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Abstract: The consumption of an olive oil rich diet has been associated with the diminished incidence
of cardiovascular disease and cancer. Several studies have attributed these beneficial effects to
oleic acid (C18 n-9), the predominant fatty acid principal component of olive oil. Oleic acid is not
an essential fatty acid since it can be endogenously synthesized in humans. Stearoyl-CoA desaturase 1
(SCD1) is the enzyme responsible for oleic acid production and, more generally, for the synthesis
of monounsaturated fatty acids (MUFA). The saturated to monounsaturated fatty acid ratio affects
the regulation of cell growth and differentiation, and alteration in this ratio has been implicated in
a variety of diseases, such as liver dysfunction and intestinal inflammation. In this review, we discuss
our current understanding of the impact of gene-nutrient interactions in liver and gut diseases,
by taking advantage of the role of SCD1 and its product oleic acid in the modulation of different
hepatic and intestinal metabolic pathways.
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1. Introduction

Dietary recommendations suggest that fat should represent 20% to 35% of energy intake and
the type of fat ingested is a fundamental clue in the prevention of several diseases [1]. Indeed,
fat overconsumption and fat quality have been linked to obesity, insulin resistance and the metabolic
syndrome [2]. Dietary fats and oils are composed of triglycerides made of three fatty acids esterified
on a glycerol backbone. As fatty acids are highly diverse, the classifications of fatty acids are based
on their carbon chain length, the number and the position of the unsaturations (double bounds)
present between two carbons. They are classified into different families: saturated FA (SFA), with no
unsaturation such as palmitic or stearic acids, monounsaturated (MUFA)—if it contains one double
bond—and polyunsaturated (PUFA)—if there are more than one. The palmitoleic acid (16:1) and
the oleic acid (18:1) represent two important MUFA. The PUFAs can further be subdivided into the
two renowned omega-6 (n-6) (linoleic acid, arachidonic acid) and omega-3 (n-3) acids (α-linolenic acid,
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eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA)) based on the distance from the first
double bond to the methyl end, although PUFA n-7 and n-9 exist [3]. Both omega-6 and omega-3 are
essential fatty acids and must be obtained exclusively from the dietary sources.

According to conventional dietary recommendations, a healthy diet should include a daily
consumption of fats: an inadequate quantity of fat might increase the risk of conditions such as
depression, psoriasis, Alzheimer’s disease and schizophrenia [4,5]. To date, several edible oils have
been characterized for their health benefits, particularly due to their abundance in MUFA and/or PUFA.
Extra-virgin olive oil (EVOO), sunflower oil (SFO), palm oil, and fish oil have been extensively studied
for their contribution to disease prevention. However, other types of edible oils may play a role in
preserving health status. For instance, due to their high concentration in MUFA and PUFA and a low
quantity of SFA, mustard and canola oils display beneficial effects on lipid serum profile and the
cardiovascular system [6,7].

EVOO represents the main source of fat in the Mediterranean diet [8]. It is constituted by a high
content of MUFA (mostly oleic acid), a variable but significant amount of PUFA (ranging from 1.5%
to 21%), and minor amounts of antioxidant micronutrients such as polyphenols, squalene, lignans,
phenyl-ethyl alcohols and secoiridoids [9,10]. Oleic acid (18:1 n-9) represents 49% to 83% of total FA in
olive oil [11] and its consumption has been related to improved pancreas and liver secretory activity as
well as reduced gastric-duodenal ulcers risk [12]. Moreover, MUFAs are able to modify plasma lipids
and lipoprotein composition and hence reduce inflammation, oxidative stress and coagulation and
ameliorate glucose homeostasis and blood pressure [12]. This evidence has confirmed the beneficial
properties of EVOO bioactive components that have led to the established health claims by FDA and
EFSA. Both agencies stated that oleic acid contained in olive oil, together with the present polyphenols,
contributes to the maintenance of normal blood cholesterol levels [13,14].

The SFO contains a large amount of PUFA (linoleic acid 60% to 70%), but MUFA (oleic acid),
SFA (stearic acid) and tocopherol are present as well in adequate quantities [15,16]. This oil has
traditionally been used as control in several studies [15,17]. It has been shown that SFO can modify
the serum lipid profile by reducing total cholesterol and low-density lipoprotein (LDL) levels [18,19].
On the other hand, a diet rich in linoleic acid increases reactive oxygen species (ROS) production
compared to a SFA-rich diet, thereby promoting lipid peroxidation [2].

Different from the previous two fatty acids, fish oil is a good source of the B12 and D vitamins and
omega-3 FAs (EPA and DHA) [20,21]. The favourable health effects of fish oil were initially established
by the remarkably low incidence of coronary artery disease within the Inuit community, despite
consuming a high-fat diet [22]. These health effects have largely been attributed to EPA and DHA.
Indeed, several studies have reported that diet supplementation with purified EPA and DHA for more
than three years result in cardioprotective effects [23,24]. In the past years, several meta-analyses
and systematic reviews have been published in order to evaluate the association between fish oil and
protection from cardiovascular risk [25–32]. Most of the studies reported no significant association
of omega-3 supplementation with fatal or nonfatal coronary heart disease or any major vascular
events. Furthermore, a large cohort study recently demonstrated that diet supplemented with fish
oil containing omega-3 failed to reduce the incidence of major cardiovascular events or cancer [33].
If omega-3 FA supplement containing EPA and DHA is approved from FDA, it is not the same for the
other dietary supplements of fish oil. Different from the first, fish oil supplement can include other fats
and cholesterols as well, which may negatively affect the health response [34].

Palm oil is constituted of 51% SFA (palmitic acid), 38% MUFA, 11% PUFA [35], carotenoids,
lycopene and xanthophylls [36]. Rats fed with 12% palm oil for one-year display increased total serum
cholesterol levels, but lower aortic accumulation of cholesteryl esters compared to SFO, soybean and
butter most likely due to the high concentration of micronutrients and MUFA in this oil [18]. Moreover,
palm oil may reduce oxidative stress associated to ischemia-reperfusion injury [37]. Further studies are
needed to clarify the contribution of these edible oils on human health, evaluating the role played by
different fatty acids.
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It is becoming evidently clear that the various dietary oils differ not only in the FA profile, but
in the content of non-saponifiable species as well. Studies on olive oil have regularly been more
focused on these non-saponifiable components. On the contrary, the direct role of oleic acid has been
neglected. Different from other FA, oleic acid is not an essential FA, since it can be de novo synthesized
by stearoyl-CoA desaturase 1 (SCD1). Exploring SCD1, the master regulator of oleic acid synthesis,
may therefore offer important insights on the role of the oleic acid largely present in olive oil. In this
light, in vivo and in vitro studies in which the activity of SCD1 has been shut down represent a valid
opportunity to evaluate the direct contribution of oleic acid supplementation with the diet (i.e. EVOO).
To date, several clinical trials are currently conducted focusing on SCD1 (Table 1) aiming to understand
how nutrients may interact with the organism, regulating energy and metabolic homeostasis as well as
disease progression.

Table 1. Stearoyl-CoA desaturase 1 (SCD1) clinical trials.

Trial Identifier Trial Phase (Status) Title Intervention

NCT02647970 Completed Stearoyl-CoA Desaturase and Energy
Metabolism in Humans

Behavioral: PUFA-Cys/Met diet
Behavioral: SFA+Cys/Met diet

NCT03572205 Completed Fatty Acid Desaturase Gene Locus
Interactions with Diet (FADSDIET2)

Dietary Supplement: LA
Dietary Supplement: ALA

NCT03282253 Not yet recruiting
Elevated Stearoyl-CoA Desaturase-1

Expression Predicts the Disease
Severity of Severe Acute Pancreatitis

NCT02543216 Completed Gene–Diet Interactions in Fatty Acid
Desaturase 1 Gene

Dietary Supplement:
Sunflower oil

NCT03842891 Completed

Genetic Variants Modulate
Association Between Dietary n-3

LCPUFAs and DHA Proportion in
Breast Milk

NCT01661764 Completed, Has Results
Fish Oil Supplementation,

Nutrigenomics and Colorectal
Cancer Prevention

Drug: Eicosapentanoic acid and
docosahexanoic acid

Drug: Oleic Acid

NCT02337231 Completed
Botanical Oils Study to Determine

Genetic Differences in the Way Your
Body Processes Fats in Edible Oils

Dietary Supplement: soybean oil
and borage oil

Lipids ingested with the diet are primarily digested and absorbed in the small intestine, followed
by delivery to their sites of action in the body by crossing the liver. Thus, the gastrointestinal tract and
the liver are at the nexus between a vast source of nutrients and the rest of the body and are connected
both anatomically and functionally. The gut-liver axis is characterized by bidirectional traffic: nutrients
and factors derived from gut lumen reach the liver through the portal circulation, while bile acids are
released in the small intestine from the biliary duct.

In this review, we will particularly focus on the role of the major component of olive oil—the
oleic acid. We will exploit the contribution of SCD1 and its product oleic acid in health and diseases,
with particular attention to the gut-liver axis. Although it might appear controversial in some cases,
it is evidently clear that oleic acid plays an essential part in the development and the homeostasis of
our organism, and possible disruption of its pathway may result in disease onset and progression.

2. Oleic Acid in Health and Disease

In order to characterize the role of oleic acid in health and disease, numerous studies and clinical
trials have been conducted (Table 2). Several studies have highlighted the importance of MUFA in the
diet, suggesting that the source and origin of MUFA is fundamental to analyse the beneficial effects of
this FA [38]. In Greece, Italy and Spain, olive oil consumption constitutes approximately 60% of MUFA
intake, whereas in other countries MUFAs are mainly introduced with meat products [39]. A correlation
between MUFA intake and the reduction of cardiovascular heart disease risk have been described [40],



Nutrients 2019, 11, 2283 4 of 22

whereas a subsequent meta-analysis observed no significant association [41]. These conflicting data
could possibly be explained considering the different sources of MUFAs consumed by different cohorts
of patients. Llorente-Cortes et al. demonstrated that a MUFA-rich diet reduced the postprandial
monocytes inflammatory state linked to metabolic syndrome [42]. Indeed, MUFAs display beneficial
effects on insulin sensitivity and type 2 diabetes mellitus [43]. In particular, Vessby et al. observed
that the reduction of SFA and the concomitant addition of MUFA to the diet ameliorated insulin
sensitivity [44]. The western diet is rich in foods with high SFA abundance such as red meat and
processed foods [45]. This fat overload contributes to weight gain and the succeeding inflammation,
and SFA induce insulin resistance and type 2 diabetes mellitus [46]. Palmitic acid promotes the synthesis
of non-esterified fatty acids (NEFAs), ceramides and reactive oxygen species (ROS), mitochondrial
dysfunction and inflammation [47,48]. SFA are able to alter the microbiota composition in the gut as
well by up-regulating LPS and toll-like receptor 4 (TLR4) levels [49]. The substitution of palmitic with
oleic acid in the diet is able to reverse these detrimental metabolic effects of SFA. Cell culture studies
have facilitated the definition of these molecular metabolic changes. In detail, oleic acid enhances
mitochondrial oxidation of SFA by increasing triacylglycerol (TAG) and by reducing diacylglycerol
(DAG) and ceramide production, thus protecting the cells from inflammation [50].

Table 2. Oleic acid clinical trials.

Trial Identifier Trial Phase (Status) Title Intervention

NCT00715312 Completed

Effect of Oleic Acid on Inflammation
Markers and Blood Lipid Metabolites:

A Randomised, Double-Blind,
Crossover Study

Novel Olein

NCT01042340 Completed Energy Dense Oleic Acid Formula to
Geriatric Patients

Calogen®–an energy dense oleic
acid-based formula

NCT01124487 Completed

The Acute Effects of Oleic Acid
Enriched diets on Lipids, Insulin

Sensitivity and Serum
Inflammatory Markers

Dietary Supplement: The acute effects of
dietary fat on lipid profile, insulin

sensitivity and inflammatory markers

NCT02029833 Completed Canola Oil Multi-Centre Intervention
Trial II

Other: Regular Canola Oil
Other: High Oleic Canola Oil

Other: Western Type Diet–Common
Dietary Oils

NCT03054779 Completed Canola Oil Multi-Centre Intervention
Trial II

Other: Canola Oil
Other: High oleic acid canola oil

Other: Western diet oil combination

NCT02993380 Completed
Effect of Olive Oil on Erythrocyte
Membrane Fatty Acid Contents in

Hemodialysis Patients

Dietary Supplement: Stir-fried olive
oil group

Dietary Supplement: Natural olive
oil group

NCT00529828 Completed Health Effects of CLA Versus
Industrial Trans Fatty Acids

Procedure: Consumption of CLA
enriched food

NCT01259999 Completed Energy Dense Formula to People
Living in Old Peoples Home

Dietary Supplement: Calogen extra
strawberry

NCT00059254 Completed Differential Metabolism of Dietary
Fatty Acids

Dietary Supplement: Oleic acid (OA)
Dietary Supplement: Palmitic Acid (PA)

NCT01996566 Completed Fatty Acid Taste thresholds: Caproic,
Lauric, Oleic, Linoleic, Linolenic

Furthermore, oleic acid displays the ability to prevent SFA-induced inflammation. In high fat
diet fed mice, oleic acid administration ameliorated insulin sensitivity, reduced pro-inflammatory
cytokines levels as Interleukin-1β, Interleukin-6 and Tumor Necrosis Factor-α and up-regulated the
anti-inflammatory Inteleukin-10 and adiponectin levels [51]. Through this mechanism, oleic acid
promotes M2 anti-inflammatory macrophages phenotype, leading to reduction of leukotriene B4
secretion and PTEN expression [52].
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The peculiar beneficial role of oleic acid has been observed in several diseases including coronary
heart disease, rheumatoid arthritis, and cancer. Oleic acid consumption prevents the risk of developing
rheumatoid arthritis by increasing leukotriene A3 levels, a potent inhibitor of pro-inflammatory
LTB4 [53]. In colorectal cancer HT-29 cells, oleic acid promotes apoptosis and cell differentiation
via the downregulation of cyclooxygenase and Bcl-2 expression [54]. In breast cancer cells, oleic
acid reduces the expression of the oncogene Her-2/neu and acts synergistically with anticancer drug
trastuzumab [55]. Moreover, in breast tissue cells, oleic acid reduces the entering of lipid peroxidation
into the phospholipid membrane of the cells [56].

Interestingly, in animal models, oleic acid is able to induce lung injury miming acute respiratory
distress syndrome (ARDS). Oleic acid administration induces direct toxicity to the endothelial cells
characterized by endothelial necrosis, epithelial injury and neutrophil infiltration [57,58]. Recently, it has
been demonstrated that Liver X Receptor (LXR) activation protects the lungs from oleic acid-induced
ARDS by decreasing the inflammatory response and by promoting antioxidant capacity [59]. On the
other hand, in lung cancer, oleic acid exerts beneficial effects through promotion of apoptosis, mitosis
arrest and cellular differentiation and by inhibiting angiogenesis [60]. In murine models, Piegari et al.
have shown that an oleic acid-enriched diet ameliorated animal survival and lung tumour latency,
confirming the oleic acid anticancer properties [61].

Finally, oleic acid displays a pivotal role in the development of the brain, the organ with the
highest lipid content of the body second to white adipose tissue. In this organ, lipids are essential for
the correct homeostasis and alterations in lipid metabolism are linked to neurological diseases [62].
Oleic acid is the only FA synthesized by astrocytes and it acts as a neurotrophic factor for neurons [63].
In astrocytes, albumin uptake and transcytosis via endoplasmic reticulum induces sterol regulatory
element-binding protein-1 (SREBP-1) and stearoyl-CoA desaturase expression, causing oleic acid
production. The synthesized oleic acid promotes axonal and dendrite growth and induces doublecortin
expression, resulting in neuron migration [64–66]. These data confirm the pivotal role of oleic acid in
astrocyte-neuron crosstalk and further studies should be performed in order to evaluate the role of
oleic acid in neurodegenerative disorders. Given the crucial role of oleic acid in brain metabolism,
Priore et al. treated C6 glioma cells with oleic acid and hydroxytyrosol and observed a reduction in de
novo fatty acid and cholesterol synthesis, a crucial step in human glial cells malignancy [67,68].

3. SCD1: The Oleic Acid Producer

SCD is an enzyme anchored to the endoplasmic reticulum, where it catalyzes the biosynthesis
of MUFA from SFA, either derived from the diet or synthesized de novo. SCD is ∆9-fatty acyl CoA
desaturases that catalyzes the formation of a double bond in the cis-delta-9 position of saturated fatty acyl
CoA. The preferred substrates of SCD are palmitic (C16:0) and stearic (C18:0) acids, which are converted
into palmitoleic (C16:1 n-7) and oleic (C18:1 n-9) acids, respectively [69] (Figure 1). These products are
the most abundant MUFA incorporated into different lipid species, including triglycerides, wax esters,
cholesterol esters, and phospholipids [70]. The ratio of SFA to MUFA is important to modulate
phospholipid composition, and an unbalanced ratio toward SFA production is linked to multiple
pathological conditions including obesity, diabetes, cardiovascular and neurological diseases, and
cancer [71]. Moreover, MUFAs serve as mediators of signal transduction and cellular differentiation [71].
Thus, the expression of SCD is highly important in both physiological and pathological conditions and
SCD is consequently tightly controlled at both transcriptional and post-translational level. Numerous
dietary and hormonal signals and several transcription factors such as LXR, SREBP1C, carbohydrate
response element binding protein (ChREBP), peroxisome proliferator activated receptor (PPAR),
and estrogen receptor (ER) are involved in SCD transcriptional control [72,73].
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been identified [75,76]. Despite a distinct distribution pattern, the different isoforms share the equal 
enzymatic function. Particularly, in both human and mice, SCD1 represents the predominant isoform 
and it is ubiquitously expressed among tissues, with constitutively high levels in lipogenic tissues, 
such as liver and white adipose tissue [74]. Contrarily, SCD5 is unique to primates and is highly 
expressed in brain and pancreas [76]. In adult mice, Scd2 isoform is ubiquitously expressed in most 
tissues except for the liver, whereas Scd3 and Scd4 expression is more restricted [77–79].  

The existence of multiple SCD1 isoforms, sharing a high sequence homology and catalyzing the 
same biochemical reaction, poses difficulties in order to distinguish the role of each single isoform 
and its metabolic contribution. To this end, substantial insights into SCD1 functions have been gained 
by the use of specific mouse models, in which the expression of SCD1 is downregulated or its activity 
is inhibited. Several genetically engineered whole body and tissue specific SCD1 knockout models 
have been utilized [80] as well as Asebia mice, characterized by a whole-body deficiency of SCD1 due 
to a spontaneous mutation within the SCD1 gene [81]. Additionally, mice treated with antisense 
oligonucleotides (ASO) against SCD1—which reduces SCD1 expression in liver and adipose tissue—
have been extensively employed [82]. Finally, various selective inhibitors targeting SCD1 activity 
have enabled the clarification of the role of this enzyme. Overall, these models demonstrate that SCD1 
is a master regulator of lipid metabolism and is deeply involved in body weight regulation [83,84]. 
This is specifically highlighted by the resistance to diet-induced obesity and hepatic steatosis 
observed in SCD1 deficient mice [85]. These effects are predominantly derived from an increase in 
FA oxidation and thermogenesis, as well as a reduced lipid synthesis. The increased FA oxidation is 
mainly explained by a defect of skin permeability in SCD1KO mice which is causing heat leak and 
water link. The increased lipid oxidation is mediated by the induction of the AMP-activated protein 
kinase (AMPK) [86], resulting in phosphorylation and inactivation of ACC. The inactivation of this 
enzyme reduces the cellular levels of malonyl-CoA, a substrate for FA biosynthesis, which in turn 
suppresses FA oxidation by inhibiting the mitochondrial carnitine palmitoyltransferase 1 (CPT1) 
shuttle system, which controls the import and oxidation of FA in mitochondria. Malonyl-CoA 
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Figure 1. Scheme representing the biosynthesis of MUFA in animals. Stearoyl CoA Desaturase 1 (SCD1)
catalyzes the rate-limiting step for the conversion of saturated fatty acid (SFA) into monounsaturated
ones (MUFA). (ACC—acetyl CoA carboxylase; FASN—fatty acid synthase; ELOVL6—fatty acid
elongases 6).

SCD is a highly conserved enzyme with multiple isoforms sharing similarities in protein
sequences [74]. To date, two human isoforms (1 and 5) and four mouse SCD isoforms (SCD1-4)
have been identified [75,76]. Despite a distinct distribution pattern, the different isoforms share the
equal enzymatic function. Particularly, in both human and mice, SCD1 represents the predominant
isoform and it is ubiquitously expressed among tissues, with constitutively high levels in lipogenic
tissues, such as liver and white adipose tissue [74]. Contrarily, SCD5 is unique to primates and is
highly expressed in brain and pancreas [76]. In adult mice, Scd2 isoform is ubiquitously expressed in
most tissues except for the liver, whereas Scd3 and Scd4 expression is more restricted [77–79].

The existence of multiple SCD1 isoforms, sharing a high sequence homology and catalyzing the
same biochemical reaction, poses difficulties in order to distinguish the role of each single isoform
and its metabolic contribution. To this end, substantial insights into SCD1 functions have been gained
by the use of specific mouse models, in which the expression of SCD1 is downregulated or its
activity is inhibited. Several genetically engineered whole body and tissue specific SCD1 knockout
models have been utilized [80] as well as Asebia mice, characterized by a whole-body deficiency of
SCD1 due to a spontaneous mutation within the SCD1 gene [81]. Additionally, mice treated with
antisense oligonucleotides (ASO) against SCD1—which reduces SCD1 expression in liver and adipose
tissue—have been extensively employed [82]. Finally, various selective inhibitors targeting SCD1
activity have enabled the clarification of the role of this enzyme. Overall, these models demonstrate that
SCD1 is a master regulator of lipid metabolism and is deeply involved in body weight regulation [83,84].
This is specifically highlighted by the resistance to diet-induced obesity and hepatic steatosis observed in
SCD1 deficient mice [85]. These effects are predominantly derived from an increase in FA oxidation and
thermogenesis, as well as a reduced lipid synthesis. The increased FA oxidation is mainly explained by
a defect of skin permeability in SCD1KO mice which is causing heat leak and water link. The increased
lipid oxidation is mediated by the induction of the AMP-activated protein kinase (AMPK) [86], resulting
in phosphorylation and inactivation of ACC. The inactivation of this enzyme reduces the cellular levels
of malonyl-CoA, a substrate for FA biosynthesis, which in turn suppresses FA oxidation by inhibiting
the mitochondrial carnitine palmitoyltransferase 1 (CPT1) shuttle system, which controls the import
and oxidation of FA in mitochondria. Malonyl-CoA reduction in SCD1KO mice relieves the inhibition
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of CPT1 by directing FA into mitochondria where they are subsequently oxidized. In SCD1KO mice,
the up-regulation of whole-body thermogenesis in brown adipose tissue (BAT) is mediated by the
activation of PGC-1α and uncoupling protein-1, which uncouples oxidative respiration from ATP
synthesis, resulting in dissipation of energy as heat [87]. These modulations result in an increased rate
of basal thermogenesis and, consequently, of whole-body energy expenditure.

Although many efforts have been made utilizing total body SCD1KO mice, the confirmation that
these mice display altered skin permeability enhancing energy expenditure and protection from high
fat diet-induced obesity [88], has led to the generation of tissue specific SCD1KO mice in order to study
the contribution of this enzyme to metabolic disorders and related diseases.

SCD1 in Pathological Conditions

The central contribution of FA to cellular inflammation has been extensively demonstrated [89].
Recently, SFA have been recognized as a potent proinflammatory factor in multiple cell types, including
macrophages, myocytes, endothelial cells, adipocytes, and β-cells [73]. Indeed, SFA may directly
stimulate the inflammatory process or can be metabolized into lipid intermediates, as ceramides
and diacylglycerols; two powerful proinflammatory factors. Correspondingly, the complete loss of
SCD1 expression has been implicated in liver dysfunction and several inflammatory diseases such as
dermatitis, intestinal colitis and atherosclerosis [73,90–92].

Inflammation caused by abnormal levels of lipids remaining unresolved for an extended period
of time may lead to cellular stress and dysfunction, resulting in lipotoxicity, one of the major causes
of pathologies including obesity, insulin resistance and cardiovascular disease [93,94]. The lipogenic
enzyme SCD1 exerts a crucial role in the development of obesity and related conditions, such as
insulin resistance [95]. The involvement of SCD1 in the regulation of obesity has been demonstrated
by the increase of its activity in the adipose tissue of various animal models of obesity, such as
leptin-deficient ob/ob mice, which develop an obese phenotype early on in life [96]. Leptin is
an adipocyte-derived liporegulatory hormone controlling lipid homeostasis in non-adipose tissues,
at least partly, by targeting hepatic SCD1 activity [96]. Indeed, double mutant abJ/abJ; ob/ob mice,
obtained by crossing heterozygous Asebia (abJ/+) mice with heterozygous ob/+ mice, exhibited
a dramatic reduction in body weight compared to ob/ob littermates despite a high consumption of
food. The deletion of SCD1 reverted the hypometabolic phenotype, the hepatomegaly and the hepatic
steatosis typical of the ob/ob mice as well [96]. Overall, these evidences demonstrate that SCD1 is
required for the development of the obese phenotype of ob/ob mice and that downregulation of SCD1
is a fundamental part of leptin’s metabolic effects.

In addition, SCD1 global depletion increases insulin sensitivity and glucose utilization [97].
This might be ascribable to a reduced Akt activity and insulin receptor substrate phosphorylation
(mediated by the activation of protein kinase C as well) with an impaired GLUT4 translocation to
the plasma membrane [98,99]. As SCD1 inhibition may induce insulin sensitivity in muscle [100] and
BAT [101], it is therefore plausible to explore the use of SCD as a potential therapeutic target for the
treatment of insulin resistance and diabetes.

Overall, these metabolic diseases are characterized by a metabolic shift toward biosynthetic
reactions aimed to supply new lipid macromolecules. Interestingly, enhanced FA biogenesis is
a hallmark of cancer as well. Whereas in obesity and diabetes, the elevated lipid biosynthetic activity
result in increased production lipids for energy storage, most of the newly synthesized lipid products
are utilized for membrane biogenesis in cancer [102]. The metabolism of cancer cells is characterized not
only by an increased biosynthesis of macromolecules including lipids with a concomitant suppression
of their catabolic pathways [103], but by an abnormally high rate of aerobic glycolysis that provides
metabolites as well, such as citrate and glycerol, used for the de novo synthesis of cellular lipids [104].
The parallel activation of these two processes in cancer is coupled to the conversion of SFA into MUFA.
Although SFA are the main products of glucose-derived FA synthesis, an increased content of MUFA is
found in transformed and cancer cells and tissues as well [105].
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Recent analyses have revealed a fundamental contribution of SCD1 to the metabolic and signaling
pathways closely related to cell replication, survival and tumorigenesis [106]. The molecular regulation
of lipogenesis by SCD1 in cancer cells involves different mechanisms (Figure 2). Beside the well-known
role in modulating the de novo lipogenesis network, SCD1 can provide MUFAs for lipid macromolecule
formation as well as regulate signaling pathways controlling the expression and the activity of the main
enzymes involved in lipid biosynthesis [105]. This is exemplified by the well characterized control of
ACC function mediated by SCD1. Since ACC activity is repressed by SFA, the involvement of SCD1
in removal of SFA through transformation into MUFA mediates the allosteric stimulation of ACC
activity. SCD1 inactivates AMPK phosphorylation with a consequent inhibition of its target activity as
well, such as ACC, FASN and hydroxymethylglutaryl-coenzyme A reductase (a critical enzyme in
cholesterol synthesis) [107]. Lastly, SCD1 activation has been shown to promote the Akt pathway, with
potential positive effects on the transcription of lipogenic enzymes. This is highly interesting, as Akt
can exert a direct action on cellular proliferation by stimulating a group of transcriptional factors, such
as the SREBP family, thus inducing lipid synthesis and membranes formation [108]. It is however
important to note that Akt via glycogen synthase kinase 3-beta may play an indirect action on cell
growth as well by downregulating crucial regulators of cell cycle progression, such as cyclin D1 and its
transcriptional activator, β-catenin [109].
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Due to the crucial role of lipid biosynthesis in tumor cells, SCD1 deletion could modulate several
phenotypic features of cancer. Specifically, SCD1 enhances cancer cell mitogenesis and survival,
increases tumorigenic capacity and tumor cell invasiveness [110,111]. Even if the antiproliferative
effect of SCD1 inhibition is common to many neoplastic cell types including melanoma and lung,
bladder, and breast cancer [112–115], the role of SCD1 in tumorigenesis cannot be generalized. This is
demonstrated by the consistently reduced SCD1 activity prostate carcinomas [116]. Although the use
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of SCD1 as a target for novel pharmacological approaches in cancer interventions deserve interest,
it has to be referred to a specific tumor type.

4. SCD1 in the Gut-Liver Axis

The liver plays a central role as a metabolic hub, where multiple biochemical processes converge
to render food nutrients available to the rest of the body. However, an unbalanced diet—rich in lipid
and carbohydrates—together with a sedentary lifestyle, may severely compromise the hepatic health
status. Indeed, it has been shown that a high energy intake with a concomitant low energy expenditure
resulted in hepatic lipid accumulation, one of the key features of non-alcoholic fatty liver disease
(NAFLD). NAFLD is the most common disease of the Western Countries, characterized by a spectrum
of conditions that vary from hepatic steatosis to severe form of non-alcoholic steatohepatitis (NASH),
which may eventually progress toward cirrhosis and end-stage liver diseases [117]. Despite the large
amount of studies focused on the impact of hepatic metabolic alterations leading to the toxic effects
of excess lipids and promotes liver diseases, it is now clear that metabolites from other organs may
account for disease progression, such as adipose tissue and gut, as well. Whereas the communication
between the adipose tissue and the liver has been extensively investigated, the gut-liver cross-talk
exploration is just at the beginning. Not only the liver can influence the gut phenotype via bile
acids or metabolites, but the gut harboring microbiota and secretory factors as well can affect the
hepatic health status and promote lipid accumulation. However, accumulating data show that the total
amount of lipids is not the major determinant of lipotoxicity, but that specific classes of lipids (palmitic
acid, cholesterol, ceramides) promote cellular damage and disease progression [118]. In this context,
by exploiting the role of SCD1 and its product oleic acid in the modulation of hepatic and intestinal
metabolism, we discuss our understanding of the biological impact of gene-nutrients interaction,
providing a key insight into the liver and gut diseases.

4.1. SCD1 and the Liver

Lipids are essential for several processes that involve cellular and tissue homeostasis. Expression of
lipogenic genes, including SCD1, is essential for hepatic maturation and function [119]. Indeed, human
embryonic stem cells (hESC) primarily depend on SCD1 activity for their survival and metabolic
processes. SCD1 inhibition in hESC resulted in an altered SFA to MUFA ratio, characterized by
oleate depletion leading to endoplasmic reticulum stress, unfolded protein response and translational
attenuation, which collectively promotes apoptosis [120]. Moreover, human induced pluripotent stem
cells (hiPSC) treated with SCD1 inhibitor displayed a suppression of mature hepatic marker products
and TG accumulation that were promptly reversed by oleate supplementation [121]. Collectively,
these data indicate that SCD1 and its product are necessary for differentiation of stem cells into mature
hepatocytes. Noteworthy, SCD1 expression appeared to be dispensable in mice embryos liver, while the
Scd2 isoform (SCD5 in human) is crucial at this stage. Scd2 hepatic expression decreased in the liver
before weaning, and it is replaced by SCD1, which is highly activated in adult liver [77].

Genetically engineered whole body and liver specific SCD1 knockout animal models as well as
mice—in which SCD1 activity is suppressed—has provided substantial insights into hepatic SCD1
functions [81,82,85,122–124]. Altogether, this research described the central role of SCD1 in metabolic
disorders characterized by altered lipid metabolism (Figure 3).

Whole body SCD1 ablation resulted in global modifications of gene expression and metabolic
processes that cause loss of body fat and increased insulin sensitivity. Specifically, the transcription
of several genes involved in de novo lipogenesis were downregulated in the liver of SCD1KO mice,
accompanied by an upregulation of genes involved in lipid β-oxidation [122]. When challenged with
dietary (high-fat and high-carbohydrate diet) or genetic (leptin deficient and agouti induced) models
of obesity, mice deficient for SCD1 displayed protection from fat accumulation and hepatic steatosis,
thus highlighting the requirement of SCD1 to fully develop the obese phenotype peculiar of these
models [82,96,122,125,126]. Indeed, SCD1 expression and activity is highly elevated in the liver of
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obese animal models, as the ob/ob mice and the Zucker rats [96,127]. SCD1KO mice fed with very low
fat-diet for 10 days displayed decreased triglycerides content together with severe hepatic damage,
which is promptly rescued by oleic acid supplementation, ultimately reversing the hepatotoxic effect.
The insufficient MUFA levels due to the unsaturated fat deficient diet and the ablation of SCD1 results
in dramatic changes of hepatic gene expression, identified by the downregulation of lipid metabolism
and detoxification programs together with the concomitant upregulation pathways involved in ER
stress and inflammation [128,129]. The maintenance of adequate MUFA levels through SCD1 activity
or oleate ingestion is therefore fundamental for preservation of liver health status.Nutrients 2019, 11, x FOR PEER REVIEW 10 of 23 
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Figure 3. SCD1 inhibition in non-alcholic fatty liver disease (NAFLD). Different methodologies have
been used to suppress the stearoyl CoA desaturase 1 (SCD1) activity in the liver, ranging from tissue
specific mouse model (LSCD1KO) to Asebia mice, homozygous for naturally occurred mutation which
result in the lack of SCD1, to specific inhibitor or antisense oligonucleotide (ASO). At the same time,
different disease models have been employed to dissect the role of SCD1 in hepatic disorders. The main
one consisted in diet administration, such as a high fat diet (HFD), high carbohydrates diet (HCD) and
methionine-choline deficient diet (MCD). The hepatic suppression of SCD1 expression resulted in an
altered saturated (SFA) to monounsaturated fatty acid (MUFA) ratio, with the concomitant decreased
de novo lipogenesis programs and increased fatty acids β-oxidation pathways. Although these animals
are protected from liver steatosis, they normally display liver injury, which is promptly rescued by oleic
acid endogenous (from other tissues, such as intestine or white adipose tissue) or exogenous (from
diet) supplementation.

The observations obtained from global SCD1 ablation led to the generation of liver specific
SCD1KO (LSCD1KO) mice using Cre-Lox system, in order to investigate whether the hepatic SCD1
might be responsible for the observed phenotypes. Differently from whole body SCD1KO, mice
lacking SCD1 in the liver were not protected from both genetic and diet-induce obesity, although they
displayed lowered content of hepatic MUFA and triglycerides [130]. The loss of SCD1 alone in the liver is
consequently not sufficient to elicit the hypermetabolism and energy expenditure needed to compensate
for the energy intake of high fat diet. This is most likely due to the skin defective composition of
SCD1KO mice. Indeed, skin-specific deletion of SCD1 display augmented energy expenditure and
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are protected from high fat diet-induced obesity, thereby recapping the hypermetabolic phenotype
of global Sc11 deficiency [88]. Conversely, LSCD1KO mice are protected against high carbohydrates
induced liver steatosis; the consumption of high sucrose-very low-fat diet in LSCD1KO mice resulted in
hypoglycemic phenotype and low induction of lipogenic programs [85]. It can be speculated whether
the low amount of MUFA in the liver of LSCD1KO mice induces the utilization of carbohydrates
for heat generation, and not for ATP synthesis, thus explaining the hypoglycemia observed. Dietary
Oleate supplementation normalized the triglycerides secretion and the hepatic gluconeogenesis and
lipogenesis pathways, suggesting that hepatic SCD1 activity and adequate oleate content are required
for carbohydrates induced fat accumulation [85]. Collectively, these data indicate that SCD1 inhibition
in extrahepatic tissues is necessary to confer resistance to high fat diet-induced weight gain and hepatic
steatosis [88]. MUFA derived from endogenous synthesis in other tissues are likely compensating for
the reduced liver MUFA production in LSCD1KO mice.

Although loss of hepatic SCD1 expression confers beneficial metabolic effect in terms of protection
from fat accumulation, several studies have pointed out that SCD1 and its product oleate are necessary
to preserve liver function in a multiplicity of stressful circumstances. Mice fed with a Methionine and
Choline Deficient (MCD) diet—a model of steatohepatitis—displayed diminished expression of SCD1
in the liver [131,132]. When challenged with an MCD diet, SCD1KO mice showed lower steatosis, but
increased induction of hepatocytes apoptosis as well as liver injury and fibrosis. Supplementation with
MUFA prevented the MCD-induced injuries, which is an indication that the steatohepatitis phenotype
observed is mostly due to the accumulation of SFA promoting apoptosis [132]. Moreover, hamster
treated with sterculic oil—a potent inhibitor of SCD1 activity—and fed with cholesterol enriched diet
displayed liver damage together with ALT increase and hypercholesterolemia [124]. By reducing the
SCD1 activity, the low level of its product oleic acid failed to be funneled into hepatic cholesteryl ester,
eventually not conferring hepatic protection from toxic cholesterol and derivatives. SCD1 is therefore
able to prevent liver injury, mostly by partitioning the excess of lipids into MUFAs that can be safely
stored in the liver. However, in a mouse model of concavalin A-induced hepatitis, the expression
levels of SCD1 were upregulated together with increased lipid accumulation in the hepatocytes.
Correspondingly, SCD1KO mice treated with concanavalin A are protected to steatohepatitis in a leptin
dependent manner [123]. The conflicting results on SCD1 role in the liver may be related to the different
approaches utilized to induce hepatic damage: whereas dietary models mainly affect hepatocytes,
concanavalin A-induced injury is primarily driven by the activation and recruitment of NK-T cells
in the liver [133]. Other studies are consequently needed to fully dissect the SCD1 contribution to
liver function.

Although the contribution of SCD1 to NAFLD is still not fully depicted, recent studies
have highlighted the important association between SCD1 expression and hepatocarcinoma (HCC)
progression. The expression of SCD1, as well as genes involved in FA metabolism, is upregulated
in HCC, and is strictly related to a poor prognosis [134–137]. Moreover, MUFA produced by SCD1
enzymatic activity amplifies Wnt-βCatenin signaling in HCC cells, thus leading to tumor growth [135].
SCD1 inhibition reduced cell viability, induced apoptosis and autophagy and sensitized cells to
sorafenib, a standard treatment for HCC patients in advanced stages [134,136,138]. Most of these
studies have been conducted on human samples, cell cultures and xenograft, and the in vivo evidence
able to display the huge complexity of organ-to-organ communication is yet lacking.

Overall, these studies have suggested that SCD1 expression and the activity or oleic acid
supplemented with the diet or originated from other tissues subsequently delivered to the liver are
fundamental for the proper development and function of the liver. Although the analysis regarding
SCD1 in HCC seems to offer a different scenario, where SCD1 activity contributes to tumor progression,
they depict an established situation without taking into account the contribution of SCD1 to tumor
onset and the possible beneficial effect of oleic acid supplementation. Further studies focused on
the part played by SCD1 in the first steps of liver tumor formation as well as on the role in HCC
development of oleic acid synthetized by other tissues are required.
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4.2. SCD1 and the Gut

Different from the liver, the role of intestinal SCD1 has been less characterized. The few studies
conducted depict an incoherent scenario, where SCD1 may both confer protection or worsen intestinal
diseases (Figure 4). Here, we will recapitulate the principal investigations—even if further in vivo
studies are definitely required.
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Figure 4. SCD1 inhibition in gut disorders. stearoyl CoA desaturase 1 (SCD1) suppression in intestinal
cells offers a divergent scenario. Studies conducted in cancer cell lines indicated that SCD1 suppression
inhibits tumor growth by increasing mitochondrial dysfunction and reactive oxygen species (ROS)
accumulation. On the other side, investigations carried out using mouse models, demonstrated that the
loss of SCD1 promotes an inflammatory state that worsens inflammatory bowel disease (IBD) as well
as cancer growth and progression. Intriguingly, the consumption of oleic acid enriched diet reverses
the disease phenotype.

The analysis of cancerous specimens collected from patients with stage II colon cancer (CRC)
revealed that an elevated expression of SCD1 together with other three genes involved in lipid
metabolism (ABCA1, ACSL1, AGPAT1) delineate a high-risk group of patients, characterized by
a worse clinical outcome [139]. Indeed, the suppression of SCD1 activity in colon cancer cell lines
via specific inhibitor or siRNA had cytotoxic effects, which resulted in the interruption of tumor
growth [106,140]. Specifically, in vitro studies in CRC cell lines observed that SCD1 repression by A939
inhibitor delayed tumor growth and promoted apoptosis mainly through mitochondrial disfunction
and ROS accumulation. Intriguingly, supplementation with oleic acid reversed the inhibition of
cellular proliferation [141]. Although it would be interesting to examine if SCD1 activity and oleic acid
supplementation lead to the same results using non-tumoral cell lines as well, these data overall point
to a tumor promoting role of SCD1 and its product—oleic acid.

However, the comparison between adjacent normal tissue and cancerous tissue of a cohort of CRC
patients revealed that SCD1 expression and activity are decreased in cancerous specimens. Indeed,
cancerous tissue displayed higher content of SFA and a lower amount of MUFA compared to normal
one [142]. Moreover, studies performed on SCD1 null mice indicated that they were more susceptible to
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dextran sodium sulfate (DSS)-induced colitis mouse model, largely used to mimic human inflammatory
bowel diseases [92]—even if a later study has attributed this phenotype to the greater DSS-total intake
of SCD1KO mice compare to control [143]. However, the supplementation of the diet with oleic acid
rescued the DSS-phenotype, thus indicating that SCD1 activity and its product oleic acid are necessary
to limit the proinflammatory responses to exogenous challenges in the mice gut [92]. Accordingly,
mice with specific ablation of SCD1 (iSCD1-/-) in the intestinal epithelium presented an increased
expression of inflammatory markers and crypt proliferative genes compared to the control group [144].
These results appear in net contrast with those describing less dyslipidemia and systemic inflammation
in iSCD1-/- mice crossed with LDLR null mice [145]. However, the use of a LDLR null background
makes any comparison between the two studies hazardous. Interestingly, when iSCD1-/- mice are
backcrossed with ApcMin/+ mice, a genetic model of CRC highly susceptible to spontaneous intestinal
adenoma formation, they developed and larger and more tumors compared to the mice expressing
SCD1 in the gut. However, the consumption of an oleic acid-enriched diet ameliorated the phenotype,
reducing intestinal inflammation and tumor development [144]. Overall, these data indicate that the
SCD1 activity in the gut is fundamental to maintain the intestinal epithelial homeostasis and to protect
against CRC.

4.3. SCD1 in the Gut-Liver Cross Talk

The close relationship between the liver and the gut under the light of SCD1 have been fairly
characterized. Gut microbiota may variously affect the function of SCD1 in mice liver. Indeed, hepatic
SCD1 levels are substantially reduced in germ free and microbiota ablated mice, thus indicating that
SCD1 is partly regulated via gut microbial metabolites [146]. Moreover, mice deficient of TLR5—a
flagellin receptor required for gut microbiota homeostasis—display a three-fold higher bacterial load
and a concomitant increased expression of hepatic SCD1. When microbial homeostasis is altered, the
high amount of single chain FA products generated by microbiota contribute to hepatic lipogenesis,
rendering TLR5-deficient mice more prone to develop metabolic syndrome [146]. Multi-omics analysis
of mice liver and gut microbiota revealed that the level of hepatic FA desaturation by SCD1 is strictly
dependent on the microbial load [147]. In a similar way, the liver can affect the gut homeostasis as well.
In this organ, SCD1 is necessary to synthetize oleoyl lysophosphatidylcholine, which protects from
the gut inflammation processes [92]. Although more studies are needed to better clarify the role of
SCD1 in the close connection between the liver and the gut, these results suggest the importance of
considering the organism as a whole, particularly when we discuss about diseases strongly associated
with lipid metabolism.

5. Conclusions

Intensive studies have demonstrated the fundamental contribution of oleic acid to health status
maintenance. At the same time, the rate limiting enzyme for its production, SCD1, has emerged as
a key regulator in serious diseases associated with inflammation and stress. Despite the large number
of data, the role of SCD1 in these disorders is complex and, in many cases, conflicting results have
been obtained, most likely due to variation of the experimental settings as well as of the strategies
for the suppression of SCD1 activity (Table 3). Therefore, the mechanism of SCD1 in the regulation
of liver and intestinal diseases needs additional investigations. Further studies on the role of SCD1
and its product oleic acid in metabolic homeostasis are needed in order to enhance our knowledge on
the function of this enzyme. Since it is clear the activity of SCD1 in one organ may influence other
districts—as in the case of gut-liver axis—the future investigations should point to the consideration of
the whole organism to better clarify the importance of SCD1 in lipid metabolism and inflammatory
pathways strictly connected with the disease progression.
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Table 3. Principal studies assessing the role of SCD1 in liver and intestine.

Type of Study SCD1 Status Phenotype Ref

In vivo

SCD1KO mice Whole body SCD1 deletion

Protection from HFD and HCD-induced
adiposity and hepatic steatosis.

High susceptibility to DSS-induced
gut inflammation

[92,122]

Asebia (abJ/abJ) mice Lack of SCD1 for a naturally
occurred mutation Protection from liver steatosis and adiposity [82,96]

LSCD1KO mice Liver specific SCD1 deletion

Protection from HCD-induced adiposity and
hepatic steatosis.

Susceptibility to HFD-induced obesity and
hepatic steatosis.

[85]

LASCD1KO mice Adipose and liver combined SCD1
deletion Susceptibility from diet induced obesity [130]

iSCD1KO mice Intestinal specific SCD1 deletion Susceptibility to CRC when crossed with ApcMin
mice and fed with oleic acid deficient diet [144]

Hamster treated with
SCD1 inhibitor Inhibition of SCD1 activity Liver protection from cholesterol enriched diet

and susceptibility to atherogenic risk [124]

Ex Vivo

HCC specimens High SCD1 expression Shorter disease-free survival and sorafenib
resistance in HCC [136]

CRC specimens Low SCD1 activity [142]

CRC specimens High SCD1 expression Worse clinical CRC outcome [139,141]

In vitro

Cell culture treated with
SCD1 inhibitor Inhibition of SCD1 activity Suppression of tumor cell proliferation and

apoptosis induction [106,141]
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Abbreviations

FA fatty acid
SFA saturated fatty acid
MUFA monounsaturated fatty acid
PUFA polyunsaturated fatty acid
EPA eicosapentaenoic acid
DHA docosahexaenoic acid
EVOO extra-virgin olive oil
SFO sunflower oil
LDL low density lipoprotein
ROS reactive oxygen species
SCD stearoyl-CoA desaturase
SREBP sterol regulatory element-binding protein
ACC acetyl CoA carboxylase
FASN fatty acid synthase
ELOVL6 fatty acid elongases 6
LXR liver X receptor
PGC peroxisome proliferator-activated receptors-gamma coactivator
AMPK AMP-activated protein kinase
ARDS acute respiratory distress syndrome
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NAFLD non-alcoholic liver disease
NASH non-alcoholic steatohepatitis
HCC hepatocellular carcinoma
CRC colorectal cancer
IB inflammatory bowel disease
HFD high fat diet
HCD high carbohydrate diet
MCD methionine-choline deficient diet
ASO anti-sense oligonucleotide
hiPSC human induced pluripotent stem cells
BAT brown adipose tissue
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