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Abstract: Although low-calorie diets (LCD) improve glucose regulation, it is unclear if interval
exercise (INT) is additive. We examined the impact of an LCD versus LCD + INT training on ß-cell
function in relation to glucose tolerance in obese adults. Twenty-six adults (Age: 46 ± 12 year; BMI
38 ± 6 kg/m2) were randomized to 2-week of LCD (~1200 kcal/day) or energy-matched LCD +
INT (60 min/day alternating 3 min at 90 and 50% HRpeak). A 2 h 75 g oral glucose tolerance test
(OGTT) was performed. Insulin secretion rates (ISR) were determined by deconvolution modeling to
assess glucose-stimulated insulin secretion ([GSIS: ISR/glucose total area under the curve (tAUC)])
and ß-cell function (Disposition Index [DI: GSIS/IR]) relative to skeletal muscle (Matsuda Index),
hepatic (HOMA-IR) and adipose (Adipose-IRfasting) insulin resistance (IR). LCD + INT, but not LCD
alone, reduced glucose and total-phase ISR tAUC (Interactions: p = 0.04 and p = 0.05, respectively).
Both interventions improved skeletal muscle IR by 16% (p = 0.04) and skeletal muscle and hepatic DI
(Time: p < 0.05). Improved skeletal muscle DI was associated with lower glucose tAUC (r = −0.57,
p < 0.01). Thus, LCD + INT improved glucose tolerance more than LCD in obese adults, and these
findings relate to ß-cell function. These data support LCD + INT for preserving pancreatic function
for type 2 diabetes prevention.
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1. Introduction

Obesity affects about 13% of adults worldwide and increases the risk for type 2 diabetes
(T2D) [1,2]. While the relation between excess body fat and T2D is complex, the development of T2D
is mainly characterized by insulin resistance that contributes to hyperinsulinemia and pancreatic ß-cell
dysfunction [3,4]. Over time, it is the loss of ß-cell function that leads to impaired glucose tolerance
and T2D [3,5]. The oral disposition index (DI) is a measure of pancreatic insulin secretion [6,7] and is a
stronger predictor of future T2D risk than insulin sensitivity alone [8]. Therefore, interventions that
improve pancreatic ß-cell dysfunction are essential to the prevention of T2D [9].
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Caloric restriction is an established treatment for reducing obesity and lowering T2D risk. Adding
exercise to caloric restriction interventions may be synergistic as they both independently reduce insulin
resistance [10]. Caloric restriction has strong effects on reducing endogenous glucose-production and
hepatic insulin resistance [11,12], whereas exercise has well-established benefits for skeletal muscle
insulin-stimulated glucose uptake [13,14]. A recent long-term study that combined caloric restriction
and exercise to elicit weight losses of 6−8% demonstrated a two-fold greater improvement in insulin
sensitivity compared to the same weight loss achieved by diet or exercise alone, although there was no
added benefit to ß-cell function [10]. However, prior work by some [15,16], but not all [14] suggests
that exercise volume is important for pancreatic function in people with prediabetes, and recent
work has highlighted that for a given exercise duration, high-intensity interval training provides
added benefits for cardiometabolic health compared to moderate intensity exercise in T2D [17,18].
Interestingly, interval exercise training improves ß-cell function relative to changes in skeletal muscle
insulin resistance in those with obesity and T2D [13,19]. Our group has previously demonstrated
that an acute bout of high intensity exercise differentially impacts skeletal muscle versus liver and
adipose indices of ß-cell function to maintain glucose homeostasis in the immediate post-exercise
period when compared with moderate exercise in adults with prediabetes [20]. To date, it remains
unknown if high-intensity interval exercise adds to the benefits of caloric restriction on pancreatic
ß-cell function prior to clinically meaningful weight loss of approximately 7% in obese adults without
overt hyperglycemia [21]. This is relevant as weight loss is often advocated to reduce T2D development
by 58% [22] thereby confounding the ability to understand the acute preventative effects of lifestyle
intervention. Therefore, we tested the hypothesis that combining interval exercise with a low-calorie
diet would enhance ß-cell function compared to a matched caloric restriction diet alone in adults with
obesity. Secondly, given the known effects of caloric restriction on the gut and the impact of incretin
hormones on insulin secretion [23], we hypothesized that changes in GSIS adjusted for skeletal muscle,
liver and/or adipose insulin resistance would correlate with improved GLP-1 and glucose tolerance
following the interventions.

2. Materials and Methods

2.1. Participants

Twenty-six participants (Age: 46 ± 12 year, BMI: 38 ± 6 kg/m2, Table 1) were randomized
to either 2-weeks of a low-calorie diet (LCD) or an energy matched LCD with interval exercise
training (LCD + INT). Participants volunteered to participate in this study, and were recruited
from advertisements in the Charlottesville, Virginia community. All participants underwent health
screenings that included a resting and exercise stress test with 12-lead electrocardiogram (EKG),
medical history, which indicated they were weight stable (<2 kg over last 3 m) and physical
examination, as well as blood chemistry analysis. Individuals were excluded if pregnant or had known
cardiovascular disease, T2D, cancer, contraindications to exercise (e.g., musculoskeletal injuries),
and/or taking medications (e.g., metformin, acarbose, GLP-1 agonists, etc.) known to affect glucose
homeostasis. A similar number of females were pre- (n = 6 LCD, n = 5 LCD + INT) and post-menopausal
(n = 5 LCD, n = 5 LCD + INT) in each treatment group. All participants gave also their informed
consent for inclusion before they participated in the study. The study was conducted in accordance
with the Declaration of Helsinki, and the protocol was approved by the University of Virginia Ethics
Committee (IRB-HSR # 18316).
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Table 1. Pre- and post-intervention characteristics for the LCD and LCD + INT groups.

LCD LCD + INT Time
(p-Value)

Interaction
(p-Value)

Pre Change Pre Change

N, (M/F) 12 (1/11) 11 (0/11)
Age (year) 45 ± 12 47 ± 14
Body Composition
Height (cm) 166 ± 6 168 ± 6
Body mass (kg) 103.2 ± 15.8 −2.9 ± 0.9 107.3 ± 20.2 −1.7 ± 1.3 <0.01 0.02
BMI (kg/m2) 37.4 ± 6.3 −1.0 ± 0.3 38.0 ± 7.7 −0.3 ± 0.8 <0.01 <0.01
Body fat (%) 46.7 ± 6.4 −0.3 ± 0.9 48.2 ± 5.7 0.1 ± 1.1 0.46 0.20
Body fat (kg) 49.0 ± 12.7 −1.4 ± 1.0 52.2 ± 14.6 −0.6 ± 1.0 <0.01 0.07
Fat-free mass (kg) 51.4 ± 6.3 −0.7 ± 0.4 52.3 ± 9.0 1.0 ± 0.9 0.05 0.02
Body Water (L) 41.3 ± 5.7 −0.8 ± 0.5 40.0 ± 5.8 −0.7 ± 1.0 <0.01 0.67
Fitness
VO2 peak (L/min) 1.9 ± 0.5 −0.1 ± 0.3 1.9 ± 0.4 0.1 ± 0.3 0.98 0.04
VO2 peak (mg/kg/min) 19.7 ± 4.9 −0.5 ± 1.6 18.6 ± 4.9 1.4 ± 2.1 0.28 0.03
Bloods
FPG (mg/dL) 96.6 ± 4.8 −3.6 ± 8.0 97.7 ± 7.7 −2.2 ± 6.7 0.01 0.93
2 h PG (mg/dL) 110.5 ± 21.7 7.7 ± 22.7 123.2 ± 21.3 −5.1 ± 24.5 0.61 0.13
FIns (µU/mL) 15.4 ± 9.0 −2.9 ± 6.0 21.7 ± 20.1 −4.1 ± 7.7 0.05 0.73
2 h Ins (µU/mL) 76.1 ± 52.0 −0.9 ± 22.7 148.0 ± 110.4 −26.3 ± 61.1 0.15 0.17
FC-pep (ng/mL) 2.2 ± 0.7 −0.3 ± 0.5 2.6 ± 1.3 −0.4 ± 0.5 <0.01 0.84
2 h C-pep (ng/mL) 8.0 ± 2.9 0.5 ± 1.9 11.8 ± 4.0 −2.5 ± 2.5 0.04 <0.01
Diet
Energy intake (kcal) 2243 ± 759 −854 ± 768 2110 ± 648 −639 ± 580 <0.01 0.47
CHO (%) 46 ± 7 7 ± 7 46 ± 11 7 ± 10 <0.01 0.89
Protein (%) 16 ± 4 2 ± 4 16 ± 4 3 ± 1 0.01 0.61
Fat (%) 38 ± 7 −9 ± 7 39 ± 8 −12 ± 2 <0.01 0.37

Low-calorie diet (LCD), LCD plus interval training (LCD + INT), BMI = Body mass index, VO2 peak = Peak oxygen
uptake, FPG = Fasting plasma glucose, FPI = Fasting plasma insulin. CHO = carbohydrate.

2.2. Low-Calorie Diet (LCD)

Participants were prescribed an LCD (1000−1200 kcal/day) based on 2-week pre-operative diets
recommended to obese adults undergoing bariatric surgery [24]. We elected this dietary intervention
to develop pilot data for adults potentially undergoing bariatric surgery. To achieve this, participants
were provided a meal replacement shake for breakfast and lunch (Ensure® Abbott Laboratories,
Lake Bluff, IL, USA, 8 fl. oz; providing 160 kcal, 16 g protein, 2 g fat, 19 g carbohydrate). Participants
were then instructed on a sensible dinner option that did not exceed 600 kcal (e.g., lean protein with
vegetables or salad). Additionally, two 100 kcal snack options were provided to account for the
remaining caloric deficit. Detailed instructions for preparing, and recording food and beverages were
given to participants before the intervention. Empty shake containers were returned/counted and
13 day food records were completed throughout the intervention and averaged to assess compliance
(Table 1). Caloric deficit was calculated as the average of 3 day food logs pre-intervention minus
the 13 day average of food intake. This approach does not account for the 350 kcal post-exercise
energy intake.

2.3. Exercise Training

Participants randomized to LCD + INT performed 12 sessions of interval exercise (INT) over a 13-d
period, with one rest day at the half-way point. Each exercise session was supervised and alternated
3 min periods of cycling at 50% and 90% of heart rate peak (HRpeak); ten repetitions of 50% and 90%
were completed per 60 min session. The duration progressed from 30 min on day 1, to 45 min on day 2,
and 60 min thereafter. After each exercise session, a mixed-meal shake (Ensure® Abbott Laboratories,
Lake Forest, IL, USA, 8 fl. oz; providing 350 kcal, 13 g protein, 11 g fat, 50 g carbohydrate) was
consumed to match the caloric deficit between the LCD and LCD + INT interventions. Replacement
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was based on a previously reported 340 kcal expenditure per 60 min INT session in overweight/obese
adults [25].

2.4. Metabolic Control

Participants were instructed to refrain from caffeine or alcohol consumption as well as strenuous
exercise 48 h prior to testing. Participants were also instructed to refrain from taking any medications
or dietary supplements 24 h prior to reporting to the Clinical Research Unit. Participants were
instructed to record 3 days of habitual diet before pre-testing. In addition, individuals were instructed
to consume approximately 250 g of carbohydrates on the day before pre-testing to minimize influence
of muscle glycogen on insulin action. The last training bout was performed approximately 24 h before
metabolic testing.

2.5. Cardiorespiratory Fitness

VO2 peak was determined using an exercise test to volitional exhaustion on a cycle ergometer
with indirect calorimetry (Carefusion, Vmax CART, Yorba Linda, CA, USA) [20]. Work output was
increased by 25 watts every 2 min until the subject met volitional exhaustion, respiratory exchange
rate > 1.1 or cadence < 60 rpm. Heart rate (HR) and blood pressure were obtained at rest and HR was
continuously monitored using a 12-lead EKG.

2.6. Body Composition

Following an approximate 4 h fast, body weight was measured to the nearest 0.01 kg on a digital
scale with minimal clothing and without shoes. Height was measured with a stadiometer. Body fat and
fat-free mass (FFM) was determined using the BodPod (BodPod, Cosmed, CA, USA), and hydration
was measured using the InBody 770 Body Composition Analyzer (InBody CO, Cerritos, CA, USA).

2.7. Pancreatic ß-Cell Function

Participants arrived at the Clinical Research Unit after an overnight fast and underwent a 2 h
75 g oral glucose tolerance test (OGTT). Resting metabolic rate was also determined using indirect
calorimetry. Blood samples were obtained from an antecubital vein at 0, 30, 60, 90, and 120 min for the
determination of glucose, insulin, and C-peptide concentrations. GLP-1Active was measured during 0,
30 and 60 min of the OGTT to assess incretin effects, and free-fatty acids (FFA) were measured at 0 min.
Total area under the curve (tAUC) was calculated using the trapezoid method. Skeletal muscle insulin
resistance (IR) was estimated using the inverse of the Matsuda Index (IRSkm = 1/Matsuda index) [26].
Hepatic (IRHep) and adipose (IRAdip) insulin resistance were also estimated using fasting glucose
and fasting FFA multiplied by insulin, respectively [20,27]. Insulin secretion was reconstructed by
deconvolution from plasma C-Peptide (Pre-hepatic insulin secretion: ISR) [28]. C-peptide was utilized
to characterize insulin secretion to minimize influences of insulin clearance on pancreatic function
assessment. Early- and total-phase glucose-stimulated insulin secretion (GSIS) were calculated by
dividing the ISR tAUC by glucose tAUC during the first 30 and total 120 min of the OGTT. The early-
and total-phase disposition index (DI) were used to characterize ß-cell function, each was calculated
relative to skeletal muscle insulin resistance (DISkm = GSIS/IRSkm), hepatic insulin resistance (DIHep =
GSIS/IRHep) and adipose tissue insulin resistance (DIAdip = GSIS/IRAdip) as previously described by
our group [20].

2.8. Biochemical Analyses

All samples were immediately centrifuged for 10 min at 15,000× g 4 ◦C and stored at −80 ◦C
for later analyses. Blood glucose was collected in lithium-heparinized vacutainers and immediately
analyzed by a glucose oxidase assay (YSI Instruments 2700, Yellow Springs, OH, USA). Plasma
insulin and C-peptide were collected in EDTA tubes with a protease inhibitor aprotinin added and
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subsequently analyzed by ELISA and chemiluminescence, respectively. Circulating GLP-1Active was
also collected in EDTA tubes with dipeptidyl peptidase-4 inhibitor and aprotonin for analyses using
ELISA (EMD Millipore, MA, USA). FFA was analyzed using a colorimetric assay (Wako Chemicals,
Richmond, VA, USA). To minimize inter-assay variability, pre- and post-intervention samples for each
participant were run in duplicate on the same plate.

2.9. Statistical Analysis

Data were analyzed by using SPSS Version 24 (IBM Statistics, Chicago, IL, USA). Twenty-six
participants (n = 13 LCD, n = 13 LCD + INT) completed the 2-week interventions. Two participants
were excluded from analyses due to non-compliance (n = 1 LCD) and failure to obtained blood
post-intervention (n = 1 LCD + INT), and three were excluded as outliers from LCD + INT for DI
calculations. Comparisons of group baseline variables were performed using independent samples
t-test. Normality was tested using Q-Q plots and the Shapiro-Wilk test. Non-normally distributed
data (all IR and DI data) were log-transformed before analysis. Pre- and post-measures between LCD
and LCD + INT were compared using a repeated measures ANOVA. Significant interactions were
followed up with tukey post hoc analysis. Bivariate linear regression analysis was used to determine
associations. Significance was accepted as p < 0.05. Data are presented as mean ± SD.

3. Results

3.1. Diet and Exercise Compliance

The caloric deficit was not different between interventions (Interaction: p = 0.47, Table 1). Percent
energy intake from fat decreased, whereas energy from carbohydrates and protein increased in both
interventions when compared with pre-intervention diet (Table 1, Time: p ≤ 0.01). Participants in the
LCD + INT intervention completed all exercise sessions (HRpeak: 82.5 ± 2.2% and rating of perceived
exertion (RPE) 12.8 ± 0.7).

3.2. Body Composition and Fitness

Both interventions decreased body mass, but this reduction was about 1% greater following the
LCD when compared with LCD + INT (Interaction: p = 0.02, Table 1). Although neither intervention
altered body fat % (Time: p = 0.46), FFM increased slightly after LCD + INT when compared with LCD
(Interaction: p = 0.02, Table 1). RMR did not change pre- to post-intervention (LCD −46.4 ± 339.3,
LCD + INT 115.1 ± 255.4; p = 0.60). As expected, VO2 peak increased about 7% following LCD + INT,
with no change after LCD (Interaction: p = 0.03).

3.3. Glucose and Hormone Responses

LCD + INT reduced early- and total-phase glucose tAUC by 11% and 6% compared with LCD
(Figure 1, Interaction: p = 0.04). The % participants with prediabetes based on fasting were (LCD:
n = 15%; LCD + INT: n = 7%) and/or 2 h glucose (LCD: n = 8%; LCD + INT: n = 23%). Although neither
intervention impacted early-phase ISR tAUC (Time: p = 0.20), LCD + INT, but not LCD, reduced
total-phase ISR tAUC by 15% (Figure 1, Interaction: p = 0.05). Both interventions decreased circulating
insulin, but not C-peptide, responses to the OGTT (Table 2). LCD and LCD + INT increased GLP-1
tAUC (Figure 1, Time: p < 0.05). LCD and LCD + INT increased total-phase HC by 12% (Table 2, Time:
p = 0.01), but not early-phase.
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Figure 1. Glucose tolerance tAUC (A,D), insulin secretion rate (ISR: B,E) and GLP-1 tAUC (C,F) for
early- and total-phase responses to an OGTT before and after a 2-week period of either a low-calorie
diet (LCD) or LCD plus interval training (LCD + INT) in obese adults.

Table 2. Early-phase and total-phase responses to an OGTT, before and after each 2-week intervention.

LCD LCD + INT Time
(p-Value)

Interaction
(p-Value)

Pre Change Pre Change

Early-Phase Responses
Insulin tAUC30 (µU/mL•30 min) 2206 ± 1154 −408 ± 885 2544 ± 1238 −368 ± 670 0.07 0.66
C-peptide tAUC30 (ng/mL•30 min) 148 ± 46 −11 ± 35 164 ± 57 −22 ± 35 0.25 0.62
ISR (pM •30 min) 20652 ± 1878 −1211 ± 4828 23647 ± 2299 −1804 ± 5938 0.20 0.80
GSIS (pM•min/mg/dL) 5.31 ± 1.29 −0.26 ± 1.01 6.50 ± 1.41 −0.05 ± 1.52 0.44 0.55
HC (µU/mL•mg/dL−1) 12.5 ± 5.1 −0.6 ± 3.3 13.9 ± 3.7 −0.4 ± 2.0 0.44 0.91
Total phase responses
Insulin tAUC120 (µU/mL•120 min) 11094 ± 5665 −1685 ± 3882 14872 ± 8951 −2525 ± 3185 0.01 0.71
C-peptide tAUC120 (ng/mL•120 min) 895 ± 260 −10 ± 167 1092 ± 340 −109 ± 122 0.14 0.22
ISR (pM•120 min) 96013 ± 8088 −283 ± 2129 130861 ± 14511 −18956 ± 20239 0.10 0.05
GSIS (pM•min/mg/dL) 5.94 ± 1.73 0.23 ± 0.91 7.95 ± 1.68 −0.52 ± 1.1 0.24 0.41
HC (µU/mL•mg/dL−1) 11.7 ± 3.8 −1.7 ± 2.7 13.4 ± 4.5 −1.2 ± 2.2 0.01 0.60

Low-calorie diet (LCD), LCD plus interval training (LCD + INT), tAUC = total area under the curve, ISR = Insulin
Secretion Rate, GSIS = glucose-stimulated insulin secretion, HC = Hepatic Clearance.

3.4. Insulin Resistance

Both LCD + INT and LCD reduced skeletal muscle and liver insulin resistance by approximately
16 ± 28% and 17 ± 31%, respectively (Time: p < 0.05, Table 3). Neither intervention, however, affected
adipose insulin resistance, although fasting FFA tended to be higher following LCD compared with
LCD + INT (LCD: 0.14 ± 0.2 vs. LCD + INT: 0.0 ± 0.1 mEq/L, Interaction: p = 0.07).

Table 3. Insulin resistance before and after each 2-week intervention.

LCD LCD + INT Time
(p-Value)

Interaction
(p-Value)

Pre Change Pre Change

Skeletal muscle IR 0.38 ± 0.21 −0.08 ± 0.13 0.64 ± 0.53 −0.16 ± 0.19 <0.01 0.24
Hepatic IR 3.3 ± 2.1 −1.0 ± 1.7 5.8 ± 5.7 −1.3 ± 2.5 0.01 0.59
Adipose IR 7.6 ± 4.6 0.1 ± 2.9 13.3 ± 13.3 −2.4 ± 6.2 0.14 0.13

Low-calorie diet (LCD), LCD plus interval training (LCD + INT), IR = Insulin Resistance.
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3.5. Pancreatic ß-Cell Function

LCD + INT and LCD interventions did not change early-phase or total-phase GSIS (Table 2).
However, LCD + INT and LCD increased early-phase (Time: p = 0.05) and total-phase DIskm (Time:
p = 0.01, Figure 2). Both interventions also increased DIHep for the early-phase (Time: p = 0.02) and
total-phase (Time: p = 0.02, Figure 2). Adipose tissue DIAdi did not change after either intervention
(Figure 2).
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Figure 2. Effect of 2 weeks on a low-calorie diet with (LCD + INT) and without (LCD) interval exercise
training on skeletal muscle (A,D), hepatic (B,E) and Adipose (C,F) disposition index (DI). Which was
calculated as glucose-stimulated insulin secretion adjusted for skeletal muscle, liver and adipose insulin
resistance. Data are changes from baseline for individual (dots) and mean groups (bar).

3.6. Correlation Analyses

Intervention-induced changes in total DISkm were not related to changes in energy intake (r = 0.07,
p = 0.85), energy deficit (r = 0.00, p = 0.93) or to the changes in body mass (r = −0.08, p = 0.61), VO2 peak
(r = −0.09, p = 0.63) or body fat % (r = −0.05, p = 0.66). Whereas, the changes in FFM tended to be
related to total DISkm (r = 0.37, p = 0.08). The changes in glucose tolerance (tAUC120) were related
to the changes in total DISkm (r = −0.57, p <0.01, Figure 3). Increased GLP-1 was not related to the
changes in total DISkm (r = −0.10, p = 0.81). Intervention-induced changes in ISR and GSIS were not
related to any study outcome (all p > 0.10).
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Figure 3. The relationship between the change in total skeletal muscle disposition index (DI) and
glucose tolerance (tAUC) after a 2-week period of either a low-calorie diet (LCD) or LCD plus interval
training (LCD + INT) in obese adults.
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4. Discussion

The major finding of the present study was that 2 weeks of an LCD combined with INT reduced
glucose and ISR tAUC responses to an OGTT compared to a LCD alone (Figure 1). However, both
interventions significantly improved early- and total-phase GSIS when adjusted to skeletal muscle and
hepatic insulin resistance (Figure 2). Improvements in total phase skeletal muscle DI were also related
to improvements in glucose tolerance (Figure 3), but not to the changes in GLP-1, body mass or fitness.
This suggests that combining INT with a LCD is clinically better for glucose control through, in part,
a pancreatic ß-cell function adaptation. These findings are of clinical relevance since the oral disposition
index is a strong predictor of future risk for type 2 diabetes [8] and obese individuals may have up to
50% reduced ß-cell function when compared with lean counterparts [29]. While our findings suggest
not all individuals improve to the same magnitude following treatment, the improvement seen in the
present study suggests that acute energy deficit via LCD is a stimulus for GSIS adjusted to skeletal
muscle and hepatic insulin resistance and combining interval exercise may be additive for reducing
the rate at which insulin is secreted. Interestingly, interval exercise training improves insulin secretion
relative to changes in skeletal muscle and/or hepatic insulin resistance [13,19]. A consideration
with these prior studies is that they measured pancreatic function using either the hyperglycemic
clamp [19] or fasting/OGTT measures with insulin [13]. Together, these studies potentially limit
understanding C-peptide derived measures of pancreatic function under physiologic conditions of
feeding. In addition, overall energy balance was not controlled for, thereby raising question of whether
exercise or exercise-induced energy deficit, improved insulin secretion [13,18]. Interestingly prior work
by Weiss et al. [10] showed greater effects of combining caloric restriction and exercise training (to elicit
~6% weight loss) on insulin sensitivity, but not ß-cell function in overweight individuals. Our findings
add to this literature by showing that 2 weeks of either LCD + INT or LCD enhances skeletal muscle
and hepatic DI independent of clinically meaningful weight loss, suggesting that early on in response
to lifestyle intervention, the pancreas improves favorably.

Weight loss and negative energy balance have independently been suggested to improve glucose
regulation in adults with obesity [10,23,30]. While we cannot tease the effect of negative energy balance
per se from that of stable weight loss in this intervention, the LCD intervention promoted greater
reductions in body mass (albeit by ~1%) when compared to the LCD + INT. Both groups reduced
caloric intake comparably between groups, and only the exercise intervention consumed a post-meal
of about 350 kcal to equate energy availability. Thus, it would be expected that both groups lose
comparable weight. Interestingly, INT preserved and increased FFM compared with LCD alone,
suggesting that exercise increased muscle hypertrophy given there was no change in hydration status.
While it remains possible that people undergoing INT decreased habitual activity more so than LCD
alone, this is unlikely as this group gained about 7% in aerobic fitness. Regardless, of the subtle
difference in weight loss, there was no difference in body fat, and this weight loss did not correspond
to greater improvements in glucose tolerance or ß-cell function. This indicates that weight loss is
not the sole requirement for improved GSIS adjusted for skeletal muscle or hepatic insulin resistance
following lifestyle interventions, which is similar to prior work [10]. Thus, our results highlight that
when the energy deficit is matched, regardless of whether diet or exercise induced, there are similar
improvements in ß-cell function.

Based on previous work, it was hypothesized that caloric restriction and/or exercise may
differentially impact tissue-specific indices of insulin resistance and pancreatic ß-cell function [20,31].
Herein we characterized early and total phase GSIS to depict the readily available pool of insulin
to be released upon glucose-stimulation compared with the synthesis of new insulin in response
to ambient fluctuations in circulating glucose. Interestingly, both interventions improved skeletal
muscle and hepatic DI during early and total phase, with no effect of either short-term intervention on
adipose DI. The lack of change in adipose tissue DI may be due to the minimal effect of the present
short-term interventions on body fat and adipose insulin resistance. The changes in skeletal muscle
DI are in agreement with previous lifestyle interventions [13,14,32,33], and reiterates the importance
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of diet and exercise for improving the ability of the pancreas to secrete insulin relative muscle and
liver during the post-prandial period. Weiss et al. [10] observed greater improvements for insulin
sensitivity when a LCD was combined with exercise training in obese adults. In contrast, we observed
similar improvements for peripheral insulin resistance with LCD + INT and LCD. However, it is
difficult to compare these studies as the intervention was much longer (2-week versus 20-week)
and involved significant weight loss (6−8%) compared to the present study (< 3%). Moreover, we
did note significant reductions in fasting glucose and insulin following LCD + INT and LCD alone.
This suggests improvements in hepatic insulin resistance during caloric restriction, and highlights
that energy deficit is important for improving hepatic glucose production in obese adults prior to
overt hyperglycemia.

Skeletal muscle is considered a primary tissue regulating glucose metabolism. Most glucose that
is ingested following a meal is taken up by peripheral tissues such as skeletal muscle [34]. In the
present study, improvements in skeletal muscle DI were significantly associated with improved
glucose tolerance and tended to be related to increased FFM. Indeed, following LCD + INT there
was an 11% decrease in glucose tAUC and 2% increase in FFM. Importantly, this was not related to
changes in total body water, which did not change after either intervention. Given the importance
of skeletal muscle in the disposal of glucose after a meal [34], our work highlights the effect of
INT exercise in preserving FFM during a LCD while concomitantly improving pancreatic function.
Previous work has highlighted the feasibility of INT when prescribed at their own relative intensity
in at risk populations [13,25]. For example, Karstoft et al. [25] employed a similar INT protocol, but
non-supervised, over a 16-week exercise intervention in adults with T2D and found improved glucose
regulation. However, this current study is the first to combine INT with caloric restriction. The present
study suggests INT and caloric restriction is feasible over 2 weeks in adults with obesity, as all adults
successfully completed the intervention with high adherence. Moreover, our results highlight that
when exercise is performed relative to their maximal capabilities, individuals are able to perform INT
with health benefit. This study was not designed to assess the mechanism by which skeletal muscle
could impact insulin secretion, but one possible explanation could relate to a change in the release
of myokines [35]. Indeed, several myokines have been identified to facilitate tissue cross talk and
promote pancreatic function after exercise training [36]. Whether caloric restriction induces changes
in myokines comparably to exercise, with or without caloric restriction, requires further attention in
order to gain mechanistic understanding of lifestyle on chronic disease risk.

GLP-1 and GIP are responsible for a large proportion of GSIS, and both are reduced in
obesity [37,38]. Previous work [32,39] shows that improvements in GSIS after lifestyle-induced
weight loss is linked to alterations in GIP secretion. However, more recent work has raised the
question as to whether it is GIP or GLP-1 that plays the predominate role in altering insulin secretion
following diet and/or exercise interventions [40]. Given recent data which highlights the role of
GLP-1 in mediating changes in insulin secretion independent of weight loss [41], we hypothesized
that the changes in pancreatic ß-cell function following our treatments may be mediated by changes in
GLP-1. In the present study, active GLP-1 increased ~16% after both interventions, suggesting energy
deficit, not exercise, improves GLP-1 concentrations in obese adults. For example, changes in the gut
microbiota in response to caloric restriction may explain the observed increases in GLP-1 secretion [42].
The clinical relevance of this is unclear as increased GLP-1 did not correlate with the changes in GSIS
or DI. Conversely, Weiss et al. [10] observed a decrease in postprandial GLP-1 after long-term caloric
restriction, but not after combined caloric restriction and exercise. The present study suggests that
changes in GLP-1 are more likely related to the caloric restriction rather than the addition of exercise.
Moreover, our data are consistent with some [43,44] but not all [45] studies that have shown exercise to
have little effect on raising gut hormones. Collectively, these data suggest improvements in pancreatic
function are independent of GLP-1, and further work is required to understand how LCD and/or INT
exercise improve insulin secretion.
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A potential limitation of this study is the small sample size and the predominantly female
population, thereby limiting the generalizability of our findings. While the male participant in
the present study responded similarly to women, we are underpowered to definitively test sex
effects and further work is needed. Within the women studied there were a mixture of pre- and
post-menopausal women, with equal numbers in each group. Although groups were relatively
matched, it remains possible that LCD versus LCD + INT may induce different effects. Moreover,
the effects of menstrual status on ß-cell function within a short-term intervention are unknown,
and require further investigation. Another point to consider is that the energy deficits are based on
14 day food logs as we did not directly control feeding for the 2-week interventions nor did we use
doubly-labeled water to estimate energy expenditure. Thus, it remains possible that our estimations of
the energy deficit are under-/over-estimated. However, we did not see energy intake or weight loss
after the intervention relate to glucose tolerance or ß-cell function. Glucose regulation was measured
approximately 24 h following the last exercise bout. As such, it is possible that some of the LCD +
INT intervention effect is due to the acute residual effects of exercise. However, this would seem
unlikely given insulin resistance, GSIS and pancreatic function measures were improved comparably
between treatments. The present study used an oral glucose load to physiologically characterize the
effects of our interventions on ß-cell function in addition to being dependent on the incretin hormones.
Further work using the intravenous glucose tolerance test or hyperglycemic clamp is needed to confirm
these results. Moreover, with reductions in circulating insulin being possibly due to increased hepatic
clearance, we may have over-estimated the change insulin sensitivity. However, this approach is a
validated calculation that is highly correlated with the gold-standard euglycemic-hyperinsulinemic
clamp [26].

5. Conclusions

In conclusion, we demonstrate for the first time that 2 weeks of combined caloric restriction and
INT training improves glucose tolerance more than LCD alone. The reason for such improvements
in glucose metabolism may relate to glucose-stimulated insulin secretion when scaled to skeletal
muscle, but not liver or adipose. Interestingly, these changes in skeletal muscle DI tended to be related
to increases in lean body mass; highlighting the importance of skeletal muscle function for glucose
control. However, additional work is required to elucidate the exact mechanism(s) by which LCD +
INT and LCD alone improves ß-cell function to optimize diabetes prevention.
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