowering
cholesterol absorption in the intestine (by 5% to 15% in a dose-dependent manner), and effectively and
safely downregulating plasma cholesterol levels [65,66].

There is currently a great deal of scientific evidence demonstrating that a daily dose of 2–3 g
of phytosterols leads to a significant reduction of 6–15% in LDL-c [67–69]. The cardioprotective
mechanism of phytosterols is the competition of sterols with cholesterol in the lumen of the intestine
after dietary and biliary cholesterol uptake [69,70]. In addition, a meta-analysis [71] reported significant
reductions in LDL-c concentrations of 8.8% after the intake of 2.15 g/day of phytosterols. Moreover,
a systematic review and meta-analysis of 20 eligible RCTs, including a total of 1308 subjects reported
LDL-c concentrations (−14.3 mg/dL) to be significantly reduced, but no changes in CRP levels were
observed (p-value = 0.073) [72]. In 2009, Scholle et al. [73] published a meta-analysis evaluating 8 RCTs
(306 hypercholesterolemic patients). These authors found that the use of statins combined with plant
sterols or stanols decreased total cholesterol (−14.01 mg/dL, p < 0.0001) and LDL-c (−13.26 mg/dL,
p < 0.0001). However, no changes in HDL-c or TG were observed.

Several clinical data in humans support the role of phytosterols in decreasing LDL-c levels.
Andersson et al. [70] reported that a diet with a high level of plant sterols (mean intake of
463 mg daily) in 22,256 study participants was inversely correlated with lower plasma LDL-c levels.
This finding is consistent with another epidemiological study in which a significant reduction
in LDL-c levels (0.26 mmol/L) was described after 233 subjects received supplementation with
phytosterols during 12 weeks [74]. In a retrospective cohort study in 3829 participants (43 of whom
were receiving treatment with statins) [75], a daily intake of ≥20 g of phytosterols (in the form of
sterol- or stanol-enriched margarine) was associated with a significant decrease in cholesterol levels
(−0.32 mmol/L). This increase was dose-dependent with a decrease of −0.0094 mmol/L for each gram
of enriched margarine. This cholesterol-lowering was also observed in statin plus pytosterol users.
Escurriol et al. [76] evaluated if increased plasma phytosterols lead to CHD and found that CHD risk
and plasma phytosterol intake was not related to the apolipoprotein E (APOE) genotype.

4. Polyphenols

The progression of atherosclerosis can be attenuated by the effect of polyphenols. Among other
effects, polyphenols can prevent leukocyte migration, reduce production of adhesion molecules,
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improve coagulation activity and endothelial function, reduce BP due to their antioxidant capacity,
modulate the transcription of nuclear factor-κβ (NF-κβ), or inhibit the encoding of pro-inflammatory
cytokines [57]. Polyphenols also have the capacity to generate nitric oxide, which acts as a potent
vasodilator on the endothelial surface and in the early stages of atherosclerosis, improve antioxidant
status, and decrease inflammatory cytokine levels (tumor necrosis factor-alpha (TNF-α), interleukin
(IL), MMPs) and adhesion molecules (VCAM-1, ICAM-1, and selectins) [77].

4.1. Flavonoids

Epidemiological and experimental evidence suggest that there is a protective relationship between
the consumption of foods rich in flavonoids (such as tea, berries, cocoa, chocolate, and wine) and the
risk of CVD [78]. Concretely, flavonoids may act on the growth of atherosclerotic plaque decreasing
adhesion molecule expression and inflammation and reducing the capacity of macrophages to oxidate
LDL-c [79]. Some of main foods studied are:

4.1.1. Flavanols

In relation to flavonoid-rich foods such as cocoa, which is rich in flavanols, epicatechin, catechin,
and proanthocyanidins, several reviews and meta-analyses have examined the association of cacao
consumption with different cardiovascular risk factors such as BP, endothelial function, blood lipids,
and platelet function and cardiovascular health [80–83]. On one hand, the daily intake of 50 g of
dark chocolate improves endothelial function, measured as FMD, by 3.99% in acute and 1.45% in
chronic intake [80]. In addition, a meta-analysis of 10 RCTs reported a decrease of 4.5 mmHg in systolic
BP (SBP) and 2.5 mmHg in diastolic BP (DBP) with the intake of flavanol-rich cocoa products [81].
Ostertag et al. [82] concluded that 100 mg of flavanols led to a 3–11% inhibition of platelet function,
suggesting that the consumption of 100 g of dark chocolate with 70% cocoa solids could result in an
effect similar to that of 81 mg of aspirin in an acute setting. Finally, Jia et al. [83] showed that cocoa
consumption significantly lowered LDL-c by 5.87 mg/dL (95% CI: −11.13, −0.61; p < 0.05) in the
short-term. However, the authors did not find any evidence of a dose–effect relationship, any effect in
healthy subjects, or any change in HDL-c levels.

Several RCTs have also shown a relationship between cocoa polyphenols and
atherosclerosis-related inflammatory markers (Table 1). In this regard, Monagas et al. [84]
suggested that chronic consumption of cocoa powder may modulate the expression of adhesion
molecules on leukocyte surfaces as well as soluble adhesion molecules (sP-selectin and sICAM-1)
concentrations, all of which are related to early stages of atherosclerosis in subjects at high risk
of CHD. Another crossover study [85] in 18 healthy subjects evaluated the effect of acute cocoa
consumption on different matrices (water and milk) related to the bioavailability of cocoa polyphenols
in NF-κβ activation and the expression of adhesion molecules. NF-κβ drives the expression of
proinflammatory genes and initiates the production of signals that initiate adaptive immunity [2].
The authors suggested that cocoa consumption could inhibit the NF-κβ-dependent transcription
pathway and the interaction with certain cytokines. Moreover, this effect may be modulated by the
food matrix. Esser et al. [86] carried out another crossover study to investigate if flavanol-enriched
chocolate consumption increased endothelium-dependent vasodilation. These authors were not only
interested in endothelial health, but also investigated whether regular consumption of dark chocolate
also affects other markers of endothelial health, and whether chocolate enrichment with flavanols has
additional benefits. They found that in addition to improving vascular function, chocolate intake also
lowers the adherence capacity of leukocytes in the circulation.

4.1.2. Catechins

On the other hand, green tea is a rich source of flavonoids, especially catechins (90%) such as
epicatechin, epicatechin gallate, epigallocatechin, and epigallocatechin gallate. The greatest fraction of
black tea polyphenols is composed of thearubigins and total flavonoids (47%) [87]. A great number of
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reviews and meta-analyses have reported the cardioprotective effects of tea consumption. In a review
of 21 prospective studies, Gardner et al. [88] found that daily consumption of three or more cups of
black tea was associated with a reduction in CHD risk. Grassi et al. [87] also concluded that there
was an inverse association between black and green tea consumption and CVD after the review of
15 epidemiological studies. These results are in accordance with a meta-analysis that included nine
prospective studies (4378 strokes among 194,965 individuals) which concluded that drinking ≥3 cups
daily of tea (black or green tea) reduces the risk of stroke by 21% compared to the consumption of
<1 cup per day [89]. Several meta-analyses of RCTs have also studied the benefits of tea in CVD. On
one hand, Hooper et al. [80] reported that acute black tea intake increased SBP (5.69 mm Hg) and
DBP (2.56 mm Hg) and also increased FMD (3.40%). On the other hand, green tea reduced LDL-c
(−0.23 mmol/L) concentrations, but there was no significant effect on HDL-c.

As shown in Table 1, a crossover study of 21 healthy postmenopausal women [90] showed that
the intake of green and black tea led to a significant increase in FMD (p < 0.001; both). In another
crossover study involving five different treatments (0, 100, 200, 400, and 800 mg tea flavonoids/day),
Grassi et al. [91] reported that black tea consumption dose-dependently improved endothelial function
in healthy men. Even 100 mg/d (<1 cup of tea) increased FMD compared with controls (p = 0.0113).
In addition, black tea intake decreased SBP (−2.6 mmHg, p = 0.0007) and DBP (−2.2 mmHg, p = 0.006)
as well as the stiffness index (p = 0.0159). Suzuki-Sugihara et al. [92] suggested that green tea catechins
may be rapidly incorporated into LDL particles and play a key role in reducing LDL oxidation in
humans. Their results suggest that taking green tea catechins could be effective in reducing the risk of
atherosclerosis associated with oxidative stress.

4.1.3. Quercetin

Fruits and vegetables like apples, onions, cherries, and grapes have a high quercetin content,
one of the most important flavonoids in the human diet [93]. The atheroprotective effects of quercetin
can be attributed to its antioxidant and anti-inflammatory effects as well as its positive effects on
diabetes or obesity [93]. Dower et al. [94] investigated the role of quercetin in atherosclerosis in
37 healthy (pre)hypertensive men and women. The participants took 100 mg of (-)-epicatechin, 160 mg
of quercetin-3-glucoside or placebo capsules daily for four weeks, in random order. The main finding
was that quercetin may improve endothelial function and reduce inflammation, two main determinants
of atherosclerosis. Larson et al. [95] also carried out a randomized, double-blind, placebo-controlled,
crossover trial to study if quercetin intake reduced BP in hypertensive individuals. The authors
observed a decrease of BP in stage 1 hypertensive men after the administration of a single dose of
purified quercetin aglycone, while BP remained unchanged in normotensive volunteers. Moreover,
angiotensin-converting enzyme concentrations, endothelin-1 levels, nitrites, and brachial artery FMD
were not affected by quercetin.

4.1.4. Anthocyanins

These compounds are mostly found in blueberries, cranberries, bilberries, chokeberries, and
elderberries [96]. Several meta-analyses of RCTs [97,98] have studied the effects of berry (anthocyanins)
consumption on CVD risk factors, reporting significantly lower LDL-c, SBP, fasting glucose, BMI,
hemoglobin A1c or tumor necrosis factor-α (TNF-α) levels and increased HDL levels. Kuntz et al. [99]
reported that anthocyanins can exert their benefits on cardiovascular health through not only their
antioxidant effects but also by downregulation of pro-inflammatory parameters. In this randomized
study, these, authors reported that the ingestion of anthocyanin-rich beverages significantly increased
plasma superoxide dismutase (SOD) and catalase activities (p < 0.001; both) as well as Trolox
equivalent antioxidant capacity (p ≤ 0.01), while concentrations of malondialdehyde, a marker of
lipid peroxidation, were significantly decreased (p < 0.001). In another interventional study [100]
including 42 volunteers who were overweight and smokers, significant reductions in oxLDL and
8-iso-prostaglandin F2α, proposed as a new indicator of oxidative stress, were observed after 40 days
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of supplementation with a standardized extract of maqui berry (162 mg anthocyanins), suggesting
that a polyphenol-rich diet may exert health-promoting effects by reducing oxidative stress. A recent
RCT [101] also examined the effects of long-term supplementation with purified anthocyanins (320 mg
anthocyanin/capsule) on platelet chemokines, which are chemotactic cytokines and can be induced
during immune response to recruit cells from the immune system [2]. After 24 weeks, the intervention
group showed significant reductions of different chemokines (CXCL7 (−9.95%), CXCL8 (−6.07%),
CXCL12 (−8.11%), and CCL2 (−11.63%)) levels compared with the placebo group. These results
suggest that platelet chemokines may be targets of anthocyanins in the prevention of atherosclerosis.
Anthocyanins were also administered at a dose of 320 mg/day to hypercholesterolemic patients for
a period of 24 weeks in a randomized, double-blind, placebo-controlled trial [102]. Anthocyanin
intake significantly decreased plasma concentrations of β-thromboglobulin, P-selectin, and RANTES
(regulated on activation, normal T cell expressed and secreted. Later, in vitro experiments in patients
receiving anthocyanins showed a significant reduction in the secretion of pro-inflammatory and
pro-thrombotic factors.

4.1.5. Isoflavones

Soy and soy products also contain significant amounts of isoflavones and their atheroprotective
effects can be attributed to the associated reduction in cholesterol levels and a reduction in oxidative
stress in human studies [103]. A meta-analysis of 133 RCTs carried out by Hooper et al. [80] found
a significant reduction in DBP (−1.99 mmHg) and LDL-c (−0.19 mmol/L) after chronic soy protein
isolate consumption (but not whole soy or soy extracts). The mechanism by which soy protein intake
leads to significant reductions of LDL-c may be due to high isoflavone intake [104,105]. Moreover,
to achieve a clinically important reduction in LDL-c, the consumption of 20–56 g soy protein isolate
powder daily (up to 75% of the usual protein intake) is required.

No significant effects on HDL-c, SBP, or FMD were observed after the consumption of a
protein isolate or isoflavone extracts. Tokede et al. [106] also studied the relation between soy
protein consumption and serum lipid concentrations in humans in a meta-analysis of 35 RCTs and
found a significant decrease in LDL-c levels of −4.33 mg/dL, TG-4.92 m/dL and total cholesterol
−5.33 mg/dL. There was also a significant increase in serum HDL-c concentrations of 1.40 mg/dL.
On the other hand, in a RCT [107] including postmenopausal American women receiving soy protein
supplementation daily (25 g/day), subclinical atherosclerosis progression lowered by 16% compared
to the placebo group, although this treatment effect was not statistically significant. In addition,
in women who were randomized within five years of menopause, soy protein intake reduced
carotid thickness progression by a mean of 68%. In a cross-sectional study of 2135 women and
804 men aged 50–75 years [108], women showed a lower presence of elevated total cholesterol,
dyslipidemia, hyperuricemia, and a lower number of cardiometabolic disturbance components when
soy consumption was higher.

4.2. Stilbens

Resveratrol is a polyphenol found in the skin of grapes, berries, and peanuts [109]. Resveratrol
possesses antioxidant properties [110], increases the production of nitric oxide synthase (NOS) [111]
and improves mitochondrial function [112]. A large number of epidemiological studies have reported
the beneficial effects of resveratrol on hypertension, atherosclerosis and ischemic heart diseases [113].
In a meta-analysis of six RCTs evaluating the effects of resveratrol on SBP and DBP, Liu et al. [114]
showed that higher resveratrol consumption (≥150 mg/day) significantly reduced SBP by−11.90 mmHg
(p = 0.01), whereas a lower dose of resveratrol did not show a significant lowering effect on SBP.
These results are in accordance with a recent meta-analysis of 17 RCTS and suggests that the use
of resveratrol promotes cardiovascular health, mainly at a high daily dose (300 mg/day) and in
diabetic patients [115]. Several clinical trials have also studied the effect of resveratrol on lipids.
As shown in Table 1, Bhatt et al. [116] hypothesized whether oral supplementation of resveratrol
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(250 mg/day) improved glycemic control and the associated risk factors in patients with T2DM.
The results revealed that supplementation with resveratrol for three months significantly improved
hemoglobin A (1c) concentrations (−0.33± 0.04, p = 0.02), total cholesterol (−14.32± 5.31, p = 0.004) and
LDL-c (−12.45 ± 6.95, p = 0.05) as well as SBP levels (−11.78 ± 0.73, p = 0.002) in T2DM. Similar results
were described in the study by Movahed et al. [117] in which diabetic patients were supplemented with
1 g/day of resveratrol for 45 days. In another study, Tomé-Carneiro et al. [118] investigated the effects
of a six-month intake of grape supplement containing 8 mg resveratrol on oxLDL, apolipoprotein-B
(ApoB), and serum lipids in statin-treated patients on primary CVD prevention. There was a reduction in
atherogenic markers including oxLDL, ApoB, and LDL-c. A recent study [119] showed that resveratrol
may be beneficial in preventing the development of atherosclerosis induced by diabetes to decrease
the cardio-ankle vascular index (CAVI) (−0.4 ± 0.7) as a clinical surrogate marker of atherosclerosis,
SBP (−5.5± 13.0 mmHg) and diacron-reactive oxygen metabolites (d-ROMs) (−25.6 ± 41.8 U.CARR)
as a marker of oxidative stress. A randomized, double-blind, placebo-controlled clinical trial [120]
also studied the effects of resveratrol on markers of oxidative stress in 48 patients with T2DM (aged
30–70 years). In this case, after supplementation with 800 mg/day of resveratrol for eight weeks,
it was found that resveratrol decreased plasma protein carbonyl content and ROS levels in peripheral
blood mononuclear cells (PBMCs) and significantly increased plasma total antioxidant capacity and
total thiol content. Furthermore, the expression of Nrf2 and superoxide dismutase (SOD) was significantly
increased after resveratrol consumption. Finally, in another placebo-controlled clinical trial [121] with a
four-week supplementation with resveratrol in 44 healthy individuals, the levels of pro-inflammatory
cytokine, IL-8 (p = 0.022), and interferon gamma (p = 0.033) and the expression of cell adhesion molecules
such as sICAM-1 (p = 0.037) and sVCAM-1 (p = 0.017) significantly decreased. However, no significant
change was observed in other inflammatory markers such as TNF-α, IL-1β, or IL-6. Fasting insulin levels
were also reduced in the resveratrol group (p = 0.045).

4.3. Other Polyphenols

Several clinical, epidemiological, and experimental studies suggest that the consumption of olive
oil—and more specifically, extra virgin olive oil (EVOO)—reduces the incidence of certain diseases
such as hypercholesterolemia, atherosclerosis, hypertension, thrombotic risk, oxidation and oxidative
stress, obesity, and the MetS [122]. Hydroxytyrosol (HT) and oleuropein and tyrosol seem to be the
most important phenolic fractions responsible for the prevention of the development of atherosclerosis.
These phenolic compounds may reduce endothelial dysfunction [123] and decrease the concentration
and atherogenicity of LDL-c [124] as well as improve antioxidant effects [125] and HDL-c function [126],
and inhibit platelet aggregation [127].

A recent review [122] examined the biological properties and antioxidant capacity of EVOO
against diseases such as atherosclerosis, diabetes, obesity, and cancer. Furthermore, it has been reported
that HT could modulate the transcription of NF-κβ and inhibit the encoding of cytokines (TNF-α,
IL-1, IL-6, or IL-7), chemokines and other proinflammatory biomarkers [128]. Several sub-studies of
the PREDIMED trial [129–134] also reported that a Mediterranean diet (MD) supplemented with
EVOO may downregulate the expression of leukocyte adhesion molecules, soluble endothelial
adhesion molecules (sICAM-1, sVCAM-1, sP-Selectin, etc.), several cytokines (IL-6, IL-8, TNF-α),
and chemokines (MCP-1, ENA78, RANTES, etc.) as well as molecules related to the vulnerability of
atheroma plaque (IL-18, MMP-9, IL-10, TGF-β1, etc.). These results were observed at 3 and 12 months
and were maintained or even improved at three and five years. Camargo et al. [135] studied the effects
of dietary fat on the expression of genes related to inflammation such as NF-κβ, IL-6, and TNF-α,
as well as those related to plaque stability (MMP-9) during the postprandial state in 20 healthy elderly
people following three different diets for three weeks each. The results showed that consumption of a
MD reduces the postprandial inflammatory response (NF-κβ, MCP-1, MMP-9, and TNF-α expression)
compared with two other diets (p < 0.05; all). Atherosclerosis and the subsequent development of
CHD are triggered by oxLDL, the main key factor of these pathogenic events [43].
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Table 1. Possible mechanisms by which nutrient/bioactive compounds intake can exert a protective effect on the progression of atherosclerotic.

Nutrient/Bioactive
Compound Study Design Participants Type of Study Findings

Fiber
Chiavaroli et al. [23]

Ultrasonographic carotid intima
media thickness (CIMT) at baseline,
and 7-day food records

325 participants with type
2 diabetes from three

randomized controlled trials
collected

Cross-sectional analysis

CIMT was significantly inversely
associated with dietary legume intake
(β = −0.019, p = 0.009), available
carbohydrate (β = −0.004, p = 0.008),
glycemic load (β = −0.001, p = 0.007)
and starch (β = −0.126, p = 0.010),
and directly associated with total
(β = 0.004, p = 0.028) and saturated fat
(β = 0.012, p = 0.006)

Buil-Cosiales et al. [24]

MD + EVOO (50 mL daily) or nuts
(30 g daily) vs. a LFD.
Dietary habits were assessed with
137-item FFQ and a 14-item
questionnaire.
Ultrasonographic CCA-IMT
measurement at baseline.

457 men and women aged
between 55 and 80 years at high

cardiovascular risk.
Cross-sectional study.

Non-adjusted model: significant
inverse correlation between fiber
intake and IMT (r = −0.27, p < 0.001)
and adjusted-model (p < 0.03) for
>35 g fiber/day in adults.

Mellen et al. [25]

114-item FFQ.
Ultrasonographic CCA-IMT
measurement at baseline and at 2
years.

Multiethnic cohort with 1178
participants (56% female) aged

40–69 years with a range of
glucose tolerance (normal,
impaired, and diabetic).

Multicenter, prospective,
observational study.

Whole-grain intake was inversely
associated with CCA-IMT (β ± SE:
−0.043 ± 0.013, p = 0.005).

Micronutrients
Ponda et al. [39]

Participants were stratified according
to deficient (<20 ng/mL), insufficient
(20–29 ng/mL), and optimal
(≥30 ng/mL) vitamin D levels.

107,811 participants.
Aged between 40–80 years. Cross-sectional study.

Optimal vitamin D levels
(≥30 ng/mL) were associated with
lower mean total cholesterol, LDL-c,
and TGs and higher HDL-c
(p < 0.0001; all).

Carrero et al. [40]

Over one year, intake of 500 mL/day
of a fortified dairy product containing
EPA, DHA, oleic acid, folic acid, and
vitamins A, B-6, D, and E
(supplemented group) or 500 mL/day
of semi-skimmed milk with added
vitamins A and D (control group).

Patients with MI with a mean
age of 52.6 ± 1.9 years in the

supplemented group and
57.4 ± 1.8 years in the

control group.

Longitudinal, randomized,
controlled, double-blind

intervention study.

↓ Plasma total and LDL-cholesterol,
apolipoprotein B, and CRPin the
supplemented group (p < 0.05).
↓ Plasma tHcy in both groups.
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Table 1. Cont.

Nutrient/Bioactive
Compound Study Design Participants Type of Study Findings

De Oliveira et al. [41]
120-item, self-administered FFQ was
used to assess usual food intake over
the previous year.

5181 participants from the
multi-ethnic study of
atherosclerosis. Aged

45–84 years and free of diabetes
and CVD.

Cross-sectional study.

Dietary nonheme iron and Mg
intakes were inversely associated
with tHcy concentrations
(p-trend < 0.001 for both).
Dietary Zn and heme iron were
positively associated with CRP
(p-trend = 0.002 and 0.01,
respectively). A positive association
was found between tHcy
concentrations and Vitamin C
(p-trend = 0.01) and an inverse
association between Mg with
CCA-IMT (p-trend = 0.001).

n-3 PUFA
Cawood et al. [48]

Daily intake of placebo or n-3 PUFA
(1.8 g EPA + DHA/day) capsules
until surgery (median 21 days).

121 patients awaiting carotid
endarterectomy. >18 years

of age.

Double-blind,
placebo-controlled design.

n-3 PUFA group: ↑EPA (p < 0.0001)
and ↓ foam cells (p = 0.0390), mRNA
for MMP-7 (p = 0.0055), -9 (p = 0.0048)
and −12 (p = 0.0044) and for IL-6
(p = 0.0395) and ICAM-1 (p = 0.0142).

Franzese et al. [51]

Compared use of fish oil
supplementation in various
subgroups: non lipid-lowering
therapy vs. lipid-lowering therapy.

600 men with CVD, aged
64.4 ± 10.1 year. Observational case series study.

VLDL, IDLs, remnant lipoproteins,
TG, LDL, AtherOx levels,
collagen-induced platelet
aggregation, thrombin-induced
platelet-fibrin clot strength, and shear
elasticity (p < 0.03 for all).

Tousoulis et al. [53]
Daily intake of n-3 PUFAs (2 g/day)
or placebo for 12 weeks. 4-week
washout periods.

29 subjects, 14 females, and
15 males with MetSaged

44 ± 12 years.

Double-blind, placebo
controlled, cross-over trial.

PUFAs: Significant improvement of
FMD and PWV (p < 0.001 for all).
↓ IL-6, PAI-1 (p = 0.003; both)
↓ TG and total cholesterol levels

Siniarski et al. [54]
Daily intake of n-3 PUFAs (2 g/day)
or placebo for 3 months. 4-week
washout periods.

74 patients with established
ASCVD and T2DM.

Two-center, prospective
randomized double-blind,
placebo-controlled study.

Did not improve endothelial function
indices (FMD and NMD).

Lycopene
Karppi et al. [59]

Determination of plasma carotenoid
concentrations and measurements of
CCA-IMT by B-mode ultrasound.
~20 years follow-up.

1212 elderly Finnish men aged
61–80 year. Prospective study.

Higher concentrations of plasma
β-cryptoxanthin (p = 0.043), lycopene
(p = 0.045), and α-carotene (p = 0.046)
were associated with lower
CCA-IMT.
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Table 1. Cont.

Nutrient/Bioactive
Compound Study Design Participants Type of Study Findings

Sesso et al. [61]

Plasma lycopene, other carotenoids,
retinol, and total cholesterol were
measured. Mean follow-up of
4.8 years.

28,345 female US health
professionals free of CVD and

cancer. Aged 45 years.

A prospective, nested,
case-control study.

Higher plasma lycopene
concentrations were associated with a
lower risk of CVD in women.

Valderas-Martinez et al. [62]

Intake of 7.0 g of RT/kg BW, 3.5 g of
TS/kg BW, 3.5 g of TSOO/Kg BW
and 0.25 g of sugar dissolved in
water/kg BW on a single occasion on
four different days.

40 healthy subjects (mean age of
28 ± 11 years).

Open, prospective, randomized,
cross-over, controlled

feeding trial.

RT: ↓ SBP, total cholesterol, TGs, or
MCP-1 and ↑ folic acid and IL-10.
TSOO: ↓ SBP, DBP, total cholesterol,
TGs, IL-6, IL-18, MCP-1 and VCAM-1
and ↑ folic acid, IL-10. ↓ LFA-1 from
T-lymphocytes and CD36
from monocytes.

Thies et al. [63]

A control diet (low in tomato-based
foods), a high-tomato-based diet, or a
control diet supplemented with
lycopene capsules (10 mg/day) for
12 weeks.

225 healthy volunteers (94 men
and 131 women), moderately
overweight (BMI:18.5–35) and

aged 40–65 years.

Single-blind, randomized
controlled dietary
intervention study.

No changes in systemic markers
(inflammatory markers, markers of
insulin resistance, and sensitivity),
lipid concentrations or arterial
stiffness in all interventions.

Abete et al. [64]

Effect of the consumption of 160 g of
two TSs with different concentrations
of lycopene on oxidative stress
markers: high-lycopene
TS (27.2 mg of lycopene) vs.
commercial TS (12.3 mg of lycopene).
4 weeks separated by a 2-week
washout period.

32 healthy patients (18 males
and 14 females). Aged between

18–50 years with a BMI of
18.5–29.9 kg/m2.

Double-blind crossover
nutritional intervention.

High-lycopene TS: ↓ LDL-ox
(−9.27 ± 16.8%; p = 0.014).

Plant Sterols and Stanols
Ras et al. [74]

20 g/day of low-fat spread without
(control) PS vs. with added PSs
(3 g/day) during 12 weeks.
Measurement of: FMD, serum lipids,
arterial stiffness, BP.

232 hypercholesterolemic
participants (healthy men and

postmenopausal women), aged
40–65 years

Double-blind, randomized,
placebo-controlled,

parallel design.

Lower LDL-c levels (average of
0.26 mmol/L)

Eussen et al. [75]

Questionnaires on health and food
intake were used to assess PS intake.
Measurement of serum lipids. 5-year
follow-up

3,829 men and women
(aged 31–71 years). Retrospective cohort study.

Significant decrease of cholesterol
(−0.32 mmol/L) with increasing
intake of enriched margarine.
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Table 1. Cont.

Nutrient/Bioactive
Compound Study Design Participants Type of Study Findings

Escurriol et al. [76] FFQ was used to assess PS intake.
Measurement of serum lipids

Healthy men and women: 299
developed CHD and 584 as

controls, aged between 30 and
69 years (Spanish EPIC cohort)

Case-control study.

High levels of PS→↑ HDL-c,
cholesterol/HDL ratios, and ↓
glucose, TG and lathosterol,
(p < 0.02; all).
No correlation between APOE
genotype and CHD risk or plasma
phytosterols

Flavonoids
Monagas et al. [84]

4-weeks of intervention of: 40 g cocoa
powder with 500 mL skim milk/d (C
+ M) or only 500 mL skim milk/d (M).
Daily: 40.41 mg (+)-catechin
46.08 mg (−)-epicatechin
36.54 mg procyanidin B2
495.2 mg tot.PPh
425.7 mg tot.Pr

42 high-risk volunteers (19 men
and 23 women).
Aged ≥55 years.

Randomized crossover study.

C + M: ↓ VLA-4, CD40, CD36
(monocytes) (p ≤ 0.028; all)
↓ P-selectin and ICAM-1
(p = 0.007; both)
Non-significant changes: ↓ VCAM-1
and MCP-1
No effect: hs-CRP, IL-6, E-selectin

Vázquez-Agell et al. [85]

Acute intervention (6 h) of: 40 g
Cocoa powder with 250 mL milk or
water (W).
Daily: 40.41 mg (+)-catechin
46.08 mg (−)-epicatechin
36.54 mg procyanidin B2
495.2 mg tot.PPh
425.7 mg tot.Pr

18 healthy volunteers: 9 men
and 9 women, aged

19–49 years).
Randomized crossover study.

↓ NF-κβ (cacao + W; p < 0.05)
↓ E-selectin (cacao + W; p = 0.028)
↓ ICAM-1 (cacao + W or M;
p ≤ 0.026, both)
No effect: VCAM-1

Esser et al. [86]
Daily consumption of high flavanol
chocolate (HFC) and normal flavanol
chocolate (NFC). 4-week intervention.

Healthy overweight men
(age 45–70 years). Randomized crossover study.

HFC intake: ↑ FMD 1% (p = 0.010)
↓ ICAM-1, ICAM-3 (p ≤ 0.023; both)
↓ Leukocyte cell count (p = 0.023)
↓ Leukocyte adhesion marker
expression (p ≤ 0.047; all).

Jochmann et al. [90]

Measurement of FMD, before and
2 h after ingestion of either 500 mL
water (control), black tea, or green tea
in a cross-over study.

21 healthy postmenopausal
women. Average age:

58.7 ± 4.5 years.
Randomized crossover study.

Green tea: from baseline of 5.4 ± 2.3%
to 10.2 ± 3% 2 h, p < 0.001
Black tea: from baseline of 5 ± 2.6%
to 9.1 ± 3.6% 2 h after black tea
consumption; p < 0.001

Grassi et al. [91]

Five treatments with a twice daily
intake of black tea (0, 100, 200, 400,
and 800 mg tea flavonoids/day) in
five periods lasting 1 week each.

19 healthy men ranging from 18
to 70 years. Randomized crossover study.

Black tea dose dependently increased
FMD from 7.8% (control) to 9.0, 9.1,
9.6, and 10.3% after the different
flavonoid doses, respectively
(p = 0.0001).
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Table 1. Cont.

Nutrient/Bioactive
Compound Study Design Participants Type of Study Findings

Suzuki-Sugihar et al. [92]

Two sessions in which green tea
capsules containing 1 g of catechins
or placebo capsules were taken. Test
days were separated by at least a
2-week washout period.

19 healthy male volunteers
ranging from 25 to 53 years. Randomized crossover study

Green tea could reduce oxLDL in
human participants.
↑ sTAC value 1 h after intake
(p < 0.001).

Dower et al. [94]

(−)-epicatechin (100 mg/day),
quercetin-3-glucoside (160 mg/day),
or placebo capsules for a period of
4 weeks, in random order. 4-week
washout periods.

37 healthy (pre)hypertensive
men and women (40–80 years).

Double-blind
placebo-controlled randomized

clinical trial.

↓ sE-selectin by 27.4 ng/mL (p = 0.03)
↓ IL-1β by 20.23 pg/mL (p = 0.009)
Z score for inflammation by 20.33
(p = 0.02)

Larson et al. [95]
Intake of a single-dose of purified
quercetin aglycone (1095 mg) or
placebo.

5 normotensive men (n = 5;
24 ± 3 years; 24 ± 4 kg/m2) and

12 stage 1 hypertensive men
(41 ± 12 years; 29 ± 5 kg/m2).

Double-blind,
placebo-controlled, crossover

study.
↓ BP of stage 1 hypertensive men.

Kuntz et al. [99]

330 mL of beverage (placebo, juice
and smoothie with 8.9, 983.7, and
840.9 mg/L of anthocyanin,
respectively, for 14 days. 10-day
washout periods

30 healthy female volunteers,
age between 23 and 27 years.

Double-blind,
placebo-controlled, crossover

study.

Anthocyanin beverages: ↑ SOD,
catalase, Trolox
↓MDA

Davinelli et al. [100]

Intake of a standardized extract of
maqui berry (162 mg anthocyanins)
or a matched placebo, given 3 times
daily for 4 weeks.

42 overweight volunteer
smokers, aged between 45 to

65 years.

Double-blind,
placebo-controlled design. ↓ oxLDL and 8-iso-prostaglandin F2α

Zhang et al. [101]

Intake of two anthocyanin capsules
(320 mg anthocyanin/capsule) or
placebo capsules twice daily for
24 weeks.

150 hypercholesterolemic
individuals, age between 40 to

65 years.

Randomized, double-blind,
placebo-controlled trial.

Anthocyanin group: ↓ CXCL7,
CXCL8, CXCL12, CCL2.
Positive association between CXCL7
and CCL2 with LDL-c, hsCRP and
IL-1β.
Negative correlation between CXCL8
and HDL-c. Positive correlation
between CXCL8 and sP-Selectin.

Song et al. [102]
Consumption of four anthocyanins
capsules/day (total of 320 mg/day)
vs. placebo capsules for 24 weeks.

150 hypercholesterolaemic
patients.

Randomized, double-blind
clinical trial.

Anthocyanin group: ↓ β-TG,
sP-selectin, and RANTES.
Inhibition of pro-inflammatory and
pro-thrombotic factors.
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Table 1. Cont.

Nutrient/Bioactive
Compound Study Design Participants Type of Study Findings

Hodis et al. [107]

Intake of daily doses of 25 g soy
protein containing 91 mg aglycon
isoflavone equivalents or placebo for
2.7 years.

350 postmenopausal American
women, between 45 to 92 years

of age, without diabetes
and CVD.

Double-blind
placebo-controlled randomized

clinical trial.
CIMT progression in −16%.

Bhatt et al. [116]

Intervention group: 250 mg/Once
Daily resveratrol capsule
supplementation + oral
hypoglycemic agents vs. control
group: oral hypoglycemic agents for
a period of 3 months.

62 patients with T2DM, aged
between 30 and 70 years.

Prospective, open-label,
randomized, controlled study

Resveratrol: ↓ hemoglobin A(1c), SBP,
total cholesterol and LDL-c. No
changes in HDL-c.

Movahed et al. [117]

Daily: 1000 mg of resveratrol capsule
supplementation+oral hypoglycemic
agents vs. 1000 mg of placebo capsule
supplementation +oral hypoglycemic
agents for a period of 45 days.

66 patients with T2DM, aged
between 20 and 65 years.

Randomized placebo-controlled
double-blinded parallel clinical

trial.

Resveratrol: ↓ hemoglobin A(1c),
glucose, insulin, insulin resistance,
and SBP.
↑ HDL-c

Tomé-Carneiro et al. [118]
Intake of one capsule (350 mg) daily
of GE-RES (8 mg resveratrol), GE or
placebo for 6 months.

75 patients with T2DM, aged
between 18 and 80 years.

Triple-blind, randomized,
placebo-controlled trial

GE-RES: −20% of oxLDL (p < 0.001),
−9.18% of ApoB (p = 0.014), −4.5% of
LDL-c (p = 0.04).
+8.5% non-HDLc (total atherogenic
cholesterol load)/ApoB

Imamura et al. [119] Intake of 100-mg resveratrol tablet or
placebo tablet for 12 weeks.

50 eligible patients with T2DM
(HbA1c > 7.0%). Average age

57–58 years.

Randomized, double-blind
placebo-controlled clinical trial.

Resveratrol: ↓ SBP, CAVI, and
d-ROMs

Agarwal et al. [120]

Intake of 400 mg trans-resveratrol,
400 mg grape skin extract, and 100
mg quercetin (RESV GROUP) or a
cellulose placebo for 30 days

44 healthy subjects, >18 years. Randomized, double-blind
placebo-controlled clinical trial.

RESV GROUP: ↓ IL-8,IFN-γ,
sVCAM-1, sICAM-1, and ↓ fasting
insulin

Olive oil
Camargo et al. [135]

MD+EVOO, SFA-rich diet,
CHO-PUFA diet for 3 weeks.

20 healthy and elderly people.
Mean age: 67.1 years.

Randomized crossover design
study.

MD + EVOO: ↓ NF-κβ, MMP-9,
TNF-α, and MCP-1 and ↑ IκBα
expression
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Table 1. Cont.

Nutrient/Bioactive
Compound Study Design Participants Type of Study Findings

Hernáez et al. [139]

MD + EVOO (50 mL daily) or nuts
(30 g daily) vs. a LFD.
Dietary habits were assessed with
137-item FFQ and a 14-item
questionnaire.
LDL atherogenic traits (resistance
against oxidation, size, composition,
cytotoxicity) after 1 year of
intervention.

210 men and women aged
between 55 and 80 years at high

cardiovascular risk.

Multicenter, randomized,
parallel-group trial.

↑ LDL resistance against oxidation
(+6.46%) and LDL particle size
(+3.06%).
↓ the degree of LDL oxidative
modifications (−36.3%).
LDL particles became cholesterol-rich
(+2.41%) and less cytotoxic (−13.4%)
compared to LFD.

Castañer et al. [140]

25 mL olive oil with a LPC
(2.7 mg/kg) or a high polyphenol
content (HPC: 366 mg/kg) for
3 weeks separated by 2-week
washout periods.

180 healthy European
volunteers aged 20–60 years.

Randomized, crossover,
controlled trial.

The intake of polyphenol-rich olive
oil reduces LDL oxidation and gene
expression related to atherosclerotic
and inflammation processes in
PBMCs (CD40, MCP-1, ICAM-1, etc.).

Widmer et al. [141] Daily intake of 30 mL of EVOO or
EGCG+EVOO for 4 months.

52 volunteers with early
atherosclerosis and over

18 years.

Randomized, double-blind,
trial.

Improved endothelial function in
both groups. EVOO group: ↓ sICAM,
white blood cells, monocytes,
lymphocytes, and platelets.
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Many in vivo human studies have demonstrated that increased consumption of EVOO phenolic
compounds (mainly HT) leads to a decrease in oxLDL and an increase in HDL-c levels [136–138].
A recent study [139] showed that a MD supplemented with EVOO decreased LDL atherogenicity in
a random sub-sample of individuals from the PREDIMED study, which could partially explain the
cardioprotective benefits of this dietary pattern. Castañer et al. [140] found that polyphenol-rich EVOO
might exert a reduction in LDL oxidation and the gene expression of the CD40 ligand (CD40L), IL-23α
subunit p19 (IL23A), adrenergic β-2 receptor (ADRB2), oxLDL (lectin-like) receptor 1 (OLR1), and IL-8
receptor-α (IL8RA), all of which are genes involved in the atherogenic and inflammatory processes in
which LDL oxidation is involved. A study carried out by Widmer et al. [141] also found significant
reductions in proinflammatory markers and oxidative stress after the consumption of 30 mL of EVOO.

5. Conclusions

According to the data presented, there are a great number of nutrients or bioactive compounds
that seem to have beneficial effects on CVD. These effects could be explained by the modulation
of immune system response, endothelial dysfunction, avoiding VSMC proliferation or migration,
reducing oxidative stress or stabilization of vulnerable atherosclerotic plaque, among others. Based
on this evidence, diets such as the MD could be potentially efficacious in the primary and secondary
prevention of CVD. Therefore, nutritional recommendations should be established, and the most
adequate intake of bioactive compounds should be determined in order to reduce the incidence of
CVD. To do this, it is necessary to conduct new randomized clinical intervention trials that specifically
use and/or combine these nutrients, active compounds, or specific foods with each other in order to
resolve questions such as how much, how, and when as well as possible nutrient–drug interactions.
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