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Abstract: Hyperlipidemia is associated with metabolic disorders, but the detailed mechanisms and 
related interventions remain largely unclear. As a functional food in Asian diets, Herba houttuyniae 
has been reported to have beneficial effects on health. The present research was to investigate the 
protective effects of Herba houttuyniae aqueous extract (HAE) on hyperlipidemia-induced liver and 
heart impairments and its potential mechanisms. Male C57BL/6J mice were administered with 200 
or 400 mg/kg/day HAE for 9 days, followed by intraperitoneal injection with 0.5 g/kg poloxamer 
407 to induce acute hyperlipidemia. HAE treatment significantly attenuated excessive serum lipids 
and tissue damage markers, prevented hepatic lipid deposition, improved cardiac remodeling, and 
ameliorated hepatic and cardiac oxidative stress induced by hyperlipidemia. More importantly, NF-
E2 related factor (Nrf2)-mediated antioxidant and peroxisome proliferator-activated receptor 
gamma coactivator-1 alpha (PGC-1α)-mediated mitochondrial biogenesis pathways as well as 
mitochondrial complex activities were downregulated in the hyperlipidemic mouse livers and 
hearts, which may be attributable to the loss of adenosine monophosphate (AMP)-activated protein 
kinase (AMPK) activity: all of these changes were reversed by HAE supplementation. Our findings 
link the AMPK/PGC-1α/Nrf2 cascade to hyperlipidemia-induced liver and heart impairments and 
demonstrate the protective effect of HAE as an AMPK activator in the prevention of hyperlipidemia-
related diseases. 

Keywords: Herba houttuyniae; hyperlipidemia; AMP-activated protein kinase; mitochondrial 
biogenesis; oxidative stress  

 

1. Introduction 

Metabolic syndrome (MS) has become one of the major diseases affecting human health. 
Hyperlipidemia, hyperglycemia, and hypertension are considered to be major symptoms and central 
risk factors of MS [1–3]. Hyperlipidemia is characterized by excessive lipids (mainly triglycerides, 
cholesterol, and free fatty acids) in the bloodstream [4]. Previous studies have suggested that 
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hyperlipidemia, which is closely related to the occurrence of metabolic abnormalities such as fatty 
liver disease [5], diabetes [6], and cardiovascular diseases [2,4], causes damage to a variety of tissues.  

Although the detailed mechanisms by which hyperlipidemia contributes to metabolic diseases 
remain unclear, evidence has suggested that, due to hyperlipidemia, excessive triglycerides (TG) and 
cholesterol (TC) are deposited in blood vessels and circulate to other organs, possibly leading to lipid 
metabolic disorders and tissue impairment and eventually increasing the risk of MS [7]. Apart from 
excessive lipid deposition, oxidative stress [8,9] and mitochondrial dysfunction [10,11] have also been 
demonstrated to be closely linked to hyperlipidemia-related tissue impairment. A clinical study 
revealed that mitochondrial DNA (mtDNA) copy numbers are significantly reduced in patients with 
hyperlipidemia [11]. Moreover, investigations have shown that excessive free fatty acids (FFAs) can 
amplify reactive oxygen species (ROS) generation, leading to increased oxidative stress and 
decreased mitochondrial oxidative capacity, which eventually causes morphological and functional 
changes in tissues [8,12].  

Adenosine monophosphate (AMP)-activated protein kinase (AMPK) has become an attractive 
target for many diseases due to its role in regulating energy metabolism [13–15]. AMPK deficiency 
has been reported to induce cardiac contractile dysfunction and dilated cardiomyopathy [16], and 
the loss of AMPK activity can increase hepatic steatosis and promote fatty liver disease [15,17]. In 
addition to modulating lipogenesis and peroxisome proliferator-activated receptor gamma 
coactivator-1 alpha (PGC-1α)-mediated mitochondrial biogenesis [15,18], both recent studies [19,20] 
and our studies [21,22] have revealed that AMPK can also regulate oxidative stress through NF-E2 
related factor (Nrf2)-mediated phase II antioxidant enzymes. Evidence has also suggested a 
correlation between hyperlipidemia and the AMPK pathway in the vascular system [23,24]. We 
observed obese mice or rats with hyperlipidemia exhibit decreased AMPK activity accompanied by 
mitochondrial dysfunction and oxidative stress in various organs [22,25,26]. However, most previous 
studies have been based on a complex and indirect model of hyperlipidemia, and the mechanisms of 
hyperlipidemia-induced tissue impairment remain unclear, especially in the early stage of the 
disease. Thus, understanding of the effects of AMPK-regulated mitochondrial biogenesis and 
oxidative stress in a direct model of hyperlipidemia is limited and requires further elucidation. Here, 
we used poloxamer 407, a nonionic surfactant that has been reported to cause hyperlipidemia in 
animals [27], to investigate the regulatory role of AMPK and its related downstream pathways in the 
liver and heart of a mouse model of acute hyperlipidemia.  

Houttuynia cordata Thunb, also known as Herba houttuyniae or Houttuyniae herba, is not only a 
widely distributed medicinal plant but also a functional food with important biological actions, 
mainly including anti-inflammatory [28], antiviral [29], antioxidant [30], and antitumor [31] effects. 
Recently, a few studies have shown that Herba houttuyniae may also play a protective role in diabetes 
because of its anti-inflammatory activity [30,32]. However, the beneficial effects of Herba houttuyniae 
on hyperlipidemia-associated abnormalities still unclear. In the current research, we explored the 
detailed mechanism of acute hyperlipidemia-induced metabolic disorders and tissue impairment and 
the potential protective effects of Herba houttuyniae aqueous extract (HAE), with a focus on the 
AMPK/PGC-1α/Nrf2 cascade. 

2. Materials and Methods  

2.1. Chemicals 

Antibodies against β-actin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, #5174), fatty 
acid synthase (FAS, #3180), acetyl-coenzyme A carboxylase 1 (ACC1, #4190), p-AMPK (#2535), and 
AMPK (#2532) were acquired from Cell Signaling Technology (Danvers, MA, USA). Antibodies 
against NAD(P)H/quinone oxidoreductase (NQO1, #sc-376023), heme oxygenase-1 (HO-1, #sc-
390991), NF-E2 related factor (Nrf2, #sc-13032), carnitine palmitoyltransferase-1L (CPT1L, #sc -
377294), manganese-containing superoxide dismutase (MnSOD, #sc-137254), mitofusin-1 (Mfn1, #sc-
50330), and mitofusin-2 (Mfn2, #sc-50331) were acquired from Santa Cruz Biotechnology (Santa Cruz, 
CA, USA). Antibodies against complexes I (39 kDa, #459130), II (30 kDa, #459230), III (51 kDa, 
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#459140), IV (40 kDa, #459600), and V (55 kDa, #459240) were acquired from Invitrogen (Carlsbad, 
CA, USA). Antibodies against optic atrophy 1 (OPA1, #612607) and dynamin-related protein 1 (Drp1, 
#611113) were acquired from BD (Franklin Lakes, NJ, USA). An antibody against peroxisome 
proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α, #TA319007) was acquired from 
OriGene Technology (Rockville, MD, USA). Poloxamer 407 (#P2164030) was acquired from Sigma 
Aldrich, St. Louis, USA. Herba houttuyniae aqueous extract (HAE, catalog, BLT20170412) was acquired 
from Xi'an Brilliant Chem Co., Ltd. (Xi’an, Shaanxi, China). Briefly, the aerial part of fresh Herba 
houttuyniae was washed and dried in a constant temperature-drying box. After being crushed into 
10-mm fragments, distilled water was added according to the liquid-to-material ratio of 20:1, 
followed by reflux extraction at 90 ℃ for 2 h. The filtrates were dried under vacuum and passed 
through an 80-mesh sieve to obtain the HAE powder. The active chemical constituents in HAE mainly 
include flavonoids, alkaloids, organic acids, polyphenols, and polysaccharides [28–30]. 

2.2. Animals and Treatment 

Male C57BL/6J mice at the age of eight weeks old were acquired from Vital River Laboratory 
Animal Technology Co., Ltd (Beijing, China). The mice were divided into four groups at random (n 
= 8 in each group): the control group (Con), the poloxamer 407 (P407)-treated group (P407), the P407-
treated group with a daily oral gavage of a low-dose HAE (200 mg/kg/day) (P407 + HAE), and a high-
dose HAE (400 mg/kg/day) group. An HAE gavage was administered from day 1 to day 9. On day 
10, the mice were intraperitoneally injected with P407 (0.5 g/kg) to cause acute hyperlipidemia for 
exactly 24 h before sacrifice, and the mice in the Con group were injected with saline. All the 
procedures were performed in accordance with the National Institutes of Health guide for the care 
and use of laboratory animals (NIH Publications No. 8023, revised 1978) and approved by the Animal 
Care and Use Committee of the School of Life Science and Technology, Xi’an Jiaotong University 
(2019–0012).  

2.3. Biochemical Analysis 

Tissue homogenate and serum samples were obtained according to the previous method [23]. 
Reduced glutathione (GSH), oxydized glutathione (GSSG), triglyceride (TG), and total cholesterol 
(TC) contents as well as glutathione S-transferase (GST), glutathione peroxidase (GPX), γ-
glutamylcysteine synthetase (γ-GCS), and total superoxide dismutase (SOD) activities were analyzed 
by using detection kits (Jiancheng, Nanjing, China). Adenosine triphosphate (ATP) level was 
determined by using a bioluminescent kit (Sigma Aldrich, St. Louis, USA) [33]. The serum contents 
of free fatty acids (FFAs), malondialdehyde (MDA), and cholesterol low-density lipoprotein (c-LDL) 
and the activity of lactate dehydrogenase (LDH) and alanine aminotransferase (ALT) were 
determined by using detection kits (RD Systems, Shanghai, China). 

2.4. Histological Analysis 

Liver and heart tissues were placed in 4% paraformaldehyde and sliced 3–4 μm thick. Then the 
tissues were stained with hematoxylin and eosin (H&E) and visualized by an Olympus BX71 
microscope.  

2.5. Mitochondrial Complex Activity Analysis 

Fresh liver and heart mitochondria were isolated using a previous method [25]. Mitochondrial 
NADH–ubiquinone reductase (complex I), succinate–CoQ oxidoreductase (complex II), CoQ–
cytochrome c reductase (complex III), cytochrome c oxidase (complex IV), and ATP synthase 
(complex V) activities were detected as previously described [25]. 

2.6. Western Blot  

Liver and heart proteins were extracted and determined using a BCA Protein Assay kit (Pierce, 
Rockford, IL, USA) as previously described [25]. Then, 10–20 μg of the extracted protein samples 
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were subjected to SDS-polyacrylamide gel electrophoresis (SDS-PAGE), transferred to nitrocellulose 
membranes, and blocked with 5% nonfat milk. Then the blocked membranes were incubated with 
primary antibodies overnight followed by horseradish peroxidase-conjugated secondary antibodies 
for 1 h, developed by using an ECL detection kit (Pierce, Rockford, IL, USA) and quantified by 
scanning densitometry. As loading controls, the expression of each protein was adjusted to that of β-
actin for the liver or GAPDH for the heart. 

2.7. Protein Carbonylation Assay 

Protein carbonyls were analyzed by using an Oxyblot protein oxidation detection kit (Cell 
Biolabs, San Diego, CA, USA). Equal amounts of the protein samples were subjected to SDS-PAGE 
followed by staining with Coomassie brilliant blue as a loading control.  

2.8. Real-Time PCR 

Liver and heart total RNA was extracted by using a TRIzol reagent (Invitrogen, Carlsbad, CA, 
USA), reverse-transcribed into cDNA by using an RT-PCR kit (TaKaRa, Dalian, China), and 
quantified by real-time PCR with the primers presented in Table S1. Total DNA was extracted by 
using a QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) and quantified by real-time PCR with 
mitochondrial D-loop primers for mtDNA copy number analysis. The 2-ΔΔCt method was adopted 
to analyze both the mRNA and DNA results, and 18S rRNA was used as a housekeeping gene. 

2.9. Echocardiography 

Cardiac ultrasound was determined by using a Visual Sonics Vevo 770 Imaging System. The 
diastolic interventricular septum thickness (IVSd), systolic interventricular septum thickness (IVSs), 
left ventricle (LV) diastolic internal diameter (LVIDd), LV systolic internal diameter (LVIDs), LV 
diastolic posterior wall thickness (LVPWd), and LV systolic posterior wall thickness (LVPWs) were 
recorded. LV mass, LV diastolic volume (LV-Vol-d), LV systolic volume (LV-Vol-s), LV ejection 
fraction (EF), and fractional shortening (FS) were calculated according to the standard formulae. 

2.10. Statistical Analysis 

One-way ANOVA was used to analyze the data in all the experiments, and p < 0.05 was regarded 
as statistically significant. Data are presented as the mean ± S.E.M. 

3. Results 

3.1. HAE Improved Hyperlipidemia and Ameliorated Hepatic Lipid Metabolic Disorders 

As shown in Figure 1A,B, P407 treatment markedly increased the serum TG and TC contents by 
more than 20-fold and 4-fold, respectively, indicating the successful establishment of a mouse model 
of hyperlipidemia. Treatment with 200 mg/kg/day HAE effectively reduced the serum TG and TC 
contents, while 400 mg/kg/day of HAE had no obvious effects on either TG or TC. Thus, we only 
chose 200 mg/kg/day HAE treatment in the subsequent experiments. The levels of serum c-LDL, 
FFAs, and MDA and the activity of serum LDH were also noticeably increased by P407, and the HAE 
treatment significantly lowered c-LDL, FFA, and MDA content as well as LDH activity (Figure 1C–
F).  

Previous studies have indicated that hyperlipidemia may take part in the development of fatty 
liver disease [5]. As illustrated in Figure 1H, the P407 group exhibited obvious lipid deposition, and 
HAE treatment restored the liver morphology to that of the normal controls. Consistently, hepatic 
TG and TC levels as well as serum ALT activity exhibited similar results to those of H&E staining 
(Figure 1G,I,J). The levels of ACC1 and FAS, key regulators of fatty acid synthesis, were markedly 
increased in the P407 group and were significantly decreased by the HAE treatment. The expression 
of CPT1L, a fatty acid transporter, was decreased in the P407 group, but HAE treatment failed to 
restore its expression (Figure 1K). 



Nutrients 2020, 12, 164 5 of 14 

 

 

 
Figure 1. Herba houttuyniae aqueous extract (HAE) attenuated serum hyperlipidemia and ameliorated 
hepatic lipid metabolic disorders. (A) Serum TG content. (B) Serum TC level. (C) Serum c-LDL level. 
(D) Serum FFA level. (E) Serum LDH activity. (F) Serum MDA level. (G) Serum ALT activity. (H) 
H&E staining of liver tissue. (I) Liver TG level. (J) Liver TC level. (K) Liver FAS, ACC1, and CPT1L 
protein expression (left, western blot image; right, statistical analysis). The values are the means ± 
S.E.M. (n = 8); * p < 0.05; ** p < 0.01. 

3.2. HAE Improved Cardiac Remodeling 

Evidence has indicated that the heart is another major organ damaged by excessive lipids [2,4]. 
Therefore, echocardiograms were recorded to detect the regulatory role of P407 and HAE in cardiac 
function. As shown in Figure 2A–H, P407 induced significant increases in IVSd, IVSs, and LVPWd 
and decreases in LVIDd, LVIDs, LV-Vol-d, and LV-Vol-s; and HAE treatment effectively decreased 
IVSd, IVSs, and LVPWd but failed to restore LVIDd, LVIDs, LV-Vol-d, and LV-Vol-s. However, 
neither P407 nor HAE had obvious effects on EF, FS, LVPWs, or LV mass (Figure S1). The mRNA 
levels of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and skeletal α-actin 
(ACTA1), key markers of cardiac hypertrophy and injury, were significantly upregulated in the P407 
group and effectively reduced by HAE supplementation (Figure 2I). These results suggest that HAE 
is capable of improving cardiac remodeling induced by P407. 
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Figure 2. HAE improved cardiac remodeling. Con, control; P407, poloxamer 407; P407 + HAE, 
poloxamer 407 plus HAE at 200 mg/kg/day. (A) Echocardiogram images and quantitative analyses of 
(B) IVSd, (C) IVSs, (D) LVPWd, (E) LVIDd, (F) LVIDs, (G) LV-Vol-d, and (H) LV-Vol-s. (I) Heart 
mRNA contents of ANP, BNP, and ACTA1. The values are the means ± S.E.M. (n =8); * p < 0.05; ** p < 
0.01. 

3.3. HAE Activated AMPK in Both the Liver and Heart 

We next determined the involvement of AMPK in hyperlipidemic mouse livers and hearts. Our 
results showed that P407 induced obvious declines in the p-AMPK level as well as in the p-
AMPK/AMPK ratio in both the liver and heart (Figure 3A–F). HAE treatment significantly recovered 
both the p-AMPK level and the p-AMPK/AMPK ratio in the livers and hearts of hyperlipidemic mice 
(Figure 3A–F), suggesting a significant activation of AMPK by HAE. 
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Figure 3. HAE activated the AMPK pathway in mice livers and hearts. Con, control; P407, poloxamer 
407; P407 + HAE, poloxamer 407 plus HAE at 200 mg/kg/day. Total proteins were prepared from mice 
livers and hearts, and p-AMPK as well as AMPK protein contents were determined by western blot. 
(A) Western blot image, (B) the statistical analysis of p-AMPK, and (C) the ratio of p-AMPK/AMPK 
in mice livers. (D) Western blot image, (E) the statistical analysis of p-AMPK, and (F) the ratio of p-
AMPK/AMPK in mice hearts. The values are the means ± S.E.M. (n = 8); * p < 0.05; ** p < 0.01. 

3.4. HAE Attenuated Oxidative Stress by Activating the Phase II Enzyme Pathway  

To determine whether HAE could improve hyperlipidemia-induced oxidative stress, a protein 
carbonyl assay was adopted to detect protein oxidative status. Our results showed that the carbonyl 
protein contents in both the livers and hearts of the P407 group were obviously increased compared 
to those of the control group (Figure 4A,D). HAE supplementation effectively inhibited the elevation 
of protein carbonyl levels in both the liver and heart. The phase II pathway is reported to play a vitally 
important role in fighting oxidative stress [34]. Our previous study elucidated that AMPK was able 
to regulate phase II enzyme expression [21,22]. Thus, we next evaluated the protein expression of 
phase II enzymes in the liver and heart. As shown in Figure 4G,H, P407 significantly decreased Nrf2, 
NQO1, HO-1, and MnSOD protein contents in the liver and decreased Nrf2 and NQO1 protein 
contents in the heart, whereas HAE treatment effectively increased all four protein levels in both the 
liver and heart compared to the P407 group (Figure 4G,H). P407 treatment also reduced total SOD 
and γ-GCS activity in the liver and total SOD activity in the heart, and HAE treatment sufficiently 
improved the total SOD and GST activity in both the liver and heart and increased γ-GCS activity in 
the liver as well as GPX activity in the heart (Figure 4B,E). Consistently, P407 obviously reduced the 
GSH/GSSG ratio in both the liver and heart, and HAE treatment markedly increased the GSH/GSSG 
ratio in the liver but failed to restore it in the heart (Figure 4C,F). Taken together, all of these results 
indicate that HAE can upregulate phase II enzymes and attenuate oxidative damage in both the livers 
and hearts of mice treated with P407. 

 
Figure 4. HAE ameliorated oxidative stress by upregulating the phase II enzyme pathway in mice 
livers and hearts. Con, control; P407, poloxamer 407; P407 + HAE, poloxamer 407 plus HAE at 200 
mg/kg/day. (A) Liver protein carbonyl content (left, western blot image; right, statistical analysis). (B) 
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Liver SOD, GST, GPX, and γ-GCS activities. (C) The liver GSH/GSSG ratio. (D) Heart protein carbonyl 
content (left, western blot image; right, statistical analysis). (E) Heart SOD, GST, GPX, and γ-GCS 
activities. (F) The heart GSH/GSSG ratio. (G) Liver Nrf2, NQO1, HO1, and MnSOD protein expression 
(left, western blot image; right, statistical analysis). (H) Heart Nrf2, NQO1, HO1, and MnSOD protein 
expression (left, western blot image; right, statistical analysis). The values are the means ± S.E.M. (n = 
8); * p < 0.05; ** p < 0.01. 

3.5. HAE Promoted Mitochondrial Biogenesis and Mitochondrial Complex Activity 

Mitochondria are vitally important organelles in regulating cellular metabolism. It has been 
reported that AMPK can promote mitochondrial biogenesis via the activation of PGC-1α [15,21,22]. 
Thus, we next investigated whether mitochondrial biogenesis is affected in the livers and hearts of 
hyperlipidemic mice. As shown in Figure 5A,D, we found the downregulated protein expression of 
PGC-1α and mitochondrial complexes I, II, and IV in the liver as well as of PGC-1α and mitochondrial 
complexes II and V in the heart of P407-treated mice, and the levels of most of these proteins were 
sufficiently improved by HAE treatment except for the level of complex II in the liver. Moreover, 
HAE treatment improved complex V activity in the liver, even though the reduction of complex V 
activity induced by P407 was not obvious (Figure 5A). We also found that P407 significantly reduced 
the mtDNA copy number in the heart and lowered ATP production in the liver. HAE treatment 
effectively increased both indicators in the liver and heart, even though the mtDNA copy number in 
the liver and ATP production in the heart were not obviously changed in the P407 group (Figure 5 
B,C,E,F).  

 
Figure 5. HAE activated the mitochondrial biogenesis pathway in mice livers and hearts. Con, control; 
P407, poloxamer 407; P407 + HAE, poloxamer 407 plus HAE at 200 mg/kg/day. (A) Protein levels of 
liver PGC-1α and mitochondrial complex subunits I–V (left, western blot image; right, statistical 
analysis). (B) Liver mtDNA copy number. (C) Liver ATP level. (D) Protein levels of heart PGC-1α and 
mitochondrial complex subunits I–V (left, western blot image; right, statistical analysis). (E) Heart 
mtDNA copy number. (F) Heart ATP level. The values are the means ± S.E.M. (n =8); * p < 0.05; ** p < 
0.01. 
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The activities of mitochondrial complexes are strongly associated with mitochondrial oxygen 
consumption capacity and ATP production. As illustrated in Figure 6A,B, P407 treatment obviously 
reduced complex I and II activity in both the liver and heart, and HAE supplementation effectively 
prevented the reduction of activity in complex I and II in the liver and heart but failed to restore 
complex Ⅲ activity in the heart. Although P407 did not show obvious effects on liver complex IV 
activity and heart complex V activity, HAE treatment significantly increased the activity of both 
complexes (Figure 6A,B). 

 
Figure 6. HAE improved mitochondrial complex activity in mice livers and hearts. Con, control; P407, 
poloxamer 407; P407 + HAE, poloxamer 407 plus HAE at 200 mg/kg/day. (A) Liver mitochondrial 
complex I–V activity. (B) Heart mitochondrial complex I–V activity. The values are the means ± S.E.M. 
(n = 8); * p < 0.05; ** p < 0.01. 

4. Discussion 

As one of the major risk factors of MS, hyperlipidemia is closely linked to the occurrence of fatty 
liver disease, cardiovascular disease, and many other metabolic diseases, of which the detailed 
mechanisms are still poorly understood [2,4–6]. A high-fat diet-induced model [22,25] and ApoE-/- 
transgenic mice are commonly used as animal models to investigate dyslipidemia-associated 
metabolic disorders. However, the direct role of hyperlipidemia in metabolic abnormalities and 
impairment in different tissues (except for blood vessels) is still largely unclear. P407 is a widely used 
nonionic surfactant that could cause hyperlipidemia and atherosclerosis in rodents [27]. In addition 
to vascular endothelial dysfunction, P407-induced models show abnormalities in tissues, including 
the liver [27], heart [35], and hippocampus [36], and a 0.5 g/kg P407 injection in mice for 24 h is enough 
to induce hyperlipidemia [37]. Therefore, we used one injection of 0.5 g/kg P407 to explore the 
underlying mechanism of acute hyperlipidemia-induced metabolic disorders and impairment in 
mice livers and hearts.  

Although many biological functions have been proposed for Herba houttuyniae [28–32], its effects 
on MS and hyperlipidemia-associated abnormalities remain largely uncharacterized. The main 
component of fresh Herba houttuyniae is water, and no major components account for large 
proportions of the dried weight of Herba houttuyniae [28]. A few isolated phytochemicals of Herba 
houttuyniae, including houttuynia sodium, flavonoids, and alkaloids, have been identified as having 
biological activity [38–40], while their presence in only small amounts in Herba houttuyniae restricts 
further exploration. Moreover, evidence has shown that the water extract of Herba houttuyniae exhibits 



Nutrients 2020, 12, 164 10 of 14 

 

superior biological activity [41]. Thus, the HAE used in our study was a water-extracted dried 
powder. We chose low (200 mg/kg/day) and high doses (400 mg/kg/day) of HAE based on previous 
animal studies [32,41] and found that both P407 and a low dose of HAE did not have obvious effects 
on body, liver, and heart weight. However, a high dose of HAE slightly decreased liver weight 
compared to the control group, indicating mild hepatic toxicity (Figure S2A–C). Interestingly, the 
injection of P407 successfully induced a model of hyperlipidemia with sharply increased serum TG 
and TC contents, and 200 mg/kg/day HAE significantly decreased the serum TG and TC contents, 
while 400 mg/kg/day HAE failed to do so (Figure 1A,B). Thus, we chose the 200 mg/kg/day dose of 
HAE for subsequent experiments. 

Evidence has suggested that excessive FFAs can exaggerate ROS levels and induce oxidative 
stress [42]. Thus, we detected serum MDA content, a marker of oxidative damage to lipids, proteins, 
and DNA. Consistently, sharply elevated MDA levels induced by P407 were effectively alleviated by 
HAE treatment (Figure 1F). Serum LDH, ALT, and AST activities are commonly considered to be 
markers of tissue dysfunction, mainly for the heart and liver [43,44]. Our results showed that all of 
these enzymes were obviously increased by P407, indicating cardiac and hepatic impairments. HAE 
treatment lowered the activity of both LDH and ALT (Figure 1E,G).  

Next, we determined whether P407 and HAE could affect the morphology and function of mice 
livers and hearts. Our data showed obvious lipid deposition and lipogenic induction in mice livers 
after P407 injection, and all of these abnormalities were ameliorated by HAE supplementation (Figure 
1H–K). Regarding cardiac remodeling, we found that P407 induced significant increases in cardiac 
IVSd, IVSs, and LVPWd and decreases in LVIDd, LVIDs, LV-Vol-d, and LV-Vol-s, indicating cardiac 
morphological changes caused by hyperlipidemia, and some of these changes were effectively 
attenuated by HAE treatment (Figure 2A–H). Moreover, HAE treatment significantly downregulated 
mRNA levels of cardiac hypertrophy and injury markers ANP, BNP, and ACTA1, which were all 
highly induced by P407 (Figure 2I). Interestingly, neither P407 nor HAE had obvious effects on 
cardiac EF and FS, suggesting that 24-h acute hyperlipidemia may not be enough to cause changes in 
cardiac function. 

AMPK is a well-known energy sensor and metabolic regulator that promotes catabolic pathways 
such as fatty acid oxidation and inhibits anabolic pathways such as lipogenesis. Although recent 
investigation has suggested a possible link between hyperlipidemia and the AMPK pathway in the 
vascular system [23,24], the regulatory role of AMPK in hyperlipidemia-induced impairment in other 
tissues, except for the vascular system, remains largely unclear. In our current research, we 
discovered a deficiency in AMPK activity in both the liver and heart after P407 treatment, and HAE 
treatment restored AMPK activity in both of these tissues (Figure 3A–F). A previous study reported 
that AMPK can downregulate the lipogenic genes ACC1 and FAS by mediating SREBP-1 and ChREBP 
[45]. Our results also showed decreased ACC1 and FAS protein contents in P407-treated mice livers, 
which may be attributable to the decreased hepatic AMPK activity.  

In addition to lipid metabolism, AMPK can also modulate oxidative stress as well as 
mitochondrial function by regulating the Nrf2-mediated phase II enzyme pathway and PGC-1α-
mediated mitochondrial biogenesis, both of which exhibit a close correlation with hyperlipidemia-
related metabolic disorders [8,10–12,46]. In our research, we observed that P407 markedly reduced 
the protein levels of Nrf2 and its downstream genes NQO1, HO-1, and MnSOD in the liver and NQO1 
in the heart, increased protein carbonyl levels in both the liver and heart, and reduced the ratio of 
GSH/GSSG in the heart, all of which were restored by HAE treatment (Figure 4A,C,D,F,G,H). The 
involvement of mitochondria in metabolic regulation is inevitable, but the specific role of 
mitochondria in hyperlipidemia-induced metabolic disorders still needs to be further elucidated. As 
expected, our results exhibited reduced protein levels of PGC-1α and mitochondrial complex 
subunits in both the liver and heart after P407 treatment. Meanwhile, a reduced mtDNA copy number 
in the heart and decreased ATP content in the liver were also observed after P407 injection, and HAE 
treatment not only upregulated mitochondrial biogenesis-related proteins but also increased the 
mtDNA copy number and enhanced ATP production in both the liver and heart (Figure 5A–F). 
Decreased mitochondrial biogenesis is always correlated with impaired mitochondrial oxidative 
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capacity, which plays a key role in the pathogenesis of MS [12]. Consistently, P407 injection reduced 
mitochondrial complex activities in both the liver and heart, and most of the complex activities were 
restored by HAE treatment (Figure 6A,B). To further confirm the beneficial effects of HAE, we also 
adopted a palmitic acid (PA)-induced HepG2 cellular model with or without HAE pretreatment. 
Consistently, HAE significantly decreased TG content, increased the p-AMPK/AMPK ratio, and 
enhanced mitochondrial oxygen consumption capacity in HepG2 cells treated with PA (Figure S3A–
C). Mitochondrial network dynamics are also important in maintaining normal mitochondrial 
function. We found that the expression of mitochondrial fusion-related protein Mfn1 was reduced in 
both the liver and heart and that the fission-related protein Drp1 was reduced in the liver: all of these 
abnormalities were restored by HAE supplementation (Figure S4A–E). Interestingly, we found PA 
treatment obviously increased mitochondrial fission compared to the control group. Pretreatment 
with HAE increased mitochondrial fusion and therefore partially recovered mitochondrial 
morphology (Figure S5A). However, the detailed mechanisms involved still require further 
investigation.  

5. Conclusions 

In conclusion, our work provides the first evidence that AMPK-mediated mitochondrial 
biogenesis and the Nrf2 pathway are involved in acute hyperlipidemia-induced liver and heart 
impairments and shows that HAE exerts protective effects on hyperlipidemia-related metabolic 
disorders and tissue impairments by upregulating the AMPK/PGC-1α/Nrf2 cascade. Altogether, our 
findings indicate that Herba houttuyniae may be an attractive AMPK activator for the prevention and 
treatment of hyperlipidemia-related abnormalities and diseases. Further studies are required to 
investigate the major active components of Herba houttuyniae and to establish its clinical applications. 
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