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Abstract: Recently, pharmacological activation of brown fat and induction of white fat browning
(beiging) have been considered promising strategies to treat obesity. To search for natural products
that could stimulate the process of browning in adipocytes, we evaluated the activity of trans-cinnamic
acid (tCA), a class of cinnamon from the bark of Cinnamomum cassia, by determining genetic expression
using real time reverse transcription polymerase chain reaction (RT-PCR) and protein expression by
immunoblot analysis for thermogenic and fat metabolizing markers. In our study tCA induced brown
like-phenotype in 3T3-L1 white adipocytes and activated HIB1B brown adipocytes. tCA increased
protein content of brown-fat-specific markers (UCP1, PRDM16, and PGC-1α) and expression levels of
beige-fat-specific genes (Cd137, Cidea, Cited1, Tbx1, and Tmen26) in 3T3-L1 white adipocytes, as well
as brown-fat-specific genes (Lhx8, Ppargc1, Prdm16, Ucp1, and Zic1) in HIB1B brown adipocytes.
Furthermore, tCA reduced expression of key adipogenic transcription factors C/EBPα and PPARγ in
white adipocytes, but enhanced their expressions in brown adipocytes. In addition, tCA upregulates
lipid catabolism. Moreover, mechanistic study revealed that tCA induced browning in white
adipocytes by activating the β3-AR and AMPK signaling pathways. tCA can induce browning,
increase fat oxidation, reduce adipogenesis and lipogenesis in 3T3-L1 adipocytes, and activate HIB1B
adipocytes, suggesting its potential to treat obesity.
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1. Introduction

Obesity is associated with numerous other metabolic complications including diabetes, hypertension,
hyperlipidemia, atherosclerosis, and cardiovascular diseases [1]. Notably, obesity is caused by
oversupply of energy provided by excess fat that is accumulated in the body without being
consumed [2]. Besides exercise and calorie restriction, another alternative way to lose weight and
reduce obesity is to increase energy expenditure by activating brown adipocytes [3].

There are three types of fat in humans: (1) white adipose tissue (WAT), which makes up nearly all
fat in adults; (2) brown adipose tissue (BAT), which is involved in energy expenditure; and (3) brown
in white fat (brite or beige fat), which converts from white adipocytes to brown-like adipocytes and
contributes to energy expenditure in humans [4]. Targeting adipose tissue has potential therapeutic
importance for the treatment of obesity and other metabolic disorders [5]. Recent discovery in the
process of browning, or beiging, has heightened an interest in research for exhibiting this particular
process to be an efficient technique in the conquest of obesity [6,7].

The fundamental factor leading to the process of adaptive thermogenesis is governed by uncoupling
protein 1 (UCP1) [8], known to be expressed in brown and beige adipocytes [9]. UCP1 releases heat as a
form of energy after uncoupling the electron transport chain for energy production [10]. It plays a critical
role in energy balance and metabolic regulation of cold and diet-induced thermogenesis [11,12]. Recent
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studies have identified ectopic expression of other hallmark proteins, such as PGC-1α and PRDM16,
as novel beige-fat-specific markers [13,14]. These proteins can be targets for the identification of brown
fat-activation or browning/beiging agents [15–17]. Among the genetic markers, Cd137, Cited1, Tbx1,
and Tmem26 have been reported for beige-specific markers, while genes, Eva1, Lhx8, and Zic have been
specified for brown adipocytes [18,19].

Recently, advances have been made to understand the roles of pharmacological agents and
dietary supplements that contribute to browning of white adipocytes [20]. To date, a variety of natural
compounds have shown promise for regulating BAT activity and recruiting beige adipocytes, as well
as enhancing lipolytic and catabolic potential of WAT [20–23].

Cinnamon (Cinnamomum cassia) is one of the most important spices used daily by many
people all over the world. Cinnamon primarily contains essential oil (Cinnamomum vernum) and
other derivatives such as cinnamaldehyde and cinnamic acid [24,25]. Among several analogs
of cinnamon, trans-cinnamic acid (tCA) is known to exhibit various health-promoting properties,
including anti-diabetic [26], anti-inflammatory, and anti-cancer activities [27]. Another important
feature displayed by tCA is that it can reduce body weight of obese rats [28] by improving insulin
sensitivity and blood lipids [29].

To date, little research has been done concerning regulatory roles of tCA in lipid metabolism,
particularly in fat browning. Therefore, the objective of the present study was to examine physiological
roles of tCA in lipid metabolism of 3T3-L1 white adipocytes and HIB1B brown adipocytes, focusing
on browning.

2. Materials and Methods

2.1. Chemicals

Trans-cinnamic acid (99% purity, Figure 1A) was purchased from Sigma Chemical Co. (St. Louis,
MO, USA). BRL 37344 and L-748.337 were purchased from Tocris Bioscience (Bristol, UK). AICAR was
purchased from TCI (Chuo-ku, Tokyo, Japan). Dorsomorphin was purchased from Abcam (Cambridge,
UK). All other chemicals used in this study were of analytical grade.

2.2. Cell Culture and Differentiation

3T3-L1 and HIB1B pre-adipocytes (ATCC, Manassas, VA, USA) were cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM, Thermo Fisher Scientific, Waltham, MA, USA), supplemented
with 10% fetal bovine serum (FBS, PAA Laboratories, Pasching, Austria) and 100 µg/mL of
penicillin-streptomycin (Invitrogen, Carlsbad, CA, USA) at 37 ◦C in a 5% CO2 incubator. Sufficiently
confluent cells were maintained in differentiation induction medium consisting of 10 µg/mL of
insulin (Sigma, St. Louis, MO, USA), 0.25 µM dexamethasone (Dex, Sigma), and 0.5 mM 3-isobutyl-1-
methylxanthine (IBMX, Sigma) in DMEM, followed by culturing in maturation medium containing
10% FBS and 10 µg/mL of insulin. During treatments, unless otherwise stated, cells were maintained
in complete medium containing 100 µM tCA (dissolved in dilute ethanol) for 6–8 days before further
analysis. Maturation medium was changed every 2 days. Cytotoxicity of tCA was evaluated
by MTT assay as described previously [30]. The cellular in vitro models used in this study were
commercially available models. We did not use any kind of human samples to require the approval of
the Ethics Committee.
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Figure 1. Trans-cinnamic acid (tCA) induces browning in white adipocytes. Chemical structure of tCA 
(A) and cytotoxicity (B). tCA promotes increased protein content of core brown fat markers (C) in a 
dose-dependent manner as well as expression of beige fat-specific genes (D) at 200 μM in 3T3-L1 
adipocytes. Data are presented as the mean ± SD, and differences between groups were determined 
using the Statistical Package of Social Science (SPSS, version 17.0; SPSS Inc., Chicago, IL, USA) 
program, followed by Tukey’s post-hoc tests or Student’s t-test. Statistical significance between 
control and tCA-treated 3T3-L1 cells are shown as * p < 0.05 or ** p < 0.01. 
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iNtRON Biotechnology, Seongnam, Korea). RNA (1 μg) was converted to cDNA using Maxime RT 
premix (iNtRON Biotechnology). Power SYBR Green (Roche Diagnostics Gmbh, Mannheim, 
Germany) was employed to quantitatively determine transcription levels of genes by quantitative 
RT-PCR (Stratagene 246 mix 3000p QPCR System, Agilent Technologies, Santa Clara, CA, USA). PCR 

Figure 1. Trans-cinnamic acid (tCA) induces browning in white adipocytes. Chemical structure of
tCA (A) and cytotoxicity (B). tCA promotes increased protein content of core brown fat markers (C)
in a dose-dependent manner as well as expression of beige fat-specific genes (D) at 200 µM in 3T3-L1
adipocytes. Data are presented as the mean ± SD, and differences between groups were determined
using the Statistical Package of Social Science (SPSS, version 17.0; SPSS Inc., Chicago, IL, USA) program,
followed by Tukey’s post-hoc tests or Student’s t-test. Statistical significance between control and
tCA-treated 3T3-L1 cells are shown as * p < 0.05 or ** p < 0.01.

2.3. Quantitative Real-Time Reverse Transcription Polymerase Chain Reaction (RT-PCR)

Total RNA was isolated from mature cells (4–8 days) using a total RNA isolation kit (RNA-spin,
iNtRON Biotechnology, Seongnam, Korea). RNA (1 µg) was converted to cDNA using Maxime RT premix
(iNtRON Biotechnology). Power SYBR Green (Roche Diagnostics Gmbh, Mannheim, Germany) was
employed to quantitatively determine transcription levels of genes by quantitative RT-PCR (Stratagene
246 mix 3000p QPCR System, Agilent Technologies, Santa Clara, CA, USA). PCR reactions were run in
duplicates for each sample. Transcription levels of all genes were normalized to the level of β-actin.
Sequences of primer sets used in this study are listed in Table 1.

2.4. Oil Red O Staining

Cells were matured for 4–8 days followed by washing with phosphate-buffered saline (PBS),
fixation with 10% formalin for 1 h at room temperature, and washing again three times with deionized
water. A mixture of Oil Red O solution (0.6% Oil Red O dye in isopropanol) and water at a 6:4 ratio
was layered onto cells for 20 min, followed by washing four times with deionized water. Images of the
stained lipid droplets were visualized using an inverted microscope. Intracellular lipid content was
quantified after extracting ORO bound to cells with 100% isopropanol, and absorbance at 500nm was
determined in triplicate wells using a microplate reader.
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Table 1. List of primers used for real-time quantitative RT-PCR.

Gene Accession No. Forward Reverse

Cd137 DQ832278.1 GGTCTGTGCTTAAGACCGGG TCTTAATAGCTGGTCCTCCCTC
Cidea NM_007702.2 CGGGAATAGCCAGAGTCACC TGTGCATCGGATGTCGTAGG
Cited1 NM_001276466.1 GGAAGGCACAGCACCCACTC GGAAGGCACAGCACCCACTC
Cox4 NM_001293559.1 TGACGGCCTTGGACGG CGATCAGCGTAAGTGGGGA
Lhx8 NM_010713.2 CATCGCTGTTCTGCCTGTTAG CTCGGGATTCAGCAGTCCTTC
Nrf1 NM_010938.4 GCTAATGGCCTGGTCCAGAT CTGCGCTGTCCGATATCCTG

Ppargc1α NM_008904.2 ATGAATGCAGCGGTCTTAGC AACAATGGCAGGGTTTGTTC
Prdm16 NM_027504.3 GATGGGAGATGCTGACGGAT TGATCTGACACATGGCGAGG

Tbx1 NM_001285472.1 AGCGAGGCGGAAGGGA CCTGGTGACTGTGCTGAAGT
Tfam BC083084.1 ATGTGGAGCGTGCTAAAAGC GGATAGCTACCCATGCTGCTGGAA

Tmem26 NM_177794.3 CCATGGAAACCAGTATTGCAGC ATTGGTGGCTCTGTGGGATG
Ucp1 NM_009463.3 CCTGCCTCTCTCGGAAACAA GTAGCGGGGTTTGATCCCAT
Zic1 NM_009573.3 GCCACAAATCCGGGAAGAAG CTCACTTTCTCGCCGCTCAG

2.5. Immunoblot Analysis

Cell lysates were prepared using RIPA buffer (Sigma) by homogenization and centrifugation at
13,000× g for 30 min. Cell extracts were diluted in 5X sample buffer (50 mM Tris at pH 6.8, 2% SDS,
10% glycerol, 5% β-mercaptoethanol, and 0.1% bromophenol blue) and heated at 95 ◦C for 5 min before
8%, 10%, or 12% SDS-polyacrylamide gel electrophoresis (PAGE). After electrophoresis, samples were
transferred onto a poly vinylidene difluoride membrane (PVDF, ATTO Technology, Amherst, NY, USA)
and then blocked for 1 h with TBS-T 10 mM Tris-HCl, 150 mM NaCl, and 0.1% Tween 20) containing
5% skim milk (Sigma) or BSA (Rocky Mountain Biologicals, Missoula, MT, USA). The membrane was
rinsed three times consecutively with TBS-T buffer, followed by incubation at room temperature for
1 h with 1:1000 diluted primary polyclonal antibodies, including anti-ATGL, anti-ACC, anti-pACC,
anti-β-actin, anti-PPARγ, anti-AMPK, anti-pAMPK, anti-UCP1, anti-PGC-1α, anti-CPT1, anti-ACOX1,
anti-C/EBPα, anti-β3-AR, anti-PKA, anti-FAS (Santa Cruz Biotechnology, Santa Cruz, CA, USA),
anti-PRDM16(Abcam, Cambridge, UK) and anti-pHSL (Cell Signaling Technology, Inc., Danvers,
MA, USA), in TBS-T buffer containing 1% skim milk or BSA. After three washes, the membrane
was incubated with horseradish peroxidase-conjugated anti-goat IgG, anti-rabbit IgG, or anti-mouse
IgG secondary antibody (1:1000, Santa Cruz Biotechnology) in TBS-T buffer containing 1% skim
milk or in BSA at room temperature for 1 h. Immunoblots were then developed with enhanced
chemiluminescence and captured with ImageQuant LAS500 (GE Healthcare Life Sciences, Malborough,
MA, USA). Every experiment was representative of three independent experiments. Protein band
intensities were normalized using β-actin bands in each cell sample and band intensities were
quantified using ImageJ software (NIH, Bethesda, MD, USA).

2.6. Immunocytochemistry

Immunocytochemistry was performed on formalin-fixed cells. These cells were incubated with
anti-UCP1 (dilution 1:1000, Santa Cruz Biotechnology) primary antibody at 4 ◦C overnight, followed
by incubation with appropriate FITC goat anti-mouse secondary antibody at room temperature
for 4 h. For staining of mitochondria, MitoTracker®Red (1 mM, Cell Signaling Technology, Inc.)
was directly added to PBB-T (PBS + 1%, BSA, and 0.1% Tween 20) at a concentration of 200 nM.
Cells were then incubated at 37 ◦C for 2 h. After incubation, tissues were washed with PBS and
subjected to immunostaining. Morphological findings were observed using a light microscope at
40× magnification.

2.7. Statistical Analysis

All data are presented as mean ± SD of at least three independent experiments. Statistical
significance among multiple groups was determined by one-way analysis of variance (ANOVA)
followed by Tukey’s post-hoc test or two-tailed Student’s t-test using Statistical Package of Social
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Science (SPSS) software version 17.0 (SPSS Inc., Chicago, IL, USA). Statistical significance was indicated
as either p < 0.05 or p < 0.01.

3. Results

3.1. Trans-Cinnamic Acid (tCA) Induces Browning in 3T3-L1 White Adipocytes

First, tCA cytotoxicity to 3T3-L1 preadipocytes was evaluated by MTT assay. As shown in
Figure 1B, tCA resulted in no significant cytotoxicity at concentration up to 400 µM. Hence, unless
otherwise stated, cells were treated with 200 µM tCA to investigate its browning effect. As shown
in Figure 1C, tCA significantly upregulated the expression of brown-fat-specific proteins PGC-1α,
PRDM16, and UCP1 in a dose-dependent manner. It also significantly upregulated genes Ppargc1a,
Prdm16, and Ucp1 and beige-fat-specific genes Cd137, Cited1, Tbx1, and Trem26 (Figure 1D).

3.2. tCA Activates HIB1B Brown Adipocytes

Since tCA showed no detectable cytotoxicity at concentrations up to 400 µM (Figure 2A), we further
investigated whether tCA could activate HIB1B brown adipocytes. To this end, we allowed HIB1B
adipocytes to differentiate in complete media containing different concentrations of tCA (0–200 µM).
Our results demonstrated that tCA strikingly activated HIB1B brown adipocytes by enhancing
expression levels of brown fat-specific proteins PGC-1α, PRDM16, and UCP1 in a dose-dependent
manner (Figure 2B). It also significantly upregulated brown-fat signature genes Cidea, Lhx8, Ppargc1a,
Prdm16, Ucp1, and Zic1 at concentration of 50 µM (Figure 2C). Next, we determined expression levels of
key adipogenic transcription factors (e.g., C/EBPα and PPARγ) in HIB1B adipocytes. Their expression
levels were remarkably elevated upon tCA treatment (50 µM) (Figure 2D), suggesting that tCA could
stimulate adipogenesis in brown adipocytes. In addition, tCA treatment (50 µM) decreased intensity
of Oil Red O staining (Figure 2E).
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Figure 2. Trans-cinnamic acid (tCA) activates brown adipocytes. Cytotoxicity of tCA upon induction
in HIB1B cells (A). tCA elevates protein content of core brown fat markers (B) in a dose-dependent
manner as well as expression of the genes encoding beige fat-specific activity (C) at 50 µM in HIB1B
adipocytes and regulates adipogenesis (D). Representative images of Oil Red O staining of HIB1B cells
taken at 40× magnification (scale bars = 50 µm), where lipid content was quantified by extracting Oil
Red O stain bound to cells with 100% isopropanol in brown adipocytes (E). Data are presented as the
mean ± SD, and differences between groups were determined using the Statistical Package of Social
Science (SPSS, version 17.0; SPSS Inc., Chicago, IL, USA) program, followed by Tukey’s post-hoc tests
or Student’s t-test. Statistical significance between control and tCA-treated HIB1B cells are shown as
* p < 0.05 or ** p < 0.01.
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3.3. tCA Promotes Mitochondrial Biogenesis in White and Brown Adipocytes

As mentioned previously, tCA activated thermogenic marker proteins in both white and brown
adipocytes. To confirm this result at genetic level we verified the mitochondrial biogenic genes Cox4,
Nrf1, MtDNA, and Tfam, which expressed an elevated expression as well as at cellular level, where
we directly detected UCP1 protein levels in both differentiated adipocytes using immunofluorescent
staining with MitoTracker®Red. Results revealed stronger signals in tCA-treated 3T3-L1 (Figure 3A)
and HIB1B (Figure 3B) adipocytes compared to those in both control adipocytes.
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Figure 3. Activation of UCP1 by trans-cinnamic acid (tCA). Immunofluorescent staining of
differentiated 3T3-L1 white adipocytes (scale bars = 50 µm) (A) and HIB1B brown adipocytes (scale
bars = 20 µm) (B) with MitoTracker Red dye used for UCP1, when treated with tCA. Images were
captured at 40× magnification, respectively. UCP1, uncoupling protein 1. Data are presented as mean ±
S.D. Differences between groups were determined using Student’s t-test. Statistical significance between
control and tCA-treated 3T3-L1 cells is shown as * p < 0.05 or ** p < 0.01.

3.4. tCA Regulates Lipid Metabolism in White Adipocytes

Next, we investigated the effect of tCA on lipid metabolism in white adipocytes. For this,
we determined expression levels of key adipogenic transcription factors, such as C/EBPα and PPARγ,
in white adipocytes upon induction of tCA in 3T3-L1 preadipocytes, before the initiation of the
differentiation process. While the cells differentiated and developed into nature adipocytes, different
results were observed in the adipocytes, and their expression levels were reduced upon tCA treatment,
suggesting decreased adipogenesis (Figure 4A). Recruitment of beige cells in 3T3-L1 adipocytes
consequently led to reduced fat accumulation, as evidenced by reduced triglycerides after tCA
treatment (Figure 4B). Moreover, expression levels of acetyl-CoA carboxylase (ACC) and fatty acid
synthase (FAS), as important lipogenic markers, were markedly reduced upon tCA treatment, along
with an increased ratio of pACC to total ACC mediated by AMPK activation (Figure 4C). Next,
we investigated expression levels of lipolysis-related proteins, including phosphorylated (activated)
hormone-sensitive lipase (pHSL) and adipocyte triglyceride lipase (ATGL), before and after tCA
treatment. As shown in Figure 4D, tCA enhanced lipolysis by increasing expression levels of pHSL
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and ATGL. tCA treatment also significantly increased mitochondrial protein levels of acyl-coenzyme
A oxidase 1 (ACOX1) and carnitine palmitoyl transferase 1 (CPT1), suggesting augmented oxidative
capacity upon tCA treatment (Figure 4E).
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Figure 4. Trans-cinnamic acid (tCA) regulates lipid metabolism in white adipocytes. tCA regulates
lipid metabolic regulators involved in adipogenesis (A). Representative images of Oil Red O staining of
3T3-L1 were taken at 10× magnification (scale bars = 100 µm), where lipid content was quantified by
extracting Oil Red O stain bound to cells with 100% isopropanol in 3T3-L1 adipocytes (B), lipogenesis
(C), lipolysis (D), and fatty acid oxidation (E). Data are presented as the mean ± SD, and differences
between groups were determined using Student’s t-test. Statistical significance between control and
tCA-treated 3T3-L1 cells are shown as * p < 0.05 or ** p < 0.01.

3.5. tCA Induces Browning of White Adipocytes via Activation of the β3-AR and AMPK Signaling Pathways

We further investigated molecular mechanisms involved in the browning activity of tCA. To this
end, we separately treated 3T3-L1 cells with β3-adrenergic receptor (β3-AR) antagonist L-748.337
at 80 µM and β3-AR agonist BRL 37344 at 20 µM with or without tCA at 200 µM after 7 days of
differentiation, after which expression levels of key signaling molecules (PGC-1α, PRDM16, and UCP1)
responsible for browning were determined. Inhibition of β3-AR by antagonist L-748,337 resulted in
reduced expression levels of PKA, pAMPK, and browning markers. It also abolished increment of
β3-AR, PKA, pAMPK, and browning markers induced by tCA (Figure 5A). Treatment with β3-AR
agonist BRL 37344 in combination with tCA synergistically increased expression levels of β3-AR,
PKA, pAMPK, and browning marker proteins (Figure 5A). We also determined expression levels
of browning marker proteins PRDM16, PGC-1α, and UCP1 after separate treatment of 3T3-L1 cells
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with AMPK antagonist dorsomorphin at 5 µM and AMPK agonist AICAR at 100 µM after 7 days
of differentiation. Inhibited AMPK decreased expression levels of browning markers and abolished
their increased levels induced by tCA. Browning markers were also synergistically elevated by a
combination of AMPK agonist and tCA (Figure 5B). In addition, tCA elevated the expression levels
up to two-fold for ATGL and p-HSL in the presence of β3-AR agonist, indicating its potential role of
lipolysis mediated by β3-AR in white adipocytes (Figure S1). These results indicate that AMPK has
a direct effect on browning induced by tCA through the β3-AR signaling pathway in 3T3-L1 white
adipocytes (Figure 6).Nutrients 2019, 11, x FOR PEER REVIEW 9 of 15 
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adipocytes. tCA activates β3-AR and promotes browning by elevating expression of browning markers
PGC-1α, PRDM16, and UCP1 (A) as well as AMPK-mediated activation of β3-AR to pAMPK, resulting
in higher expression levels of browning markers (B) in comparison to the effect of β3-AR. Data are
presented as the mean ± SD, and differences between groups were determined using the Statistical
Package of Social Science (SPSS, version 17.0; SPSS Inc., Chicago, IL, USA) program, followed by
Tukey’s post-hoc tests. Statistical significance between control and tCA-treated 3T3-L1 cells are shown
as * p < 0.05 or ** p < 0.01.
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4. Discussion and Conclusions

Results of the present study showed that tCA treatment could promote white fat browning
and activate metabolic responses in 3T3-L1 white adipocytes, with a focus on the induction of beige
adipocytes and elucidated the underlying molecular mechanism. Over many years, cinnamon and
its derivatives have been used in traditional medicine to treat diabetes, obesity, and other metabolic
diseases [29,31,32]. tCA is one of the active components of cinnamon, a spice produced from the bark
of Cinnamomum. Numerous health benefits have been ascribed to cinnamon and cinnamon extract
has been commercially sold to treat diabetes and other metabolic syndromes [33]. Despite a lot of
reports about the beneficial roles of cinnamon and its derivatives in obesity, there is neither a consensus
about bioactive constituents of cinnamon driving these effects nor molecular pathways responsible for
its benefits [33–35]. Results obtained here contribute to the clarification of the active component in
cinnamon and potential pathways involved in browning and other metabolic responses.

Recently, Kwan et al. have reported that cinnamon extract has browning effect in subcutaneous
adipocytes of db/db and diet-induced obese mice via β3-AR signaling [36]. They have identified that
components in cinnamon extract are protocatechuic acid, catechin, chlorogenic acid, and sesculetin.
However, they did not specify which component was mainly involved in browning. Our data support
that tCA might play an important role in the browning effect of cinnamon extract, although effects of
other cinnamon components, such as cinnamadehyde and cinnamate, should be determined in the
future. tCA-mediated browning also follows β-adrenergic signaling pathway through consequent
activation of PKA and AMPK. However, possibility for TRPA1-agonistic action of tCA in browning
effect cannot be excluded as cinnamaldehyde, one of the active components and 90% of the essential
oil of cinnamon bark, can activate TRPA1 and increase thermogenesis [35,37]. Thermogenic activity of
cinnamaldehyde needs to be determined, as it is easily oxidized to cinnamic acid. Cinnamaldehyde,
an essential oil found in cinnamon, is also protective against obesity in mouse models by activating
thermogenesis through the PKA-p38 MAPK signaling pathway [35,38]. Taken together, it is likely
that cinnamon and its derivatives have thermogenic activity in adipocytes via the TRPA1 and/or
β3AR-PKA signaling pathways.
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In adipogenesis, two transcription factors, such as C/EBPα and PPARγ, tightly regulate the
development of preadipocytes into mature adipocytes [39]. Suppressing these factors will reduce
the accumulation of triglycerides [40]. Hsu et al. have reported that o-hydroxycinnamic acid
can inhibit adipogenesis in 3T3-L1 adipocytes by inhibiting glycerol-3-phosphate dehydrogenase
activity and down-regulating adipogenic transcription factors [41]. Similarly, p-hydroxycinnamic
acid can suppresses adipogenesis in 3T3-L1 preadipocytes by inhibiting the MAPK/ERK signaling
pathway [42]. Identical results are found with Esculetin derived from coumarin, which displayed
reduced adipogenesis modulated by the AMPK pathway in 3T3-L1 adipocytes [43].

One of the important targets of AMPK is acetyl-CoA carboxylase (ACC), a key enzyme of
lipogenesis, by converting acetyl-CoA to malonyl-CoA. When ACC is phosphorylated (activated),
action of ACC is inhibited, thereby suppressing lipogenesis [44]. Phosphorylation of AMPK and ACC
by tCA is related to increased mitochondrial fatty acid oxidation in adipocytes [45]. This finding is
supported by increased expression of ACOX and CPT1, key players of fatty acid oxidation, upon
tCA treatment. Work by Prabhakar and Doble and our current data support that tCA can reduce the
expression of fatty acid synthase, thereby alleviating TG accumulation in adipocytes [46], moreover
our experiments also suggested that tCA could decrease lipid accumulation in white adipocytes.
Recent studies have demonstrated that lipogenesis and lipolysis are coupled in adipose tissue during
chronic β3-AR stimulation [47]. Enhanced lipid catabolism by tCA is likely to be responsible for major
metabolic adaptations during conversion of white to beige adipocytes [19]. Collectively, tCA and its
derivatives could be effective compounds for improving adipocyte function.

It is well recognized that activated AMPK can switch on catabolic pathways, such as glycolysis
and fatty acid oxidation, and inhibit anabolic processes, such as lipogenesis, in white adipocytes [44].
Another well-known importance of activated AMPK has been signified by inhibition of mTORC1 [48],
which regulates white to beige adipogenesis, and the inhibition of mTORC1 leads to WAT
browning [49]. Despite its importance in energy homeostasis, the role of AMPK in adipocyte lipolysis
remains controversial. Yin and Birnbaum have demonstrated that AMPK activation is required for
maximal increase in lipolysis induced by β–adrenergic stimulation [50]. In contrast, Daval et al. have
argued that AMPK can block translocation of HSL to lipid droplets, thereby inhibiting lipolysis [51].
Our indirect evidence suggested that tCA-mediated AMPK activation could lead to stimulated lipolysis
by increasing expression levels of ATGL and pHSL. The β-adrenergic signaling pathway represents a
prime regulator of triglyceride breakdown by PKA-dependent phosphorylation of HSL. In the current
study, tCA obviously activated β3-AR and consequently activated PKA, thereby phosphorylating
HSL. An alternative way to activate AMPK in 3T3-L1 adipocytes has been reported by Kopp et al.,
demonstrating that tCA can activate AMPK by G-protein-coupled receptor (GPR) signaling [29].

Cold-mediated browning works practically only on beige fat depots, whereas classical brown
adipocytes would be physiologically uninteresting for the browning process, as only a modest increase
in UCP1 level has been detected as an effect of cold [51]. In contrast, many browning agents can induce
white fat browning and activate classical brown adipocytes [52–54]. From this point of view, searching
for agents, such as tCA, that can activate both white fat browning and brown fat would be a promising
therapeutic strategy against obesity.

In summary, the anti-obesity effect of tCA was due to suppressed adipogenesis and lipogenesis as
well as increased fat oxidation and enhanced thermogenesis in adipocytes, whereby the β3AR-PKA-
AMPK, TRPA1, and GPR signaling pathways were responsible for thermogenic activity of tCA and
its related components. Considering the long half-life of compounds in cinnamon [55] and good
bioavailability [56] of 2.5 mmol/kg for rodents [57], consumption of tCA by oral administration may
be a feasible way to activate thermogenesis and improve systematic lipid metabolism, thus ultimately
protecting against obesity and other metabolic disorders in humans.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/11/3/577/s1,
Figure S1: tCA upregulates lipolysis.
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Abbreviations

ACC acyl-CoA carboxylase
ACO acyl-coenzyme A oxidase 1
AMPK AMP-activated protein kinase
AR adrenergic receptor
ATGL adipose triglyceride lipase
BAT brown adipose tissue
Beige brown in white
Cd137 tumor necrosis factor receptor superfamily, member 9
Cidea gene encoding cell death-inducing DFFA-like effector a
Cited1 gene encoding Cbp/p300-interacting transactivator 1
C/EBP/Cebp CCAAT/enhancer-binding protein/encoding gene
Cox4 cytochrome c oxidase subunit 4
CPT1 carnitine palmitoyltransferase 1
FAS fatty acid synthase
HSL hormone-sensitive lipase
Lhx8 gene encoding LIM/homeobox protein Lhx8
NRF1 nuclear respiratory factor 1
PGC-1α/Ppargc1α peroxisome proliferator-activated receptor gamma co-activator 1-alpha/encoding gene
PKA protein kinase A
PPAR peroxisome proliferator-activated receptor
PRDM16/Prdm16 PR domain-containing 16/encoding gene
tCA trans-cinnamic acid
Tbx1 gene encoding T-box protein 1
Tfam transcription factor A, mitochondrial
Tmem26 gene encoding transmembrane protein 26
UCP1/Ucp1 uncoupling protein 1/encoding gene
Zic1 gene encoding zinc finger protein ZIC1
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