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Abstract: Nutritional phenotyping can help achieve personalized nutrition, and machine learning
tools may offer novel means to achieve phenotyping. The primary aim of this study was to use
energy balance components, namely input (dietary energy intake and macronutrient composition)
and output (physical activity) to predict energy stores (body weight) as a way to evaluate their ability
to identify potential phenotypes based on these parameters. From the Women’s Health Initiative
Observational Study (WHI OS), carbohydrates, proteins, fats, fibers, sugars, and physical activity
variables, namely energy expended from mild, moderate, and vigorous intensity activity, were used
to predict current body weight (both as body weight in kilograms and as a body mass index (BMI)
category). Several machine learning tools were used for this prediction. Finally, cluster analysis was
used to identify putative phenotypes. For the numerical predictions, the support vector machine
(SVM), neural network, and k-nearest neighbor (kNN) algorithms performed modestly, with mean
approximate errors (MAEs) of 6.70 kg, 6.98 kg, and 6.90 kg, respectively. For categorical prediction,
SVM performed the best (54.5% accuracy), followed closely by the bagged tree ensemble and kNN
algorithms. K-means cluster analysis improved prediction using numerical data, identified 10 clusters
suggestive of phenotypes, with a minimum MAE of ~1.1 kg. A classifier was used to phenotype
subjects into the identified clusters, with MAEs <5 kg for 15% of the test set (n = ~2000). This study
highlights the challenges, limitations, and successes in using machine learning tools on self-reported
data to identify determinants of energy balance.
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1. Introduction

Postmenopausal women readily gain body fat and weight, along with facing challenges in reducing
or maintaining a healthy body weight. [1]. This puts them at a higher risk for chronic cardiometabolic
diseases. More so than premenopausal women, overweight or obese postmenopausal women are at
an increased risk for cancer, cardiovascular disease, and type 2 diabetes [2]. Studies on postmenopausal
women indicate that body weight can be maintained by reducing energy intake, however, this is
not successful for all women [3]. Several factors determine body weight in postmenopausal women,
and these factors are highly variable across the population [4]. This inter-individual variability needs
to be understood and quantified in order to be able to help weight loss or maintenance programs
in this at-risk population. One way to understand this inter-individual variability is to phenotype
body weight regulation using determinant independent variables. The classic “phenotype” is “the
set of observable characteristics of an individual resulting from the interaction of its genotype with
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the environment” [5]. Using this approach, a nutritional phenotype could be “a set of observable
characteristics of an individual resulting from the interaction of their ‘diet’ with their ‘environment’”.
In the present work, we use this definition of phenotyping to focus on understanding the relationship
between (a) macronutrient and energy intake, (b) physical activity, (c) sociodemographics, (d) other
disease states, and (e) body weight.

Within the framework of phenotyping, data analysis plays a significant role [6].
Statistical prediction models have been used in nutrition as early as the 1900s. The earliest and
simplest examples are based on classical linear regression analyses, such as the Harris–Benedict
equation [7], or the more recent Mifflin St.Jeor equation [8]. These are well known tools used in energy
metabolism. These regression models ascribe to the one-size-fits-all theme that has been largely used
in nutrition science. In recent years, as the dimensionality of data has increased, more complex tools
have become necessary to build predictive models. Personalizing efforts using more complex means of
statistical analysis are becoming more common [9]. The approach has also changed from focusing on
a “mean” outcome to “individualized” outcome predictions, adding to the complexity.

Our objective was to be able to identify subpopulations or ‘phenotypes’ within a large population of
postmenopausal women from the Women’s Health Initiative-Observational Study (WHI OS), based on
the relationship between body weight and dietary macronutrients, physical activity, and socioeconomic
variables. Machine learning has been used in the past to determine dietary factors that are associated
with a risk of weight gain in postmenopausal women from WHI OS [10], however, we took a different
approach. We trained machine learning algorithms on the macronutrient composition of diets and
physical activity, as well as other pertinent demographic data, to predict current body weight. Our goals
were as follows: (a) To understand which commonly used algorithms achieve the best prediction
and why they do so; (b) to understand how these algorithms group women into clusters that might
reflect underlying phenotypes, and finally; (c) to evaluate how the relationship between dietary,
physical activity and sociodemographic variables to body weight is different between these clusters.
This paper presents several such models, and their evaluation to identify ideal prediction algorithms for
the given data, based on their ability to predict body weight, both numerically, as well as categorically
(i.e., as body mass index categories). In addition to these objectives, this is a crucial exercise in
understanding the inherent limitations to self-reported data and how they influence model building
using novel and recently introduced transdisciplinary approaches. Further, efforts to accurately identify
macronutrients able to predict body weight in postmenopausal women could reduce the disease
burden in this population.

2. Methods

2.1. Data Acquisition

We obtained data from the Biological Specimen and Data Repository Information Coordinating
Center (BioLINCC), an online repository of epidemiological and clinical data hosted by the National
Library of Medicine. We used the data from the Women’s Health Initiative Observational Study
(WHI OS). This is a long-term national health study on postmenopausal women which was started in
1991. The primary aim of this study was to identify strategies to prevent breast and colorectal cancer,
heart disease, and osteoporosis in postmenopausal women. There were two components that were
initially started as part of the Women’s Health Initiative (WHI): The randomized controlled clinical
trial (CT) and the observational study (OS). The WHI OS was aimed at observing and analyzing how
well lifestyle behaviors such as diet, exercise, and prior disease risk factors predicted disease outcomes,
primarily heart disease and cancer. Enrolment for the WHI OS started in 1994, and the study was
completed in 1998. A total of 93,676 women were recruited for this study. The selection criteria for
recruitment was women that were postmenopausal, between 50–79 years of age, with the ability and
willingness to provide the information at baseline and follow up visits, and those who were planning
to reside in that area for a minimum of 3 years. For the sake of answering our primary question we
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used the WHI OS data. Data that were of interest to our question were available from the baseline
study. As part of the WHI OS, women answered a modified semi-quantitative Block food frequency
questionnaire in 1994 about their dietary intake between the years of 1993 and 1994. In addition,
they also filled out a physical activity questionnaire that categorized their activity levels into mild,
moderate, and vigorous physical activity [11]. Further, we obtained information about their health
status, such as the presence of diabetes or hypertension, and demographic information, such as their
age, ethnicity, education, income, and marital status. Education and income were combined to arrive
at one socioeconomic score based on the method devised by Green L.W. in 1970 [12]. The Institutional
Review Board (IRB) at UC Davis and New Mexico Technological Institute exempted the review and
approved use of the data. All data treatment and analyses were done in Microsoft Office Excel
(Redmond, WA, USA) JMP Pro 14.1 (Cary, NC, USA), R version 3.1.1 [13], Python [14], and Jupyter
notebooks [15].

2.2. Data Cleanup

The Goldberg cutoff, which reduces the likelihood of implausible energy intake reports,
was calculated as described earlier [16,17]. This cutoff scales the self-reported energy intake to
the estimated basal metabolic rate (Mifflin St. Jeor equation [8]), matched to their physical activity
level, estimated from their self-reported physical activity. Beyond this, results where the total energy
intake was reported to be <500 kcal/day or >3500 kcal/day were considered outliers and removed
from the dataset. We only considered data where the self-reported energy intake per kg of body
weight was between 15–35 kcals. In addition, we also used a percentile method to remove outliers.
We removed data if they were less than the 5th or greater than the 95th percentile for that data range [18].
These outliers were removed from the dataset to ensure the development of a robust model. In the
final analysis, data from 48,508 subjects were used to train the algorithm (“known data”) to predict the
weight of 14,552 “test” subjects. Figure 1 depicts the process of final study volunteer identification.

Nutrients 2019, 11, x FOR PEER REVIEW 3 of 18 

 

questionnaire in 1994 about their dietary intake between the years of 1993 and 1994. In addition, they 

also filled out a physical activity questionnaire that categorized their activity levels into mild, 

moderate, and vigorous physical activity [11]. Further, we obtained information about their health 

status, such as the presence of diabetes or hypertension, and demographic information, such as their 

age, ethnicity, education, income, and marital status. Education and income were combined to arrive 

at one socioeconomic score based on the method devised by Green L.W. in 1970 [12]. The Institutional 

Review Board (IRB) at UC Davis and New Mexico Technological Institute exempted the review and 

approved use of the data. All data treatment and analyses were done in Microsoft Office Excel 

(Redmond, WA, USA) JMP Pro 14.1 (Cary, NC, USA), R version 3.1.1 [13], Python [14], and Jupyter 

notebooks [15]. 

2.2. Data Cleanup 

The Goldberg cutoff, which reduces the likelihood of implausible energy intake reports, was 

calculated as described earlier [16,17]. This cutoff scales the self-reported energy intake to the 

estimated basal metabolic rate (Mifflin St. Jeor equation [8]), matched to their physical activity level, 

estimated from their self-reported physical activity. Beyond this, results where the total energy intake 

was reported to be <500 kcal/day or >3500 kcal/day were considered outliers and removed from the 

dataset. We only considered data where the self-reported energy intake per kg of body weight was 

between 15–35 kcals. In addition, we also used a percentile method to remove outliers. We removed 

data if they were less than the 5th or greater than the 95th percentile for that data range [18]. These 

outliers were removed from the dataset to ensure the development of a robust model. In the final 

analysis, data from 48,508 subjects were used to train the algorithm (“known data”) to predict the 

weight of 14,552 “test” subjects. Figure 1 depicts the process of final study volunteer identification.  

 

Figure 1. Flow chart presenting the data cleaning and preparation process, including the machine 

learning (ML) algorithms applied. kNN—k-nearest neighbors, SVM—support vector machine. 

2.3. Feature Selection 

The dietary data collection methods, their implementation, and the obtained data variables from 

the WHI OS study are discussed here [11]. An extensive feature selection process was used, which 

included standard least square regression, stepwise multiple linear regression, partial least squares 

Figure 1. Flow chart presenting the data cleaning and preparation process, including the machine
learning (ML) algorithms applied. kNN—k-nearest neighbors, SVM—support vector machine.



Nutrients 2019, 11, 1681 4 of 19

2.3. Feature Selection

The dietary data collection methods, their implementation, and the obtained data variables from the
WHI OS study are discussed here [11]. An extensive feature selection process was used, which included
standard least square regression, stepwise multiple linear regression, partial least squares (PLS)
regression and variable cluster analyses, returning a total of 29 variables with a p < 0.0001 significance of
being associated with body weight. For this first pass approach, 140 dietary variables, 12 anthropometric
variables, and 3 physical activity variables, as well as chronic disease state information were used.
However, since our objective was to use macronutrients pertinent to body weight, from amongst these
selected features, only the variables of physiological relevance were chosen to represent their diet, such
as total energy (kcals), dietary fat (g), dietary protein (g), dietary carbohydrates (g), dietary sugars (g),
dietary fiber (g), and alcohol (g). In addition, mild, moderate, and vigorous intensity physical activity,
height, socioeconomic score, and marital status were retained in the final model. All disease state
information was also retained in the final model, to adjust for the given disease.

2.4. Data Preprocessing

Normalization: The input features were in various units, with the mean values spanning several
orders of magnitude. Many machine learning (ML) algorithms are very sensitive to differences in
the scale of magnitudes of different inputs. To address this, we normalized the data, using a z-score
transformation ((value−mean)/standard deviation).

Principal Component Analysis: Principal component analysis (PCA) converts a set of observations
of correlated variables into a set of values of linearly uncorrelated variables called principal components.
Using an orthogonal transformation does this. The number of principal components is less than
or equal to the smaller of the number of original attributes. This transformation is done in a way
that the first principal component has the largest possible variance, and each succeeding component,
in turn, has the highest variance possible under the constraint that it is orthogonal to the preceding
components. We did PCA on our input features as a way of dimensionality reduction, and to increase
independence among the inputs to the machine learning algorithms. We performed PCA on the
independent variables, and used the first 15, which explained 97.9% of the variance, in the feature
set. This was done so that (a) the number of features were reduced (thus reducing the ‘curse of
dimensionality’ which affects most of the ML algorithms), (b) mutually correlated features were not
used as inputs, and (c) so that the residual variance in the data (which might be noise) would not
be modeled.

In order to be able to report on how classical regression tools such as stepwise multiple linear
regression perform in comparison to machine learning-based tools, we compared them side-by-side.
Stepwise multiple linear regression was done using Akaike information criterion (AIC) as the decision
criteria (a lower AIC represents a better fit), in a mixed approach (the combination of backward and
forward, deletion and addition (respectively) of independent variables to the model to determine the
best fit).

2.5. Numerical Prediction

Predictive modeling was carried out using machine learning algorithms: For numerical prediction,
weight in kg was predicted from the input variables. Simpler ones such as statistical regression and
regression tree did not yield good results (data not shown). Neural networks and support vector
machines (SVMs, explained below) are powerful techniques which are capable of learning complicated
functions. The method that worked best for these data was a local, instance-based learning method
called k-nearest neighbors (kNN, explained below).
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2.6. Regression SVM

Support vector machines or support vector networks are supervised learning algorithms that
are commonly used when input vectors are non-linearly mapped to a very high dimensional feature
space, that has a linear relationship to the output. This ensures high generalizability of the learning
machine [19]. The algorithm uses a kernel function to measure similarities between two different
patterns by returning a real value. One simple, but not sufficiently general way to measure similarity
in a kernel function is by using the canonical dot product. Vapnik (1995) presented an ε–insensitive
loss function to compute SVM regression.

This method is very powerful for non-linear analysis, but the search space in which to find the
non-linear mapping becomes too large for high-dimensional input data, posing a practical challenge
in use [20,21].

2.7. Neural Network

Neural networks are biologically inspired algorithms, consisting of a large number of very simple
and independent processing units (neurons) which are connected unidirectionally. Neural networks are
a powerful tool to capture the semantics or dynamics of factors that linked by highly nonlinear functions.

The first neural network model was designed by McCulloch and Pitts in 1946 [22].
Rosenblatt introduced the first perceptron model and discussed its convergence to correct
weights [23–25]. Parkers and Rumelhart et al. introduced the back-propagation multilayer neural
network model for weight determination [26,27]. The back-propagation algorithm for nonlinear
least squares uses feed-forward neural networks for training. Compared with a conjugate gradient
and variable learning rate algorithms, the back-propagation algorithm is much more efficient when
the network contains no more than a few hundred weights, and also in many cases, the algorithm
converges while the aforementioned algorithms fail to converge [28,29]. For this reason, in the present
study, this algorithm was chosen.

2.8. k-Nearest Neighbors

Instance-based learning approaches, such as the k-nearest neighbors (kNN) algorithm,
follow a straightforward way to approximate real or discrete valued target functions [30,31].
The learning process is lazy and consists of storing training data. Predicting the output of a new
input vector involves fetching similar instances from the saved training data and aggregating their
outputs. Unlike many other techniques that build only one local approximation to the target function,
one significant advantage of instance-based algorithms is that for each new query instance the
model can build a new approximation to the target function. This gives instance-based algorithms,
specifically case-based algorithms, the ability to capture very complicated relationships between
attributes and outcomes. There are two big disadvantages associated with the instance-based approach:
(i) The cost of classification is much higher than with other methods, since all computations are
performed at the classification time rather than while training; and (ii) this method incorporates all
attributes of the instances when the algorithm tries to bring back similar training examples from
memory. If the target variable is only dependent on a few of the attributes, this can cause instances
that are very similar to be predicted further apart with a large distance [32,33].

In the k-nearest neighbors method, which is the most basic algorithm among instance-based
methods, all instances are mapped to points in n-dimensional space (Rn). Different distance
measurement techniques can be applied to calculate nearest neighbors. The original algorithm
uses the standard Euclidean distance method. It should be noted that Euclidean distance and square
Euclidean distance are usually used when data are not normalized. These two methods are also very
sensitive to the scale of different independent attributes, and having one or more attributes with a large
scale can decrease the effect of other attributes [34]. The city block (Manhattan) distance between two
independent attributes, unlike the Euclidean distance, is measured as the distance along the x-axis plus
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the y-axis. For the numeric kNN method, 75% of the dataset was assigned to the training subset and
the remaining 25% was assigned to testing. To validate the models, 5-fold cross-validation was used.

2.9. Information Gain and Loss Models

In order to study the effect of each independent variable on the outcome accuracy, all independent
variables were excluded from the model one by one and a new model was developed based on the
other independent variables. Three different sets of models were observed, based on the effect of
variable exclusion: (a) Removing variables that improved the accuracy, (b) removing variables that
had no specific effect on outcome accuracy, and (c) removing all variables in (a) and (b).

2.10. Categorical Prediction

Here, independent attributes were used to predict body mass index (BMI) categories (underweight
(BMI < 18.5), normal weight (18.5 ≤ BMI < 25), overweight (25 ≤ BMI < 30), grade I obese (30 ≤
BMI < 35), grade II obese (35 ≤ BMI < 40), and grade III obese (40 ≤ BMI)). For a categorical approach,
bagged trees, decision trees, SVMs, kNNs, and ensemble trees were evaluated (as mentioned before,
we do not present methods that were not promising).

2.11. Decision Tree

Decision tree learning algorithms are one of the most effective and widely used inductive inference
methods for discrete valued target functions [30]. A decision tree is a tree structure of Boolean questions
about the input variables, with each branch ending in a leaf marked by an output category. If the input
variables are such that a particular branch would be traversed, the corresponding leaf is the predicted
classification of BMI.

A decision tree learning algorithm is a top-down, greedy algorithm, which constructs the tree as
follows: Question the input attribute that has the most mutual information with the output, then ask
the question that will reduce the information content (entropy) of the output. This process is repeated
for each branch corresponding to each answer of the question. The ID3 decision tree algorithm was
used for this dataset.

2.12. Ensemble Methods

In order to improve the generalizability and robustness of a predictor, the results obtained from
several basic predictors of a given learning algorithm can be combined. Ensemble methods try to
combine the obtained results to achieve this goal. Ensemble methods can be categorized into two
general groups: (a) Averaging methods, such as bagging methods or forests of randomized trees, or (b)
boosting methods such as AdaBoost or gradient tree boosting [35].

Bootstrap aggregating (bagging) is a machine learning ensemble meta-algorithm designed to
improve the stability and accuracy of algorithms such as decision trees, neural networks, and linear
regression models. Generally, bagging predictors is a method of using multiple versions of base
predictors to obtain an aggregated predictor. When the outcome is discrete-valued, the aggregation
uses averaging over all different versions, while for a categorical outcome it uses a plurality vote
to obtain the best accuracy. One of the main problems related to prediction methods is instability.
Bagged methods could increase stability when altering the learning set, making a huge difference in
the constructed predictor [36]. The major difference between bagging methods arises from how the
random subsets of training data are chosen. [35].

Boosting methods follow a different logic process than bootstrap aggregating, where many weak
models are combined to produce an ensemble model that is more powerful. The base predictors are
generated sequentially and one tries to reduce the bias of the combined predictor [37]. One of the most
popular boosting algorithms is AdaBoost, which was introduced by Freund and Schapire in 1995 [38].
The algorithm uses many weak learners which perform/predict slightly better than random guessing.
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Following this, it fits these weak learners repeatedly on the data and then uses the weighted majority
vote or sum technique to combine the results for the final prediction.

2.13. Validation

For all machine learning methods, there is always the risk of overfitting or underfitting.
Overfitting happens when the model is too complex for the data, and this is due to the small
size of the dataset or the presence of too much noise in the data. In the case of overfitting, the complex
generated model captures the noise in training dataset. When overfitting happens, the algorithms
show a low bias (error) and high variance. In contrast, underfitting occurs when the statistical model
or machine learning algorithm cannot capture the underlying trend of the data and consequently the
model does not fit the data correctly. In the occurrence of underfitting, high bias and low variance
are obvious.

Overfitting has problematic consequences for machine learning algorithms and leads to poor
predictions for unseen input instances. Validation methods are essential tools in a machine learning
algorithm that are used to make sure the constructed model is suffering from neither underfitting nor
overfitting. A very basic approach, called the validation set method, is randomly dividing the dataset
into training and testing (70% training and 30% testing) subsets, then building the model based on the
training data, and then testing the model’s performance with the testing subset. While this method is
very fast and easy to implement, it also has some drawbacks. The testing error can be highly variable
depending on which observations are included in the testing and training datasets. The other problem
related to the validation set method is that the model is developed on only a subset of the data, and this
potentially can lead to a higher estimation error and consequently a poorer model in the test phase.

To address the problems related to the validation set method, cross-validation tries to create a test
dataset during the training phase by partitioning the dataset into subsets and using one subset, called the
validation dataset, for testing and the rest for training purposes. There are different cross-validation
methods, such as leave one out (L-O-O) and k-fold validation. In the L-O-O method, the model is
being trained on n− 1 observations and is validated on the single validation set observation. The test
error based on only one single observation is highly variable, however, if the process is repeated for all
instances in the dataset, then the average of all these test errors gives the overall error of the dataset.
Notably, having less bias in the regression coefficients and no variation in parameter estimations
across the training dataset are two big advantages of this method, however, for large datasets it is
computationally expensive.

The k-fold cross validation method is a compromise between the two aforementioned methods.
This was the method used in the present work. The dataset is randomly divided into k subsets
(also known as a fold). One subset is used to test the model and the other k− 1 subset is used to train
the model. This process is repeated k times for all subsets and the average of the these k test errors
presents the overall error of the dataset. This method requires less computational resources and the
estimation is more accurate than what is produced with the L-O-O method (the L-O-O method has less
bias than k-fold cross validation but possesses a larger variance) [20].

2.14. Clustering

Powerful ML methods such as neural networks (NNs) and SVM can fail for many reasons,
including the presence of many dimensions, potentially irrelevant ones, too much noise, etc. For our
dataset, the training set error was quite high, indicating that the desired function was not being learned.
This fact, coupled with the fact that local and ensemble models perform well, led to our conjecture
that for similar values of inputs we had widely varying outputs. In such cases there may be hidden
variables which determine the outputs, or the function from input to output. If this were the case,
clustering would improve the performance of the algorithms.

Cluster analysis groups sets of objects that have maximal similarities. Hierarchical clustering
analysis (HCA) or connectivity-based clustering follows the simple idea that the nearby objects are
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more related to each other than the ones further away. HCA, which is a greedy algorithm, falls into two
different categories: Agglomerative (linkage) and divisive (K-means and K-medoids). In agglomerative
(bottom-up) clustering, each object starts in its own cluster and a pair of objects can merge as one
moves up, however, in divisive cluster analysis, which is a top-down method, all objects are in one
cluster and different clusters disjoin recursively as one moves down.

K-means is the simplest and most commonly used algorithm which uses a squared error criterion.
This algorithm represents clusters by their centroids, which is the mean of all objects in one specific
cluster. The algorithm for K-means clustering uses the partitioning error to stop the iteration.
This algorithm can be presented as a gradient-descent procedure, which starts with an initial fixed
number of cluster centroids, constantly updating them to reduce the error as much as possible.
The K-means algorithm has a linear time complexity, and this makes the algorithm popular for
researching large datasets [39].

The performance measures of clustering algorithms quantify the proximity of points in each
cluster and the distance separating points from different clusters. There are several measures, and they
all measure the distance between each data point from the centroid of its cluster (as a measure of
cluster cohesiveness) and the distance between centroids of various clusters (as a measure of cluster
separation), combining the two measures.

The clustering algorithms we used were sensitive to the number of clusters, which is a parameter
specified by the user during the initial random clustering. The clustering algorithms are very fast,
and as such, they can be run many times with many different initializations for each desired cluster
number, where a maximum value of the desired criteria of inter-cluster separation and intra-cluster
cohesion is produced. We used this process, repeatedly varying the number of clusters to determine
the ideal number of clusters. The Calinski-Harabasz criteria was used to measure the effectiveness
of clustering [40]. We used this measure, along with the average prediction error, to determine the
number of clusters. A higher Calinski-Harabasz score represents a lower intra-cluster distance and
an increased inter-cluster distance.

2.15. Phenotyping by Predicting Subjects into Identified Clusters Using a Classifier

Clustering generally improves the performance of machine learning methods, however,
for an unseen, newly added case/data point/subject, it is challenging to predict which cluster it
could belong to. In order to address this, we developed a three-step model where we first tried to
predict the cluster that a new data point should belong to, then use that cluster to predict their body
weight. This effort would both validate the clusters identified, as well as determine the predictive
ability of the model to consistently classify a specific set of independent variables to the same cluster,
thereby establishing a “phenotyping” effort. Finally, we added a third step to improve the number of
points predicted, as described below.

Step 1: For each cluster, we developed a machine learning model (neural network with 1 hidden
layer and 15 neurons) that would evaluate whether the new case’s independent variables belong to
the given cluster. The neural network was trained with a training set which inputs the independent
variables, deciding between a result of “in the cluster” or “not in the cluster”, based on whether the
cluster could predict the case’s weight within a predetermined threshold (by varying this threshold we
can control how strict the network’s admittance of a case into a cluster is). Therefore, a new case’s
independent variable list is fed into the neural networks of all the clusters and they all predict whether
the data point might belong to their cluster. Since this is a new data point there is error associated with
this prediction. This error translates into multiple clusters agreeing to “admit” the new case or none of
the clusters agreeing to “admit” it.

Step 2: Each cluster that included the new case predicts the body weight of the case based on
the independent variables, and an average of these predictions is computed, along with an error term
for the predicted weight. The prediction within the cluster was done via SVM or kNN. If no cluster
“admits” the case, the body weight for that case cannot be predicted via clustering. As expected,
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we saw that when the ML algorithms for admittance into clusters were trained to be conservative,
the overall error associated with the predicted body weight was low, but the number of cases predicted
was also low.

Step 3: If a case was not included in any of the clusters, the prediction from the larger kNN model
was used.

3. Results

The independent variables that were used to predict the body weight and BMI category are listed
in Table 1.

Table 1. Feature selection based final list of variables chosen for building models.

Independent Variables Variable Type

Energy (kcals) Numeric
Carbohydrates (g) Numeric

Sugars (g) Numeric
Protein (g) Numeric

Fat (g) Numeric
Fiber (g) Numeric

Alcohol (g) Numeric
Age (years) Numeric

Ethnicity Categorical
Socioeconomic Score Numeric

Marital status Categorical
Vigorous intensity physical activity (h/week) Numeric
Moderate intensity physical activity (h/week) Numeric

Mild intensity physical activity (h/week) Numeric
Height (cm) Numeric

Overactive thyroid Binary
Underactive thyroid Binary

Heart failure Binary
Angina Binary

Atrial fibrillation Binary
Kidney or bladder stones Binary
Dialysis for kidney failure Binary
Stomach or duodenal ulcer Binary

Diverticulitis Binary
Pancreatitis Binary

Liver disease Binary
Multiple sclerosis Binary

Parkinson’s disease Binary
ALS Lou Gehrigs disease Binary

Dependent Variables

Body weight (kg) Numerical
Body mass index (BMI) (kg/m2) Categorical

3.1. Numeric Prediction Models

Table 2 summarizes the results from different models evaluated for numerical prediction using
the independent variables. Gaussian SVM regression performed the best, with a mean approximate
error (MAE) of 6.70 kg and a R2 of 0.30. The two-layer feed forward neural network trained model
was a close second (MAE = 6.90 kg and R2 = 0.27), and kNN (18 neighbors) performed the next best
(MAE = 6.98 kg and R2 = 0.26). Figure 2 shows a scatter plot that presents the relationship between
the predicted weights versus the real weights, as well as the distribution of errors in prediction for the
kNN model.
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Table 2. Numerical and categorical approach summaries.

Numerical Algorithms Used Mean Approximate Error
(MAE) R2 Root Mean Square

Error (RMSE)

Stepwise linear regression * 10.1 0.22 13.4
kNN 6.98 0.26 8.71
Gaussian SVM regression 6.70 0.30 8.50
Regression tree ** 9.53 −0.42 12.1
Neural network 6.90 0.27 8.62

Categorical Algorithms Using
Bagged Tree

Bagged tree (random forest bag
with decision tree learners)

Bagged tree (random forest bag with
decision tree learners)

Ensemble method Bag AdaBoost
Learner type Decision tree Decision tree
Number of learners 30 50
Maximum number of splits none none
Principle component analysis (PCA) 20/25 20/25
Accuracy 52.8% (chance >1 out of 6–16.7%) 48.2% (chance >1 out of 6–16.7%)

Categorical Decision Tree

Maximum number of splits None
Split criterion Maximum Gini Reduction
Surrogate decision splits Off
PCA 20/25
Accuracy 44.2% (chance >1 out of 6–16.7%)

Categorical SVM

Kernel function Radial Basis Function Kernel
Box constraint level 6
Multi-class method 1 vs. rest
PCA 20/25
Accuracy 54.5% (chance >1 out of 6–16.7%)

Categorical kNN

Number of neighbors 20
Distance metric City block
Distance weight Squared inverse
PCA 20/25
Accuracy 51.9% (chance >1 out of 6–16.7%)

* minimum Akaike information criterion (AIC), mixed approach; ** If the correlation between the observed and
predicted values is negative, then R2 is likely to be a negative number, which in this case is true.
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Figure 2. The left panel shows a scatter plot comparing the predicted and real weights against the
weight index. The right panel shows a comparison between the predicted weights by kNN against the
real weights. In the left panel, the red dots are the predicted weights and the black squares are the
real weights.
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3.2. Categorical Prediction Models

Similar to the numerical prediction of weight, the categorical SVM algorithm had the best accuracy
for BMI classification (54.5% accuracy, note that a random prediction among six categories will have
an accuracy of 1/6 or 16.7%). Ensemble trees, using nearest neighbors as the learner type, were also able
to predict the BMI category with a 52.8% accuracy, closely followed by actual kNN (51.9% accuracy),
while decision tree models had the worst fit (44.2% accuracy). This is presented in Table 2, along with
the implementation details for the model. Figure 3 displays the confusion matrix, outlining the positive
predictive value, as well as the false discovery rate for the categorical kNN and SVM regression models
(the random forest and bagged tree results were very similar, data not shown). The normal weight BMI
category had the highest positive predictive value (69%), while the underweight, grade II, and grade
III obese categories had the lowest (0–1%) positive predictive values. The highest misclassifications
were also in these categories: 58% of grade I and II obese were misclassified as overweight, and 83% of
grade III obese were classified as overweight as well.
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3.3. Information Loss and Gain Model Evaluations

We evaluated the effect of elimination of each independent variable on the MAE, R2 and RMSE
values (Table 3). Removing different variables did not have a significant impact on the MAE, R2,
and RMSE values, and empirically speaking, these may be slightly worsened by the model fit.
Dietary fiber had the least impact on being removed from the model (MAE = 6.99 kg and R2 = 0.27),
while dietary protein had the highest impact and worsened the model fit (MAE = 7.09 kg and R2 = 0.25),
albeit these are all very modest changes. Removing dietary fat or carbohydrates did not impact the
model significantly.
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Table 3. Further exploration of the best-fit kNN model.

Variable
KNN SVM

MAE RMSE R2 MAE RMSE R2

With all independent variables 6.98 0.26 8.71 6.70 0.30 8.50
Dietary variables

Energy (kcal) 7.04 8.77 0.26 6.74 8.54 0.30
Protein (g) 7.09 8.82 0.25 6.79 8.60 0.29
Fat (g) 7.06 8.79 0.25 6.75 8.54 0.30
Alcohol (g) 7.01 8.75 0.26 6.77 8.58 0.29
Carbohydrates (g) 7.01 8.73 0.26 6.75 8.54 0.30
Sugar (g) 7.00 8.73 0.26 6.73 8.53 0.30
Dietary fiber (g) 6.99 8.72 0.27 6.74 8.53 0.30
Physical activity

Mild intensity (min) 6.98 8.71 0.27 6.73 8.52 0.30
Moderate intensity (min) 6.99 8.71 0.27 6.73 8.52 0.30
Vigorous intensity (min) 7.00 8.73 0.26 6.73 8.52 0.30
Blood Pressure (mmHg)

Systolic 7.03 8.76 0.26 6.76 8.56 0.29
Diastolic 7.01 8.73 0.26 6.72 8.51 0.30
Demographics

Age (y) 6.99 8.72 0.27 6.74 8.54 0.30
Height (cm) 7.20 8.94 0.23 6.98 8.78 0.26
Ethnicity 7.03 8.76 0.26 6.74 8.54 0.30
Marital Status 6.98 8.71 0.27 6.72 8.51 0.30
Socio Economic Score 7.00 8.73 0.26 6.73 8.52 0.30

3.4. Cluster Analysis

While global models (SVM and neural networks) performed modestly when predicting body
weight, local models, either by themselves (kNN) or within an ensemble (kNN as a learner for random
forest), performed just as well. However, neither were able to predict the body weight as closely
as could be expected. So, cluster analyses were carried out to see if they could improve the model
fit and prediction. A local unsupervised learning clustering tool (K-means clustering) was used
to identify ‘phenotypes’ within this population. The K-means cluster used the Calinski-Harabasz
score, as mentioned earlier. We found that an increase in the number of clusters decreased both the
Calinski-Harabasz score and the error. So, we chose to increase the number of clusters, so long as
the drop in error matched the drop in the Calinski-Harabasz score. After 10 clusters, the drop in the
Calinski-Harabasz score was not compensated by the drop in error, so we consequently chose to use
10 clusters (Figure 4A).

Once the clusters were identified, kNN was used again to predict body weight within each cluster
(kNN and SVM performed similarly, and the risk of overfitting is considerably less with kNN, owing to
its simplicity, so the data presented are for kNN). A summary of fit characteristics associated with these
clusters is given in Table 4. It is important to note that once the clusters were formed, kNN performed
significantly better within each cluster at predicting body weight using the same input variables (MAE
= 1.1 kg), rather than using the population as a whole (MAE = 6.98 kg). The variance within each
cluster is smaller, which makes the r values smaller, but the prediction more accurate.



Nutrients 2019, 11, 1681 13 of 19

Nutrients 2019, 11, x FOR PEER REVIEW 13 of 18 

 

Table 4. Clusters and their performance, relative to the fit of the complete data model and classifier 

outputs. 

Cluster Number 
Average Body Weight (kg)  

Mean ± SD 

Cluster Size  

(n) 

p-Value for  

Correlation between  

Predicted vs. Actual 

All clusters  68.7 ± 10.1 48,508 0.07 

Cluster number 1 54.4 ± 1.4 3613 0.20 

Cluster number 2 75.8 ± 1.4 4761 0.09 

Cluster number 3 67.5 ± 1.6 5199 0.42 

Cluster number 4 * 80.6 ± 1.5 2573 <0.01 

Cluster number 5 * 62.8 ± 1.1 3611 <0.01 

Cluster number 6 * 71.5 ± 1.3 4219 0.05 

Cluster number 7 * 91.6 ± 1.9 3518 <0.01 

Cluster number 8 * 66.7 ± 1.3 2884 0.02 

Cluster number 9 58.8 ± 1.2 2112 0.54 

Cluster number 10 85.7 ± 1.6 1465 0.07 

* clusters with significant correlations between predicted and actual body weight. 

3.5. Phenotyping Using Classifier 

The results from the classifier, used to identify which cluster each new case fitted into from the 

test set, are presented in Figure 4B. This classifier was trained as follows: For each cluster, a separate 

one-class classifier was developed (i.e., this will say `yes’ for only one-class and `no’ to all others); 

The training data was a subset of the entire data used in clustering. Training set for one-class classifier 

for cluster k only contained those data points whose error was <3.5kg when the KNN of cluster k was 

used to predict its weight. (We varied the error value as a parameter, which is shown in Figure 4B.  

For approximately 2000 participants, the cluster classifier was able to accurately place them within 

their body weight cluster with a MAE of <5 kg. The higher the permissible error in prediction, the 

more successful was the prediction. If it was lower, the success rate was lower, but the error 

associated with the prediction was lower.  

 

Figure 4. (A) Plotting the MAE (left y-axis, red line) and Calinski-Harabasz score (right y-axis, blue 

line) against number of clusters (x-axis). After 10 clusters, the reduction in MAE and the score tapers 

off, suggesting that could be a good number of clusters for further evaluation. The difference in MAE 

and Calinski-Harabasz score between 10 clusters and 40 clusters is <0.5 kg and ~10,000 points, which 

is much less compared to 2–10 clusters (from 4.3 kg and 50,000 points). (B) Plotting the change in MAE 

(y axis) and the percentage of predicted test subjects (x-axis). The red line represents the MAE for the 

combined global and local models and the blue line represents the MAE of only the local model. The 

different percentages cases that were predicted were obtained for different conditions (local and local 

and global together) by changing the criteria for the training set of the classifier that predicts the 

cluster of each case. 

Figure 4. (A) Plotting the MAE (left y-axis, red line) and Calinski-Harabasz score (right y-axis, blue line)
against number of clusters (x-axis). After 10 clusters, the reduction in MAE and the score tapers off,
suggesting that could be a good number of clusters for further evaluation. The difference in MAE and
Calinski-Harabasz score between 10 clusters and 40 clusters is <0.5 kg and ~10,000 points, which is
much less compared to 2–10 clusters (from 4.3 kg and 50,000 points). (B) Plotting the change in MAE
(y axis) and the percentage of predicted test subjects (x-axis). The red line represents the MAE for
the combined global and local models and the blue line represents the MAE of only the local model.
The different percentages cases that were predicted were obtained for different conditions (local and
local and global together) by changing the criteria for the training set of the classifier that predicts the
cluster of each case.

Table 4. Clusters and their performance, relative to the fit of the complete data model and
classifier outputs.

Cluster Number Average Body Weight (kg)
Mean ± SD

Cluster Size
(n)

p-Value for
Correlation between
Predicted vs. Actual

All clusters 68.7 ± 10.1 48,508 0.07
Cluster number 1 54.4 ± 1.4 3613 0.20
Cluster number 2 75.8 ± 1.4 4761 0.09
Cluster number 3 67.5 ± 1.6 5199 0.42

Cluster number 4 * 80.6 ± 1.5 2573 <0.01
Cluster number 5 * 62.8 ± 1.1 3611 <0.01
Cluster number 6 * 71.5 ± 1.3 4219 0.05
Cluster number 7 * 91.6 ± 1.9 3518 <0.01
Cluster number 8 * 66.7 ± 1.3 2884 0.02
Cluster number 9 58.8 ± 1.2 2112 0.54
Cluster number 10 85.7 ± 1.6 1465 0.07

* clusters with significant correlations between predicted and actual body weight.

3.5. Phenotyping Using Classifier

The results from the classifier, used to identify which cluster each new case fitted into from the
test set, are presented in Figure 4B. This classifier was trained as follows: For each cluster, a separate
one-class classifier was developed (i.e., this will say ‘yes’ for only one-class and ‘no’ to all others);
The training data was a subset of the entire data used in clustering. Training set for one-class classifier
for cluster k only contained those data points whose error was <3.5kg when the KNN of cluster k was
used to predict its weight. (We varied the error value as a parameter, which is shown in Figure 4B.
For approximately 2000 participants, the cluster classifier was able to accurately place them within their
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body weight cluster with a MAE of <5 kg. The higher the permissible error in prediction, the more
successful was the prediction. If it was lower, the success rate was lower, but the error associated with
the prediction was lower.

Step-wise multiple regression (AIC, mixed) was used to determine which macronutrient and
physical activity variables had a significant relationship with body weight, as well as their directionality
within each cluster. The variables/parameters listed were significantly associated (p < 0.05) with
the outcome variable (body weight), after false discovery rate (FDR) correction. These results are
summarized in Figure 5. Clusters 2, 7, and 9 were not identified to have predictors that were
macronutrients or physical activity. Cluster 3 indicated a strong positive association between body
weight and protein. Clusters 1, 6, and 8 displayed strong associations between dietary carbohydrates
and body weight, and while there was an inverse association in cluster 1 (the lowest body weight),
there was a positive association for clusters 6 and 8. Cluster 5 showed a strong positive association
between dietary sugar and body weight, but not total carbohydrates. Dietary fiber was inversely
associated with body weight in cluster 8, and vigorous intensity physical activity was positively
associated. Cluster 4 displayed a positive association between body weight and dietary fat.

Nutrients 2019, 11, x FOR PEER REVIEW 14 of 18 

 

Step-wise multiple regression (AIC, mixed) was used to determine which macronutrient and 

physical activity variables had a significant relationship with body weight, as well as their 

directionality within each cluster. The variables/parameters listed were significantly associated (p < 

0.05) with the outcome variable (body weight), after false discovery rate (FDR) correction. These 

results are summarized in Figure 5. Clusters 2, 7, and 9 were not identified to have predictors that 

were macronutrients or physical activity. Cluster 3 indicated a strong positive association between 

body weight and protein. Clusters 1, 6, and 8 displayed strong associations between dietary 

carbohydrates and body weight, and while there was an inverse association in cluster 1 (the lowest 

body weight), there was a positive association for clusters 6 and 8. Cluster 5 showed a strong positive 

association between dietary sugar and body weight, but not total carbohydrates. Dietary fiber was 

inversely associated with body weight in cluster 8, and vigorous intensity physical activity was 

positively associated. Cluster 4 displayed a positive association between body weight and dietary fat.  

 

Figure 5. Clusters and their BMI classes, along with the number in each cluster. The inset table shows 

that stepwise multiple regression analysis identified the strongest predictors of body weight (kg) 

based on macronutrient and exercise subcomponents. Positive and negative signs indicate the 

directionality of association. 

4. Discussion 

To our knowledge, this is the first effort to predict current body weight using machine learning 

tools from self-reported dietary macronutrient and physical activity data, adjusting for 

sociodemographics and disease states. Our effort was focused on using modeling algorithms as both 

predictive and inferential tools. This study identified that SVM regression was the best suited tool for 

this task, closely followed by neural network and the k-nearest neighbor algorithms. While the 

overall data model showed a reasonable fit and predictive ability, clustering produced relatively 

superior fit statistics. 

The primary rationale for predicting current body weight based on current macronutrient intake 

is a crucial first step for being able to accurately predict body weight change. Without understanding 

the dynamics of how self-reported macronutrient intake predicts present body weight, going on to 

understand how a change in dietary intake would affect body weight becomes unwieldy. 

Furthermore, this is the first time the feasibility of using self-reported data to accurately predict body 

weight was evaluated, with modest success.  

SVMs and neural networks are very powerful methods and are capable of learning in most cases 

[41,42]. The modest fit seen in this data points to the fact that there is not a global function that can 

be learned easily, likely owing to a combination of variability, as well as noise (i.e., errors in 

Figure 5. Clusters and their BMI classes, along with the number in each cluster. The inset table shows
that stepwise multiple regression analysis identified the strongest predictors of body weight (kg) based
on macronutrient and exercise subcomponents. Positive and negative signs indicate the directionality
of association.

4. Discussion

To our knowledge, this is the first effort to predict current body weight using machine learning tools
from self-reported dietary macronutrient and physical activity data, adjusting for sociodemographics
and disease states. Our effort was focused on using modeling algorithms as both predictive and
inferential tools. This study identified that SVM regression was the best suited tool for this task,
closely followed by neural network and the k-nearest neighbor algorithms. While the overall data model
showed a reasonable fit and predictive ability, clustering produced relatively superior fit statistics.

The primary rationale for predicting current body weight based on current macronutrient intake
is a crucial first step for being able to accurately predict body weight change. Without understanding
the dynamics of how self-reported macronutrient intake predicts present body weight, going on to
understand how a change in dietary intake would affect body weight becomes unwieldy. Furthermore,
this is the first time the feasibility of using self-reported data to accurately predict body weight was
evaluated, with modest success.
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SVMs and neural networks are very powerful methods and are capable of learning in most
cases [41,42]. The modest fit seen in this data points to the fact that there is not a global function
that can be learned easily, likely owing to a combination of variability, as well as noise (i.e., errors in
reporting). Further, in cases where powerful methods such as SVMs and neural networks perform
comparable to simple ones (such as kNN), data inherently satisfies the assumptions of the simpler
method. This is comparable to an instance where cubic regression performs just as effectively as
linear regression, suggesting the relationship is likely linear. The simple method that works well
is kNN, which groups data points into neighborhoods, suggesting that the data contains many
categories of ‘associations’ between independent variables and weight. The method is a local model
that forms a simple interpolative model around the neighborhood of each data point. It is a type
of non-parametric modeling, where a single predefined model from a predefined template is not
expected to fit the entire dataset. Parametric model fitting algorithms assume a predefined model
template and model fitting involves determining the parameters of the model template that best fits the
data [43]. For instance, linear regression assumes the model to have the template of a linear equation,
attempting to find the coefficients of the equation. Non-parametric models do not assume a predefined
model, but instead attempt to derive both the model structure and the parameters from the data.
These models are particularly useful when the independent variables do not individually determine
the shape of the regression. Many machine learning algorithms, such as decision trees and neural
networks, are non-parametric (where the search for network structure is also included as part of the
model fitting). The kNN method has the advantage of being simple and transparent in its working.
Complex models such as SVM and neural network models are prone to overfitting, and when the
performance increase is not significant, these models should not be chosen over a simpler model such
as the kNN model.

For categorical prediction, the skew in the confusion matrices, whereby most people are predicted
to be normal weight or overweight, suggests that either (a) there were not enough cases in the other
categories (obese I, II or III) in the final dataset, such that it was difficult to build a modest model to
predict these groups well, or (b) dietary and physical activity reports largely have people believe that
they are eating similar to “normal weight” or “overweight” categories. A possible explanation for
the latter (b) is that people in higher BMI classes simply underreport, either because they believe that
to be true, or because they are affected by social bias, where they say what they think others want to
hear. A categorical prediction, especially for at-risk groups (i.e., post-menopausal women that are
overweight or obese), may not be effective unless other algorithms or protocols are developed that can
handle the noise in self-reported data. The numerical prediction of body weight using macronutrients
may be the approach to use based on these results, as well as the first step towards predicting body
weight change using dietary macronutrients. Horner et al. [44] reported that errors associated with the
WHI OS dietary data were not associated with BMI, which is in contrast to what we have found here.
However, they do report an overall 20.8% instance of underreporting, which is consistent with our
findings as well.

Clustering improved the prediction of body weight using self-reported data. The data available
for women in clusters that were in some overweight or obese categories were not adequate to
build regression models describing their macronutrient intakes. A majority of the clusters indicated
a positive association between dietary sugar or carbohydrates and body weight, which is expected.
One overweight BMI cluster indicated a positive association between dietary fat and body weight,
and another between protein and body weight. A simple conclusion can be that women in these
clusters are consuming more of these macronutrients and are therefore, linked to their body weight
status. Alternately, these are suggestive of macronutrient “vulnerabilities” especially in the overweight
clusters. However, such a speculation would require genetic and other metabolic measurements, such as
substrate oxidation following individual macronutrient consumption as support. Clusters that were
unable to be represented by regression models suggest a lack of sufficient data to match the variance
exhibited, or, similar to the BMI categorical predictions, severe underreporting in these clusters/body
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weight categories, rendering the models unfit. Another perspective to consider is that ML algorithms
are designed to minimize prediction error. However, they can be modified to minimize predictor
(independent variable) dimensionality, to better predict classes of outcomes, including underweight
and obese, presenting the opportunity for future projects. We also had some success in predicting the
cluster each new case would fall into using a classifier, but not well enough to be a reliable predictor.
This suggests that either the model needs more independent variables or that the quality of data is
poor or noisy, and both of these are likely true.

A benefit of using epidemiological data for the proposed objectives is the large sample size,
which is directly in contrast with earlier prediction models, such as the Harris–Benedict model that
used 136 adult males and 103 adult females [7]. However, a primary challenge/limitation we face
while answering this question pertains to data obtained using self-reports, such as the food frequency
questionnaire, as well as self-reported physical activity, which are memory based and highly prone to
bias [45]. Mobile health apps, epidemiological studies and large health-tech companies do use such
data, even though their accuracy is controversial [46,47].

Poor quality data can hinder model building, even while using sophisticated tools and approaches
to model outcomes. The model is only as good as the data. Specifically, energy intake from
food frequency and self-reported data are notorious for producing implausible reports, and several
approaches to potentially address this have been presented [17]. The approach presented here
incorporates these efforts, to ensure the best effort in achieving the objectives stated. This is an exercise
in understanding if the increased power due to a larger sample size, along with sophisticated modeling
tools and approaches, can overcome shortcomings in data. It may be that controlled experiments
such as the Harris–Benedict are the only way to achieve true energy balance predictions. However,
at the population level, the approaches presented in this manuscript may provide us different,
otherwise crucial insights as well.

In conclusion, predicting body weight using self-reported dietary, physical activity, demographic,
and disease state data is a means to identify “phenotypes” that have different associations between
these independent and outcome variables. However, the error associated with such predictions and
their inferences have to be carefully considered before using them in applications. An application
of this developed approach is use in ongoing epidemiological trials to detect underreporting in
self-reported dietary data. Another application is to determine which dietary macronutrient or physical
activity component is likely to affect postmenopausal women the most, in a personalized manner,
providing an early warning system to watch their dietary intake or physical activity behavior. A recent
review paper [48] suggested a framework for personalizing nutrition approaches. Our report is a first
step in (a) evaluating a framework for personalizing nutrition using population data and (b) evaluating
relationships between dietary caloric variables (macronutrients) and body weight, suggestive of different
phenotypes likely responding differently to dietary carbohydrates, fats, or proteins. This suggests
that such frameworks/pipelines may be useful to personalize ideal dietary intake levels, beginning at
the population level. Multi-center controlled feeding trials, providing an appropriate diet to the
appropriate clusters will need to be done in order to evaluate the predictive ability of these models.
Further, an ideal future follow-up study would be to use these tools to predict change in body weight
using these variables, following a similar approach as presented here. The promise of using machine
learning tools to achieve nutritional phenotyping needs to be explored further to set up standard
paradigms based on the type of data, origin of data and the researchers’ hypothesis, among several
other factors.
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