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Abstract: Intestinal failure is defined as a critical reduction of the gut mass or function, below the
minimum needed to absorb nutrients and fluids. The ultimate goal in intestinal failure is to
promote bowel adaptation and reach enteral autonomy while a healthy growth and development
is maintained. The condition is heterogeneous and complex. Therefore, recommendations for the
type and duration of parenteral, enteral, and oral nutrition are variable, with the child’s age as an
additional key factor. The aim of this review is to provide an overview of nutritional feeding strategies
in this heterogeneous population. Different perspectives on nutritional management, nutrition and
adaptation, and microbiome and nutrition will be discussed.
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blended diet; microbiome

1. Introduction

Intestinal failure is defined as a critical reduction of the gut mass or function, below the minimum
needed to digest and absorb sufficient nutrients and fluids for adequate growth and development in
children [1,2]. Intestinal failure (IF) can be caused by several disorders of the gastrointestinal tract,
which may be categorized into three main groups; (1) anatomical disorders (e.g., short bowel syndrome)
(2) neuromuscular diseases (e.g., chronic intestinal pseudo-obstruction) and (3) mucosal intestinal
diseases (e.g., microvillous inclusion disease) [1]. Short bowel syndrome (SBS) is the main cause of
IF, accounting for at least 40% of the cases [3–5]. According to the Dutch National Working group
on SBS, short bowel syndrome is defined as ≥70% resection of the small bowel and/or the residual
small bowel length distal to ligament of Treitz of <50 cm in premature neonates, <75 cm of term
neonates, and <100 cm in children ≥1 year [6]. SBS may result from an extensive resection due to
congenital defects such as intestinal atresia and gastroschisis, or postnatal ischemia of the bowel from
necrotizing enterocolitis or volvulus [5,7,8]. The reduction of the absorptive and digestive surface and
the resulting decreased availability of digestive enzymes and transport proteins causes malabsorption
in SBS patients [9]. Furthermore, some underlying disorders such as gastroschisis and intestinal atresia
not only affect the remaining bowel length, but may also have impact on the residual bowel’s (motor)
function and adaptation potential [10]. In clinical practice SBS can be discerned into three phases.
The first phase occurs directly after resection and is characterized by diarrhea and massive loss of fluids
and electrolytes, causing increased risk of dehydration, and impaired gut motility also occurs [11].
Shortly after resection the remaining part of the bowel attempts to increase its fluid and nutrient
absorption [12]. This is the second phase where the process of bowel adaptation begins and can last
up to one to four years [1,13]. It includes muscular hypertrophy (increased bowel diameter and wall
thickness) and mucosal hyperplasia [1]. The adaptation process is more pronounced in the ileum than
in the jejunum. Bowel adaptation processes should lead to full intestinal autonomy. The third phase is
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the so-called resting state in which a status quo has arisen regarding the tolerance of enteral nutrition
and hence the need for parenteral nutrition. It is characterized by permanent degree of malabsorption,
there might be an electrolyte imbalance, bone demineralization, and kidney or gallstones might occur.
Vitamin and mineral deficiencies are frequently seen in this phase.

The clinical manifestation of SBS is determined by the residual functional length of the jejunum and
ileum, the presence of an enterostomy, the presence (or absence) of the ileocecal valve, the remaining
functional length of the colon, underlying pathology, and possible complications [14]. These factors
affect bowel adaptation and therefore the functionality of the gastrointestinal tract, which in turn affects
feeding options. Therefore, recommendations for the type and duration of parenteral, enteral, and oral
nutrition are variable, with the child’s age as an additional key factor.

The goals of nutritional support in patients with SBS are twofold—providing safe, adequate
supplemental nutrients to preserve lean body mass and function, and if possible, supporting and
accelerating the body’s own adaptive mechanisms [15]. Maintaining simultaneously optimal nutritional
status and achieving intestinal adaptation is a clinical challenge in patients with SBS. Both growth and
development of the child as well as bowel adaptation should be considered synergistically as primary
outcome parameters [11].

The aim of this review is to provide an overview of nutritional feeding strategies in this
heterogeneous population.

2. Nutritional Management According to Phases SBS

In order to meet the nutritional needs of the child, it is initially necessary to provide parenteral
nutrition (PN). Clinical experience shows that PN is sometimes given in addition to enteral nutrition
for a long period of time in order to be able to meet the energy and nutrient requirements. Sometimes
PN is provided for several years and some children remain on PN for life.

During the acute phase PN is indispensable and often fluid and electrolyte losses need to be
additionally compensated. During this phase minimal enteral feeding should be started as soon as
possible to promote bowel adaptation [11].

The aim of PN therapy is to provide the nutritional requirements for normal growth and
development, while the bowel undergoes the adaptation necessary for the transition to an enterally
based diet. During the adaptation phase enteral nutrition should be introduced, preferably orally,
in order to stimulate oral motor activity and to avoid feeding aversion behavior. When advancements
in enteral nutrition are successful, PN should be decreased and cycled. The aim of cycling PN is to
reduce hyperinsulinemia, with subsequent fat accumulation and liver disease [16–19].

During the resting state enteral/oral feeding should be maximized and the patient should be
weaned of PN while preserving optimal growth. Supplementing deficient micronutrients are often
necessary [11].

3. Adaptation

Intestinal adaptation is a natural compensatory process where structural and functional changes
in the intestine occur after bowel resection to improve nutrient and fluid absorption in the remnant
bowel [13]. The degree of adaptation potential is dependent on the residual bowel length and the
type and quality of the residual bowel. For example, the adaptation capacity of the ileum is greater
than in the jejunum [20]. Even though the surface area of the jejunum is greater and this is where the
absorption of most nutrients takes place, the jejunum’s ability to reabsorb water and electrolytes is
poor. Furthermore, chyme moves slower in the ileum, due to the motility patterns and proximity of
the ileocecal valve [21]. The ileum absorbs bile salts, vitamin B12, fat-soluble vitamins, and electrolytes.
When the ileum is lacking, the risk of vitamin deficiencies is high.

Adaptation includes the structural changes such as muscular hypertrophy (increased bowel
diameter and wall thickness), mucosal hyperplasia (increased cell proliferation), and angiogenesis
(formation new blood vessels) [13]. These changes support mucosal growth and thereby potentially
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absorption function. The functional changes are increased expression of transporter proteins and
nutrient/electrolyte exchangers, as well as accelerated crypt cell differentiation and deceased transit
time which results in increased nutrient and fluid absorption [13]. However, most of these changes are
seen in animal models and it is not yet fully understood how all of these mechanisms contribute to
intestinal adaptation in humans [13].

Enteral nutrition plays an important role in the adaptation process: the luminal nutrients are
known to have a stimulating effect on the epithelial cells and the production of trophic hormones.
Thereby intraluminal nutrients also increase pancreatic and biliary secretion [7,12,22]. Enteral nutrients
not only prevents mucosal atrophy, but also loss of barrier function and downregulation of the mucosal
immune system [23]. The mechanism by which enteral nutrients stimulate adaptation is complex and
can be broken down into three major categories: (1) by stimulation of mucosal hyperplasia through
direct contact with epithelial cells; (2) stimulation of trophic gastrointestinal hormone secretion; and (3)
stimulation of the production of trophic pancreatobiliary secretions [12,24].

It has been postulated that the higher the complexity of a nutrient, the higher the workload of
the digestive mechanism involved. Thus, the more digestion a nutrient (e.g., whole protein) needs,
the more hyperplasia it will cause [25]. In other words, this “functional workload,” which challenges the
digestive and absorptive function of the remnant bowel, is key to its adaptation [21]. The composition
of the diet should be considered in an effort to balance gastrointestinal tolerance with specific nutrients
in a complex form that may further stimulate the adaptive process [26]. Digestion and absorption of
macronutrients have not been well characterized and the most appropriate dietary constituents vary
per patient.

3.1. Protein

Dietary proteins are either directly digested into amino acids and absorbed, or digested into
polypeptides, which are first absorbed inside the enterocytes before they are hydrolyzed to amino
acids [27]. Dietary protein hydrolysates have been developed to optimize both absorption pathways [11].
There are three types of formulas: whole protein-based, hydrolyzed protein-based, and amino
acid-based formula. There is no evidence that hydrolyzed protein formulas are better tolerated than
whole protein-based formulas [28]. Whole proteins are preferred in terms of increased workload to the
digestive and absorptive function of the bowel. Hydrolyzed proteins appear to empty the stomach
faster than whole proteins and consequently elicited a more rapid increase in plasma amino acid,
glucagon, and insulin concentrations in enterally fed surgical adult patients [29,30]. A few small
case studies described how the amino acid-based formula reduced PN requirement and reduced
allergies [31,32]. These studies were small and had no control group. One amino acid that received a
lot of attention is glutamine. Glutamine is the main fuel for enterocytes [33] and is thought to enhance
mucosal hyperplasia [34,35]. However, glutamine supplementation in infants with gastrointestinal
disease showed no difference in PN dependence, feeding tolerance, and intestinal absorptive-barrier
function compared to those who received a placebo amino acid [36].

3.2. Carbohydrates

Disaccharides are more trophic than monosaccharides due to the higher functional workload
of the bowel [21]. Lactose intolerance may occur in patients with proximal jejunum resection [25].
A cross-over study in adults with SBS, however, demonstrated a similar tolerance of a lactose-free
diet compared to a diet containing 20 g of lactose a day [37]. Since there is not enough evidence,
a lactose-free diet is not recommended in patients with SBS [25]. Moreover, lactose may promote the
production of short chain fatty acids (SFCAs) in the colon and a small amount of lactose is therefore
recommended for infants [11]. Dietary fiber can be divided into soluble and insoluble forms. Insoluble
forms, such as cellulose (e.g., in cereals) bind to water and cause bulking and softening of the stool.
Soluble forms such as pectin and guar gum (found in fruit and vegetables) slow gastric emptying and
the overall gut transit time, resulting in a mild anti-diarrheal effect [22,38]. Soluble fiber and some
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starches pass undigested into the colon, where they are fermented by colonic bacteria into SFCA’s,
which account for 5–10% of the energy intake [39]. Atia et al. showed that starch is the primary
carbohydrate substrate for colonic bacterial fermentation in patients with SBS, although pectin also
enhances SFCA production and fluid absorption [40]. Butyrate (SCFA) has trophic effects on the jejunal
and ileal cells when delivered in the colon [41]. The suggested underlying mechanism of this trophic
effect may be the stimulated release of glucagon-like peptide 2 (GLP-2) [42]. Some animal studies
showed that pectin enhanced bowel adaptation [43,44]. Only one case study described that pectin
supplementation in a single patient prolonged transit time and enhanced nitrogen absorption [45].

3.3. Fat

Long chain triglycerides (LCTs) undergo bile-dependent hydrolysis within the enterocyte before
export into the lymphatic system as chylomicrons [25]. It has been suggested that LCTs enhance
bowel adaptation [46]. A few animal studies showed that lipids were effective in enhancing bowel
adaptation [47,48]. The presence of LCT stimulates the secretion of PYY and GLP-2 which mediates the
ileal and jejunal brake, resulting in slower transit time [49]. LCTs contain n-3 long chain polyunsaturated
fatty acids (n-3 LCPs), which might have beneficial effects in patients with SBS [11]. Besides their
properties for brain development, they are also known to have anti-inflammatory effects and improve
the splanchnic circulation [50,51]. More studies are needed to confirm these beneficial effects [11]. A few
small studies showed that enteral n-3 LCPs improved cholestasis in infants with SBS [52,53]. Medium
chain triglycerides (MCTs) are directly absorbed across the enterocyte into the portal circulation [25].
This process starts in the stomach. Theoretically this absorption process would increase fat uptake and
provide a faster energy supply [11]. An RCT in patients with jejuno- or ileostomy showed that a diet
containing high concentrations of MCTs can cause osmotic diarrhea as a result of rapid hydrolysis
of MCTs [54]. In contrast, a study in patients with an intact colon showed that MCTs improved fat
absorption and therefore might be beneficial in patients with bile acid or pancreatic insufficiency [55].
However, it should be kept in mind that MCTs are saturated fats and do not contain essential fatty acids.

3.4. Non-Nutrient Luminal Factors

Luminal factors include a variety of nutrients, secretions, and other essential components in the
diet or produced in the lumen of the gastrointestinal tract that have been known to stimulate gut
mucosal growth. GLP-2 is produced in the enteroendocrine cells of the terminal ileum and colon in
response to luminal nutrients (especially LCTs and carbohydrates). It has been shown that GLP-2
increases the mucosal surface area of the gut, slows motility, up-regulates nutrient absorption, improves
gut-barrier function, and increases intestinal blood flow [56]. Serum levels of GLP-2 increase when
adaptation progresses [57]. GLP-2 analogues are nowadays used as a treatment option for improving
nutrients and fluid. A few studies in children with IF have shown that GLP-2 therapy resulted in a
consistent increase in nutrient absorption, reduction in PN requirement, and adequate growth [58,59].
This therapy could affect the feeding strategy. More studies are needed to confirm these positive
effects and to establish how permanent intestinal autonomy may be achieved while continuing GLP-2
analog administration.

3.5. Human Milk

The health benefits of human milk have been amply documented; its use is associated with
significantly decreased risks of infection, allergies, respiratory diseases, diabetes, and otitis media [60].
Exclusively breastfed children have reduced risk of infectious diseases such as diarrhea and respiratory
infections [61]. It has been postulated that human milk, which contains glutamine and growth factors
(e.g., growth hormone and epidermal growth factor), might also enhance bowel adaptation [7,12].
A few cohort studies have demonstrated that human milk contains high amounts of nucleotides,
immunoglobulin A, and leucocytes, which support the immune system of the neonate [62,63]. Therefore
it might be hypothesized that the immunoglobulins and antimicrobial peptides of human milk also
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promotes intestinal colonization with appropriate lactobacilli and related bacteria, which are important
elements of the healthy microbiome [64]. The composition of human milk is complex and changes
dynamically over the lactation period [65]. The composition is influenced by gestational age at birth
and postnatal age and it can actively accelerate the development of the infant’s own defenses [66].
The protein content of human milk decreases during the first month of lactation. As a consequence,
the amino acid content of human milk also varies during the early phase of lactation [65]. The main
source of carbohydrates in human milk is lactose and complex oligosaccharides [65]. Some animal
studies suggested that bovine colostrum is beneficial to bowel adaptation [67]. However, human
studies could not confirm this beneficial effect [68,69]. One study found that breastfed infants with
SBS were weaned off PN earlier than non-breastfed SBS infants [70]. Another study in patients with
gastroschisis showed that exclusive human milk feeding decreased the time to full enteral autonomy
and length of hospital stay [71]. In infants with intestinal failure, human milk is considered to be the
first choice [11,72].

3.6. Feeding Mode

Nutrient and fluid absorption are dependent on mucosal surface area as well as contact time.
Therefore, gastrointestinal motility plays an important role in nutrient absorption [40]. It has been
hypothesized that slow continuous infusion of enteral nutrition increases mucosal contact time and
thereby enhances absorption by maximizing saturation of carrier proteins [25]. A study in children
showed that when enteral nutrition was administered continuously, the intestinal absorption and
weight gain improved [73]. A case study in adult SBS patients showed that when continuous enteral
nutrition was started early, enteral autonomy could be attained a mean of 36 days after surgery [74].
A small randomized cross-over trial in 15 adult SBS patients showed the continuous enteral nutrition
improved energy and macronutrient absorption compared to oral diet [75]. However, bolus feeding
causes cyclical changes in plasma levels of gastrointestinal hormones, such as insulin, pancreatic
polypeptides, enteroglucagon, motilin, and neurotensin, which might be important for adaptation,
growth, and motility [76,77]. Bolus feeding and the ensuing period of fasting maintain normal motility
patterns. The fasting motility period is hallmarked by phase III of migrating motor complex and
reflects neuromuscular function [11]. Oral feeding activates salivary glands which stimulates the
secretion of epidermal growth factor (EGF) and other trophic factors in the saliva, which might enhance
adaptation. A few animal studies showed that salivary EGF and vascular endothelial growth factor are
important contributing factors in adaptation process [78,79]. Oral feeding should be introduced as
soon as possible to stimulate the oral motor development and to avoid feeding aversion behavior [72].

4. Nutritional Management

The goal of nutritional management is to optimize intestinal adaptation and reach intestinal
autonomy while preserving adequate growth and development and avoiding complications.
The composition, volume, and timing of enteral feeding can affect the achievement of enteral
autonomy [77]. Nutritional management differs per goal and should be tailored to the individual
patient. Macro- and micronutrient requirements and tolerance vary with age, nutritional status,
the remaining bowel length and function, and presence of ileocecal valve and colon [21]. The optimal
enteral feeding regimen in children with SBS is still debated by clinicians. Subjects of debate are mode
of administration (continuous versus bolus feedings), time of introduction in general, composition
(polymeric, semi-elemental, or elemental), time of introduction and composition of oral feeding,
and the supplementation of fibers. Most data on enteral nutrition in children with SBS are derived
from outcomes of retrospective observational studies and/or case reports [7]; relevant high quality
randomized controlled (clinical) trials are scarce. A structured literature review [72] showed that only
two evidence-based recommendations could be made; (1) enteral nutrition should be initiated as soon
as possible (i.e., a few days after bowel resection) to promote intestinal adaptation [80,81], (2) human
milk or standard polymeric formula (depending on age) is the recommended initial feed [28,70].
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Other clinical experience recommendations were; (a) enteral nutrition should be administered in a
continuous fashion, (b) bottle-feeding (small volumes) should be started as soon as possible in neonates
to stimulate suck and swallow reflexes [1,82], (c) solid foods may be introduced at the age of 4–6
months (if necessary, corrected for gestational age) to stimulate oral motor activity and to avoid feeding
aversion behavior [1,7,82,83]. Table 1 provides an age-appropriate general overview of an oral/enteral
feeding strategy in SBS patients. Oral and/or enteral nutrition should be started in a small volume
and increased slowly based on tolerance. Especially when a child is older, there are several ways to
introduce and increase enteral/oral feeding. Allowing the child to eat and drink themselves is preferred
over solely liquid enteral nutrition. It is advised to make one change at a time and offer small amounts
of food frequently. Even when a small volume of enteral feeding is tolerated, cycling PN should be
considered in order to minimize the risk of complications [84,85]. The common strategy is to trial 1 h
off and 23 h on infusion. The PN rate should be tapered in the last hour of administration to 50% for
30 min, then 25% of the original rate for the final 30 min to limit the risk of hypoglycemia. The PN
can be reduced by a further hour every few days aiming for 12–16 h infusion when the first hour is
tolerated [86,87].

Table 1. Age appropriate oral/enteral feeding strategy.

Neonate 100%
Milk

Infant 4–12 Months
Weaning from Milk Toddler Solid Foods School Child

Solid Foods

Type nutrition
Human

milk/polymeric
HF/AA

Human milk
Puree

Solids (e.g., bread)
EN: Polymeric/HF/AA

Solid foods
EN: Polymeric/HF/AA

Solid foods
EN: Polymeric/HF/AA

Mode Oral and partial
enteral Oral and partial enteral Oral and partial enteral Oral and optionally

partial enteral

Administration
mode

Day Portions Night
continuous

Day Portions Night
continuous

Day Portions Night
continuous

Day Portions Night
continuous

HF; hydrolyzed formula, AA; amino acid-based formula, EN; enteral nutrition.

Capriati et al. published a recent update on the current knowledge on the impact of initial
diet in neonatal-onset SBS on the process of bowel adaptation [88]. They found 10 eligible studies
(mostly retrospective) with a total of 822 patients who were categorized in three groups: hydrolyzed
formula-fed patients, patients with a combination of hydrolyzed formula and human milk, and patients
with a combination of amino acid-based formula and human milk. Unfortunately, they were not able
to form a group with exclusively human milk-fed SBS patients. They found that the course of bowel
adaptation, in terms of enteral adaptation rate and PN duration, was not significantly impacted by
the initial diet [88]. They concluded that human milk remains the first step in feeding SBS patients
and that hydrolyzed formula was not more effective in promoting intestinal adaptation than amino
acid-based formula, therefore both types of formulas could be used as a second step [88]. Unfortunately,
high-quality research on feeding strategies in SBS patients remain scarce; this is partially due to the
small number and the heterogeneity of these patients.

Blended Diet

Blended diet refers to the use of blended family foods administered into an enteral feeding tube.
Currently, interest is growing in the use of blended diet for management of feeding difficulties, reflux,
and improved bowel function in the pediatric population [89,90]. It is perceived as more natural,
“healthier,” and better tolerated compared to commercially available enteral formulas [90,91]. A few
studies in children dependent on enteral nutrition reported that blended diet improved clinical outcomes
(e.g., gagging, vomiting, tolerance) compared to commercially available enteral formulas [89,92]. Samela
et al. transitioned 10 pediatric intestinal failure patients >1 year of age from an elemental formula to a
formula with real food ingredients. Ninety percent tolerated the transition to a 100% blended diet in a
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mean of 60 days [93]. Around 80% of these patients had their colon in continuity. Blended diet caused
more formed and less frequent stools and had appropriate weight gain after one year on a blended
diet [93]. The BLEND study showed that 17 out of 20 chronically ill tube feeding-dependent children
could successfully be transitioned to a blended diet in four weeks. Even though they needed 50% more
calories than commercially available formulas, the prevalence of vomiting and use of acid-suppressive
agents significantly decreased [92]. Stool consistency and frequency remained unchanged, but the
bacterial diversity and species richness significantly increased [92]. A blended diet has a variable
composition and it is difficult to reach sufficient calories in a certain volume. Furthermore, a blended
diet is labor intensive and there are concerns regarding hygiene, short shelf life, and increased risk of
tube clogging.

More studies are needed to provide evidence that a blended diet is a safe and effective feeding
strategy in children with intestinal failure.

5. Microbiome

Clinical manifestations of feeding intolerance, such as abdominal distension, bloating, and nausea
caused by bacterial overgrowth, are some of the complications that can occur in SBS patients [94].
Lactobacilli tolerate acidic surroundings, and reduced absorption of nutrients provides more substrate
for lactobacilli. They produce lactic acid from mono- and disaccharides and may proliferate in the
acidic environment resulting in bacterial overgrowth. The human gastrointestinal tract contains around
1014 microorganisms (including bacteria) which are commonly referred to as the gut microbiome [95].
The majority of the microorganisms reside within the distal parts of the gastrointestinal tract [96].
The development of the gut microbiome occurs primarily during infancy [97]. Colonization of the
gastrointestinal tract starts directly after birth and its composition is dependent on the gestational age,
mode of delivery, and type of feeding [98,99]. Breastfed infants tend to have more Actinobacteria and
Firmicutes and less Bacteroides than formula-fed infants [100]. During the first years of life, the gut is
colonized gradually and the large compositional variation is determined by genetics, environmental
factors, diet, and the development of the immune system [101]. During adulthood the composition of
the microbiome stabilizes. The microbiome is important for several functions such as fermentation
(producing SCFA), nutrient absorption in the colon, development of the immune system, and intestinal
mucosal growth and integrity of the gut [102]. It has been described that Clostridia is important
for normal intestinal function and protection of intestinal diseases, whereas Enterobacteriaceae are
proinflammatory and might be harmful [103–105]. Where symbiosis of the gut microbiome causes
immune tolerance, intestinal homeostasis, and healthy metabolism, dysbiosis of the microbiome might
cause immune and/or allergic diseases, as well as intestinal and metabolic diseases [97].

5.1. Microbiome Intestinal Failure and Influencing Factors

A recent review by Neelis et al. showed a nice overview on the evidence on gut microbiome,
its metabolic activity, and its association with disease characteristics in adult and pediatric IF patients.
They found 10 human studies (50% pediatric) and the most consistent finding of these studies
was the overall reduction in bacterial diversity [101]. Intestinal failure patients had a distinctive
increase of Proteobacteria (among others (a.o.) Enterobacteriaceae) to 40% compared to 9% in healthy
controls. Furthermore, the Bacteroidetes decreased to 19%, whereas in healthy controls these were 46%.
An overabundance of Lactobacilli were found in IF patients [101]. Engstrand, Lilja et al. found that the
microbiome diversity was significantly reduced in SBS children receiving PN compared to those who
were weaned off PN [106], while in the latter group of patients the diversity was still lower than in
healthy controls [106]. Neelis et al. concluded that the gut microbiome could potentially be used as
biomarker to guide clinical practice during intestinal adaptation, as well as a modifiable therapeutic
agent [101].
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5.2. Diet and Microbiome

Factors that influence the microbiome are gastrointestinal factors, such as underlying disease,
anatomy (remaining length and type of bowel, motor function, presence of jejuno/ileostomy, absence
ileocecal valve), and feeding tubes. Next to that, medication such as antibiotics and proton pump
inhibitors play a role in altering the microbiome. Lastly, also nutritional factors, such as composition,
fiber intake, type of feeding, administration route, and mode of feeding and the amount, influence
the microbiome [101]. The microbiome contributes to host health through biosynthesis of vitamins
and essential amino acids, as well as generation of metabolic byproducts from undigested dietary
components [96]. One of the most important bacterial metabolites is SCFA, which is an end-product of
fermentation of non-digestible dietary carbohydrates (e.g., fiber) by anaerobe bacteria. Even though
fiber is the main fuel for production of SCFA, dietary protein, glycoprotein, and peptides, as well
as intestinal cell turnover, may also be substrate for fermentation [107]. Ninety-five percent of the
SCFAs are absorbed in the colon and may account for 5–10% energy intake [39]. Moreover, SCFAs also
stimulate vascular flow and motility and increase sodium absorption [108]. It has been shown that
diet can alter the human microbiome even within 24 h after a change in diet and reversion was also
shown 48 h after discontinuation of the diet [109]. A review of Singh et al. showed that consumption
of plant-based protein caused an increase in Bifidobacterium and Lactobacillus and a decrease in
Bacteroides and Clostridium. Increased levels of SCFAs were also observed [96]. Consumption of
animal proteins caused an increase in Bacteroides and Biophilia and decrease in Bifidobacterium and,
ultimately, a decrease in SCFAs [96]. Both types of protein caused an increased abundance of microbial
diversity. Fibers/prebiotics and resistant starch have a positive effect on bacterial abundance, causing
an increase of a.o. Lactobacilli and Bifidobacteria [96].

These results suggest that a great variation in composition and a balanced diet contribute to a
healthy microbiome.

Most commercially available formulas that are prescribed in SBS patients are animal protein
based, which might not contribute to a diverse microbiome. Furthermore, hydrolyzed formula (HF)
and amino acid-based formula (AA) often do not contain any fibers. Moreover, clinicians tend to stick
to one type of formula and consequently no variation in enteral feeding/diet is provided. Gallagher
et al. showed that when patients were transitioned from a commercial formula to blended diet (varied
composition and containing more protein [plant and animal] and fiber) the bacterial diversity and
species richness significantly increased. The Proteobacteria were significantly reduced and a trend was
seen of an increase in Firmicutes [92]. Human milk is dynamic and its composition changes over time,
possibly contributing to a diverse microbiome.

Preliminary results of the PREDICT I study showed that identical twins who share genes and most
of their environment had different glucose, insulin, and triglycerides responses on identical foods [110].
Furthermore, the twins only shared 37% of their gut microbes; this is only slightly higher than the
35% shared between unrelated individuals. The proportions of nutrients (protein, carbohydrates,
and fat) listed on food labels explained less than 40% of the differences between individuals’ nutritional
responses to meals with similar calories. In addition, large differences in responses to the same meals
were seen depending on the time of day they were eaten [110]. So personal differences in metabolism
due to factors such as gut microbiome, meal timing, and exercise are just as important as the nutritional
composition of foods.

6. Concluding Remarks

Pediatric intestinal failure is a challenging condition to treat. An understanding of intestinal
physiology, adaptation process, altering microbiome, and the effect of nutrition on these processes
allows for the development of targeted, evidence-based feeding strategies. Due to the multifaceted
condition, multidisciplinary care (surgeons, gastroenterologists, dieticians, specialized nurses) for
these patients is required. Long-term monitoring of intestinal failure patients even after PN weaning is
necessary due to the greater risk of nutrient deficiencies [111,112]. At this moment it is not possible
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to present evidence-based nutritional management because studies of efficacy of different feeding
strategies are scarce and the methodological quality of published data is low. However, a careful
nutritional strategy that improves intestinal adaptation in SBS patients who are PN dependent is crucial
to reduce the duration of PN and consequently the risk of occurrence of PN-related complications [88].
In light of the adaptation process, early start of minimal feeding is essential and human milk is the
preferred choice in neonates. Oral nutrition is not only important for oral motor skills, but may also
be beneficial for adaptation. In addition, enteral nutrition (either continuous or bolus) may help to
stimulate adaptation and weaning from PN. However, aggressive enteral feeding should be avoided.
Age appropriate solid foods may improve consistency in the stool. Furthermore, a variated and
balanced diet composition is important for the gut microbiome. In that light, human milk and a
blended diet might be a good strategy. Nutritional management should be tailor-made, and it is all
about balance and timing—choosing the right food at the right time.
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