
1 
 

Table S1. Main findings and evidence from metabolites associated with food (higher levels of 
metabolites are associated with higher levels of food item consumption/dietary pattern adherence 
unless otherwise specified). 

Metabolite Food Item/Dietary Pattern 
TMAO Meat products [1]; omnivorous diet [2]; seafood [3]; Nordic diet [3]; low 

glycemic load diet [4]; low dairy intake [5]; a pattern that is high in meat, 
refined bread, and butter and low in vegetables, whole-meal bread, and 
fruits (cluster 3) [6]; low-fat diet [7,8]; and a diet that is most concordant 

with the WHO healthy eating guidelines [9] 
Dimethylamine Omnivorous diet [2]; a diet that is most concordant with the WHO healthy 

eating guidelines [9]  
2,6-dihydroxybenzoic acid High-fiber diet [10] 

2-aminophenol sulfate High-fiber diet [10] 
Hippuric acid Dietary fiber intake [11]; tea consumption [3,12,13]; phytochemical diet 

[14]; Nordic diet [3]; a diet high in whole grains, fatty fish, and blueberries 
[15]; whole grain [15] 

Hippurate  Low dairy consumption [5]; low-fat diet [8]; a diet that is most concordant 
with the WHO healthy eating guidelines [9]; low glycemic index diet [7]; a 

healthy cluster: higher intakes of breakfast cereals, low fat and skimmed 
milks, potatoes, fruit, fish, and fish dishes [16]. 

Kynurenate Low glycemic load diet [4] 
Valine Protein intake [17]; high in potatoes, dairy products, and cornflakes intake 

dietary pattern [18]; fish eaters [19]; vegetarians [19]; Mediterranean diet 
[8].  

Phenylalanine 
 

Protein intake [17]; high-fat meal with whey protein isolate [20]; coffee 
consumption negatively associated with phenylalanine in men [21]; 

Western dietary pattern [22]; omnivorous diet [2]; 
Tyrosine Protein intake [17]; fish eaters [19]; vegetarians [19] 

Glutamine Inversely associated with protein intake [17] 
Tryptophan High-fat meal with whey protein isolate [20]; fish eaters [19]; vegetarians 

[19]; a healthy cluster: higher intakes of breakfast cereals, low fat and 
skimmed milks, potatoes, fruit, fish, and fish dishes [16]. 

Kynurenine  High-fat meal with whey protein isolate [20] 
Theobromine metabolites Cocoa consumption [23] 
Polyphenol metabolites Cocoa consumption [23]; consumption of poly-phenol rich foods (coffee, 

tea, red wine, citrus fruit, apples, pears, and chocolate) [24] 
Tartrate Wine polyphenol consumption [25] 

Hydroxyphenylvaleric Flavan-3-ols from almond skin [26] 
Hydroxyphenylpropionic Flavan-3-ols from almond skin [26] 

Hydroxyphenylacetic acids Flavan-3-ols from almond skin [26] 
Betonicine  High polyphenol orange juice [27] 

Stachydrine High polyphenol orange juice [27] 
Methyl glucopyranoside High polyphenol orange juice [27] 

Dihydroferulic acid High polyphenol orange juice [27] 
Galactonate High polyphenol orange juice [27] 

Proline Citrus intake [28,29], Mediterranean diet [8].  
Betaine Citrus intake [20,29]; a healthy cluster: higher intakes of breakfast cereals, 

low fat and skimmed milks, potatoes, fruit, fish, and fish dishes [16] 
S-methyl-L-cysteine 

sulfoxide 
Cruciferous vegetables intake [30] 
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Creatine  High-lycopene tomato sauce [31]; Mediterranean diet [8]; a diet that is least 
concordant with the WHO healthy eating guideline and has high intake of 

red meat [9]  
Creatinine High-lycopene tomato sauce [31]; high dairy consumption [5], 

Mediterranean diet [8]; an unhealthy cluster: higher intakes of 
chips/processed potatoes, meat products, savory snacks, and high-energy 

beverages [7] 
Leucine High-lycopene tomato sauce [31]; refined wheat bread [32]; Western 

dietary pattern [22]; high potatoes, dairy products, and cornflakes intake 
dietary pattern [18]; fish eaters [19]; vegetarians [19]; Mediterranean diet 

[8]. 
Choline High-lycopene tomato sauce [31] 

Methionine High-lycopene tomato sauce [31]; high potatoes, dairy products, and 
cornflakes intake dietary pattern [18]; fish eaters [19]; vegetarians [19] 

Acetate High-lycopene tomato sauce [31] 
Ascorbic acid  Normal-lycopene content tomato sauce [31] 

Lactate Normal-lycopene content tomato sauce [31] 
Pyruvate Normal-lycopene content tomato sauce [31]  
Isoleucine Normal-lycopene content tomato sauce [31]; refined wheat bread [32]; high 

potatoes, dairy products, and cornflakes intake dietary pattern [18]; 
Mediterranean diet [8]. 

Alanine Normal-lycopene content tomato sauce [31]; low-fat diet [7] 
Sphingomyelins Coffee [33] 
Acylcarnitines Coffee (negative association with long- and medium chain acylcarnitines) 

[33], Western dietary pattern (positive association with short-chain 
acylcarnitines) [22], high butter intake and low margarine intake dietary 
pattern [18], hypocaloric diet (acylcarnitine C9) [17], meat intake (C0, C4, 

C5) [19], prudent pattern (medium- to long- chain) [22] 
Diacylphosphatidylcholine  Coffee consumption (C32:1, negatively association) [21], dietary 

component: high poultry, fish, rice, vegetables, fruit, chocolate, flaked oat, 
cheese, milk, curds, and low meat and sausages [34] 

Acylalkyl-
phosphatidylcholines  

Coffee consumption (positive associated with C34:3, C40:6, and C42:5 in 
women) [21], high butter intake and low margarine intake dietary pattern 

[18], dietary component: high poultry, fish, rice, vegetables, fruit, chocolate, 
flaked oat, cheese, milk, curds, and low meat and sausages [34] 

Phosphatidylcholines High red meat and fish, and low whole-grain bread and tea dietary pattern 
[18], hypocaloric diet (phosphatidylcholine-dyacil C38:6) [17], 

Mediterranean diet (P-18:1, 20:3) [35] 
Methylxanthines Coffee [36–38] 

Methylated forms of 
hydroxycinnamates 

Coffee [36–38] 

Hydroxytyrosol  Olive oil consumption [39], phenolic content of food [40], alcohol 
consumption [39] 

3-(3,5-dihydroxyphenyl)-1-
propanoic acid sulfate 

Whole-grain rye bread intake [41] 

Enterolactone glucuronide Whole-grain rye bread intake [41] 
Azelaic acid Whole-grain rye bread intake [41] 

2-aminophenol sulfate Whole-grain rye bread intake [41] 
Lysophosphatidylcholine Full-fat dairy [42], high butter intake and low margarine intake dietary 

pattern [18] 
Lyso-platelet activating 

factor 
Full-fat dairy [42] 

Phospholipid fatty acids Full-fat dairy [42] 
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Citrate  High dairy consumption [5], lactovegetarian diet [2], Mediterranean diet 
[8], a healthy cluster: higher intakes of breakfast cereals, low fat and 

skimmed milks, potatoes, fruit, fish and fish dishes [16] 
Hexose High red meat and fish, and low whole-grain bread and tea dietary pattern 

[18].  
Hydroxy-sphingomyelin High butter intake and low margarine intake dietary pattern [18] 

Glycerophospholipids  Meat eaters [19] 
Sphingolipids Meat eaters [19] 

Lysine  Fish eaters [19]; vegetarians [19] 
p-Hydroxyphenylacetate Vegetarian diet [19] 

Methylhistidine Omnivorous diet [2]; low-fat diet [8], a diet that is most concordant with the 
WHO healthy eating guidelines (1-methylhistidine and 3-methylhistidine) 

[9] 
Phenylacetylglutamine Vegetables [6]; high vegetables, fish, and whole-grain breads (cluster 1) [6]; 

O-acetylcarnitine  Red meat [6]; a pattern that is high in meat, refined bread, butter and low in 
vegetables, whole-meal bread, and fruits (cluster 3) [6], a diet that is least 

concordant with the WHO healthy eating guidelines and has high intake of 
red meat [9] 

Glycine  High vegetables, fish, and whole-grain breads (cluster 1) [6], Mediterranean 
diet [8].   

Acetoacetate  High vegetables, fish, and whole-grain breads (cluster 1) [6] 
N,Ndimethylglycine A pattern that is high in meat, refined bread, butter and low in vegetables, 

whole-meal bread, and fruits (cluster 3) [6]. 
Proline betaine Citrus intake [14] 
Sulforaphane Phytochemical diet [14] 

Genistein, Phytochemical diet [14] 
Daidzein Phytochemical diet [14] 

Equol Phytochemical diet [14] 
Glycitein Phytochemical diet [14] 

O-desmethylangolensin Phytochemical diet [14] 
Enterolactone Phytochemical diet [14] 
Trigonelline Phytochemical diet [14] 

Hydroquinone-glucuronide Nordic diet [3] 
3,4,5,6-tetrahydrohippurate Nordic diet [3] 

Glucuronidated 
alk(en)ylresorcinols 

A diet high in whole grains, fatty fish, and bilberries [15]; whole-grain [15] 

Furan fatty acids A diet high in whole grains, fatty fish and bilberries [15]; fish intake [15] 
Hydroxybutyrate Mediterranean diet (3-hydroxybutyrate) [8]; very-low-carbohydrate diet (β-

hydroxybutyrate) [7]; a healthy cluster: higher intakes of breakfast cereals, 
low fat and skimmed milks, potatoes, fruit, fish, and fish dishes (3-

hydroxybutyrate) [16] 
Cisaconitate Mediterranean diet [8] 

N-acetylglutamine Mediterranean diet [8] 
Oleic acids  Mediterranean diet [8] 

Suberic acids Mediterranean diet [8] 
Histidine Low-fat diet [8] 
Carnosine  Low-fat diet [8] 
Anserine Low-fat diet [8]; a healthy cluster: higher intakes of breakfast cereals, low 

fat and skimmed milks, potatoes, fruit, fish, and fish dishes [16] 
Xanthosine Low-fat diet [8] 

Nacetyl-S-methyl-cysteine-
sulfoxide 

Diet 1, which is most concordant with the WHO healthy eating guidelines 
[9] 

Carnitine A diet that is least concordant with the WHO healthy eating guidelines and 
has high intake of red meat [9]; very-low-carbohydrate diet [7] 

Triacylglycerol Low-fat diet (C54:5) [7] 
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Asparagine Very-low-carbohydrate diet [7] 
Cholesteryl esters Very-low-carbohydrate diet [7] 

Propionate Very-low-carbohydrate diet [7] 
Sorbitol Very-low-carbohydrate diet [7] 

4-pyridoxate Low-fat diet [7] 
Triacylglycerides (TG) Low-fat diet (certain TGs) [7]; low glycemic index diet (certain TGs) [7] 

Allantoin Low-fat diet [7] 
2-aminoadipate Low-fat diet [7] 

Serine Low-fat diet [7] 
Cytosine Low glycemic index diet [7] 

Hydroxyproline Low glycemic index diet [7] 
5-aminolevulinic acid Low glycemic index diet [7] 

Pipecolic acid Low glycemic index diet [7] 
N-phenylacetylglutamine A healthy cluster: higher intakes of breakfast cereals, low fat and skimmed 

milks, potatoes, fruit, fish, and fish dishes [16] 
2-aminoadipate A healthy cluster: higher intakes of breakfast cereals, low fat and skimmed 

milks, potatoes, fruit, fish, and fish dishes [16] 
Glycylproline An unhealthy cluster: higher intakes of chips/processed potatoes, meat 

products, savory snacks, and high-energy beverages [7] 
N-aceytalglutamate  An unhealthy cluster: higher intakes of chips/processed potatoes, meat 

products, savory snacks, and high-energy beverages [7] 
Theophylline An unhealthy cluster: higher intakes of chips/processed potatoes, meat 

products, savory snacks, and high-energy beverages [7] 
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