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Abstract: Obesity is a health problem associated with many metabolic disorders. Weight reduction
can effectively alleviate obesity-associated complications. Sleeve gastrectomy is a commonly used
bariatric surgery and is considered safe and effective for improving outcomes. Glutamine (GLN) is an
amino acid with anti-oxidative and anti-inflammatory properties. This study used a mouse model of
sleeve gastrectomy to investigate the impacts of intravenous GLN administration on glucose tolerance
and adipocyte inflammation short-term after surgery. C57BL6 male mice were divided into normal
control (NC) and high-fat diet groups. The high-fat diet provided 60% of energy from fat for 10 weeks
to induce obesity. Mice fed the high-fat diet were then assigned to a sham (SH) or sleeve gastrectomy
with saline (S) or GLN (G) groups. The S group was intravenously injected with saline, while the G
group was administered GLN (0.75 g/kg body weight) via a tail vein postoperatively. Mice in the
experimental groups were sacrificed on day 1 or 3 after the surgery. Results showed that obesity
resulted in fat accumulation, elevated glucose levels, and adipokines production. Sleeve gastrectomy
aggravated expressions of inflammatory cytokine and macrophage infiltration markers, cluster of
differentiation 68 (CD68), epidermal growth factor-like module-containing mucin-like hormone
receptor-like 1 (EMR-1), and macrophage chemoattractant protein-1, in adipose tissues. Treatment of
obese mice with GLN downregulated hepatic proteomic profiles associated with the gluconeogenesis
pathway and improved glucose tolerance. Moreover, macrophage infiltration and adipose tissue
inflammation were attenuated after the sleeve gastrectomy. These findings imply that postoperative
intravenous GLN administration may improve glucose tolerance and attenuate inflammation shortly
after the bariatric surgery in subjects with obesity.
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1. Introduction

Obesity is an important public health issue worldwide. According to a report from three
consecutive waves of the Nutrition and Health Surveys in Taiwan (NAHSIT), prevalence of morbid
obesity and obesity increased sharply from 1993–1996 and 2013–2014 [1]. Obesity is a condition of
low-grade systemic inflammation. Immune cells infiltrate into enlarged adipocytes leading to persistent
proinflammatory mediator production, which is considered the sole mechanism [2]. Excessive fat mass
accumulation and adipose tissue inflammation are positively correlated with insulin resistance (IR),
glucose intolerance, and other associated metabolic dysfunctions [2].

Epidemiological studies showed that obesity is associated with increased risks of many metabolic
disorders, such as cardiovascular diseases, hypertension, type 2 diabetes, stroke, etc. [3], and mortality is
also increased [4]. Weight reduction can effectively alleviate multiple obesity-related complications [5].
However, conservative treatment of obesity including diet restriction, behavior modification,
and pharmacological methods are ineffective for long-term weight control [6,7]. Body weight (BW)
rebound frequently occurs, especially in subjects with morbid obesity. Sleeve gastrectomy is a bariatric
surgery commonly used in patients with morbid obesity and is considered a safe and effective operation
to lose weight and attenuate comorbidities [8,9].

Glutamine (GLN) is an amino acid with immunomodulatory properties. Previous studies showed
that GLN administration had favorable effects on catabolic conditions through its anti-oxidative and
anti-inflammation properties, and it exerts more-balanced immune cell regulation [10–12]. A clinical
study reported that parenteral GLN supplementation during the postoperative period for gastrectomy
patients reduced the rate of infectious complications, improved immune functions, and shortened
hospital stays [13]. Our recent study demonstrated that intravenous GLN administration increases
serum albumin levels and benefits patients receiving gastric cancer surgery [14]. A study performed
by Abboud et al. found that a high-fat diet supplemented with GLN feeding for 4 weeks improved
insulin’s action and reversed the defects in hepatic glucose metabolism in diet-induced obesity (DIO)
rats [15]. Moreover, the waist circumference and serum insulin levels in subjects with obesity were
found to be reduced after 2 weeks of GLN supplementation [15]. Although GLN seems to have
favorable effects on obesity and postoperative conditions, we are unaware of any study investigating
impacts of GLN on metabolic alterations and inflammatory reactions in response to bariatric surgery
in subjects with obesity. Moreover, no study has applied proteomic techniques to address the effects of
GLN after sleeve gastrectomy. Since the liver is the main organ for regulating glucose homeostasis
under stressed conditions, profiling the hepatic proteomic response to GLN after sleeve gastrectomy
is worth evaluation. In this study, we used a mouse model to mimic sleeve gastrectomy performed
in humans with morbid obesity to investigate the effects of intravenous GLN administration on
inflammatory responses and liver proteomic profiles associated with glucose metabolism 1 d and 3 d
after gastrectomy. We hypothesized that postoperative GLN administration after sleeve gastrectomy
would improve glucose tolerance and alleviate adipose tissue inflammation in DIO mice shortly after
the surgery.

2. Materials and Methods

2.1. Animals

Male C57BL/6 mice (5 weeks old, weighing 18~20 g, n = 56) were used in the study. All mice were
kept under controlled temperature (21 ± 2 ◦C) and relative humidity (50%~55%) conditions with a 12-h
light-dark cycle in the Laboratory Animal Center at Taipei Medical University (TMU, Taipei, Taiwan).
A standard rodent chow diet (Purina no. 5001, Fort Worth, TX, USA) and water were provided ad
libitum. Care of laboratory animals was in full compliance with the Guide for the Care and Use of
Laboratory Animals (National Research Council, 1996). Experimental protocols were approved by the
Animal Care and Use Committee at TMU (Laboratory Animal Center-2019-0082).
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2.2. Experimental Design

Mice were randomly assigned to a normal control (NC, n = 8) group and a high-fat diet (HF,
n = 48) group. Mice in the NC group were fed a rodent chow diet for 10 weeks, while mice in the HF
group were provided a high-fat diet (Research Diets, Inc., New Brunswick, NJ, USA), which provided
60% of kcal as fat for 10 weeks. The high-fat diet composition is listed in Table 1. Then mice in the
HF group were divided into a high-fat sham (SH, n = 8) group, high-fat gastrectomy group with
saline injection (S, n = 20), and high-fat gastrectomy group with GLN administration (G, n = 20).
Mice in the SH group were subjected to a laparotomy operation but without a gastrectomy. The two
gastrectomy groups were subjected to sleeve gastrectomy surgery as previously described [16]. Briefly,
mice were anesthetized with an intraperitoneal injection of Zoletil (25 mg/kg BW; Virbac, Carros,
France) and Rompun (10 mg/kg BW; Bayer, Leverkusen, Germany). An animal’s abdomen was shaved
and aseptically prepared. A midline incision was performed at the xiphoid process and extended to the
lower abdominal providing exposure of the entire splanchnic bed. The sleeve gastrectomy was done in
the same way as in patients. The lower portion of the esophagus and entire stomach were exposed.
The gastrosplenic ligament and vessels were ligated and cut. After the stomach was completely
mobilized and isolated, a clamp was placed on the stomach 0.8 cm to the lesser curvatura ventriculi
minor curve of the stomach. The transection extended from the uppermost part of the forestomach to
the lower portion of the greater curvature which were excised and removed. The remaining stomach
was sutured using uninterrupted 7-0 nylon monofilament sutures. All mice performed the operation
were given the antibiotic ertapenem (75 mg/kg BW, Invanz, Merck, Whitehouse Station, NJ, USA) at
the operative site. Saline (40 mL/kg) containing the analgesic buprenorphine (0.2 mg/kg BW) was
provided for resuscitation and pain control for 1 or 2 consecutive days. All of the gastrectomy surgeries
were performed by the same person to ensure consistency. The two gastrectomy groups (S and G)
were further subdivided into two groups according to the sacrifice schedule on day 1 (1S and 1G)
or 3 (3S and 3G) after the operation. One hour after surgery, the 1S group was injected with saline,
while the 1G group was given a single dose of alanyl-GLN dipeptide (Dipeptiven, Fresenius-Kabi,
Homburg, Germany), which provided 0.75 g GLN/kg BW intravenously via a tail vein. Mice sacrificed
on day 3 were provided another dose of saline (3S) or GLN (3G) injection on day 2 postoperatively (24 h
after the first dose of saline or GLN) according to the respective grouping. The dosage of GLN used
here was shown to attenuate inflammation and modulate immune response during catabolic state [17].
On the day of sacrifice, mice were euthanized by cardiac puncture. Blood samples were collected
in tubes containing heparin. Plasma samples were separated from whole blood by centrifugation at
1500× g and 4 ◦C for 10 min. The peritoneum was opened and irrigated with 5 mL/100 g BW of saline
to obtain peritoneal lavage fluid (PLF). The plasma and PLF were stored at −80 ◦C. Epididymal tissues
were weighed. The epididymal and liver tissues were frozen in liquid nitrogen and stored at −80 ◦C
for further analysis.

2.3. Measurements of Plasma Biochemical Markers and Adipokines

Liver function markers, including aspartate aminotransferase (AST) and alanine aminotransferase
(ALT), were measured using commercial kits (BioVision, Milpitas, CA, USA). Fasting plasma
glucose was measured by the glucose oxidase method, and insulin was analyzed by an
enzyme-linked immunosorbent assay (ELISA) kit (R&D Systems, Minneapolis, MN, USA) following
the manufacturer’s instructions.
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Table 1. Compositions of the high-fat diets.

Ingredients g/kg

Casein 259.13
L-Cysteine 3.89

Maltodextrin 161.96
Sucrose 89.14

Cellulose 64.78
Soybean oil 32.39

Lard 317.44
Mineral mix 1 12.96

Dicalcium phosphate 16.84
Calcium carbonate, 1H2O 7.13

Potassium citrate 21.38
Vitamin mix 2 12.96

Total 1000
1 The compositions of the mineral mixture are listed as following (mg/g): calcium phosphate dibasic, 500;
sodium chloride, 74; potassium sulfate, 52; magnesium oxide, 24; potassium citrate monohydrate, 20; manganese
carbonate, 3.5; ferric citrate, 6; chromium potassium sulfate, 0.55; zinc carbonate, 1.6; cupric carbonate,
0.3; potassium iodate, 0.01; sodium selenite, 0.01. 2 The compositions of the vitamin mixture are listed as
following (mg/g): DL-α-tocopherol acetate, 20; nicotinic acid, 3; retinyl palmitate, 1.6; calcium pantothenate, 1.6;
pyridoxine hydrochloride, 0.7; thiamin hydrochloride, 0.6; riboflavin, 0.6; cholecalciferol, 0.25; D-biotin, 0.05;
menaquinone, 0.005 and cyanocobalamin, 0.001.

2.4. Inflammatory Cytokine Concentrations in PLF

Local inflammatory markers, including interleukin (IL)-1β, IL-6, and tumor necrosis factor
(TNF)-α were analyzed using ELISAs in a microtiter plate. Antibodies specific for mouse IL-1β,
IL-6, and TNF-α were first coated onto the wells of microtiter strips provided by the manufacturer
(eBioscience, San Diego, CA, USA), incubated with the samples, and then developed with reagents.
The absorbance of each well was measured with a spectrophotometer.

2.5. Messenger (m)RNA Extraction and a Real-Time Reverse-Transcription (RT) Quantitative Polymerase
Chain Reaction (qPCR) Analysis

Total RNA was isolated from homogenized epididymal tissues using the TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) method. The RNA pellet was dissolved in RNase-free water. The total RNA solution
was stored at −80 ◦C for the subsequent assay. The RNA concentration was determined and quantified
by measuring absorbances at 260 and 280 nm on a spectrophotometer. Complementary (c)DNA was
synthesized from total RNA using a RevertAid™ first-strand cDNA synthesis kit (Fermentas, Vilnius,
Lithuania) according to standard protocols. RT was carried out by subsequent incubation for 5 min at
65 ◦C, 60 min at 42 ◦C, and 5 min at 70 ◦C. cDNA was stored at −80 ◦C until being used. Specific mRNA
genes were amplified by a real-time RT-PCR using the 7300 Real-Time PCR System (Applied Biosystems,
Foster City, CA, USA) with SYBR Green I as the detection format. The genes analyzed included
macrophage infiltration markers (cluster of differentiation 68 (CD68), epidermal growth factor-like
module-containing mucin-like hormone receptor-like (EMR)-1, and monocyte chemoattractant protein
(MCP)-1) and inflammatory cytokines (IL-1β, IL-6, and TNF-α). Primers used in this study are listed
in Table 2. Primers were purchased from Mission Biotech (Taipei, Taiwan) based on deposited cDNA
sequences (GenBank database, National Center for Biotechnology Information). Amplification was
carried out in a total volume of 25 µL containing 1× Power SYBR Green PCR Master Mix (Applied
Biosystems), 400 nM of each primer, and 100 ng of cDNA. The reaction was performed as one cycle of
2 min at 50 ◦C and 10 min at 95 ◦C, followed by 40 cycles of 15 s at 95 ◦C and 1 min at 60 ◦C, with a
final dissociation curve (DC) analysis. Expression levels were quantified in duplicate by means of a
real-time RT-PCR. Cycle threshold (CT) values of genes of interest were normalized to mice β-actin
and were used to calculate the relative quantity of mRNA expression [18].
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Table 2. Sequences of oligonucleotide primers used in the PCR amplification.

Primer Sequences (5′→3′)

GAPDH Forward TGCACCACCAACTGCTTAG
Reverse GGATGCAGGGATGATGTTC

TNF-α Forward AAATGGGCTCCCTCTCATCAGTTC
Reverse TCTGCTTGGTGGTTTGCTACGAC

IL-1β Forward TGCCACCTTTTGACAGTGATG
Reverse ATGTGCTGCTGCGAGATTT

IL-6 Forward TCCTACCCCAACTTCCAATGCTC
Reverse TTGGATGGTCTTGGTCCTTAGCC

CD68 Forward TGTTCAGCTCCAAGCCCAAA
Reverse ACTCGGGCTCTGATGTAGGT

EMR-1 Forward ACCTTGTGGTCCTAACTCAGTC
Reverse ACAAAGCCTGGTTGACAGGTA

MCP-1 Forward GATTCACATTTGCGCTGCCT
Reverse TGAGCCTGGGAGATCACCAT

GAPDH, glyceraldehyde 3-phosphate dehydrogenase; TNF, tumor necrosis factor; IL, interleukin; CD68, cluster of
differentiation 68; EMR-1, EGF-like module-containing mucin-like hormone receptor-like 1; MCP-1, macrophage
chemoattractant protein-1.

2.6. Proteomics Sample Preparation

Twenty micrograms of freeze-dried liver proteins were solubilized in 10 µL of 2 mM
dithioerythritol/8 M urea in 25 mM ABC (NH4HCO3, ammonium bicarbonate buffer at pH 8.0)
for disulfide bond reduction at 37 ◦C for 45 min, and 10 µL of 20 mM iodoacetamide in 25 mM ABC was
added for alkylation for 45 min at room temperature in the dark. Trypsin was added and incubated
at 37 ◦C overnight. The digestion reaction was stopped by adding 10 µL of 1% formic acid (FA).
Digested peptides were desalted using a C18 Zip-Tip and eluted with 50% acetonitrile (ACN) and
0.1% FA. The eluate was freeze-dried and solubilized in 100 µL of 0.1% FA in 95:5 water/ACN before
ultra-performance liquid chromatographic quadrupole orthogonal time of flight mass spectroscopic
(UPLC-Q-TOF MS) analysis.

2.7. UPLC-Q-TOF MS Analysis

Five microliters of desalted peptides were analyzed in triplicate in an XBridge BEH130 C18 5-µm
desalting/trap column on-line with a BEH300 C18 1.7-µm nanoUPLC analytical capillary column
(100 µm × 100 mm) on an ACQUITY nanoUPLC-LC system interfaced with a nano source to a SYNAPT
G2 Q-TOF MS (Waters MS Technologies, Manchester, UK). The entire length of the LC run was 120 min
starting with a gradient of ACN/0.1 FA (1% to 40%) from 2 to 70 min followed by an 85% ACN
wash and re-equilibration. Data were acquired in the V-positive mode with Glu-Fib as the calibrant
(m/z 785.8426) and lock mass. MS and MS/MS data were recorded in the MSE mode (MS1 scan every
0.6 s at 10,000 Firmware Hub resolution and MS/MS fragmentation of all ions every 0.6 s). Acquisition of
all data was controlled by Waters MassLynx v4.1 software. MSE runs were also analyzed by Protein
Lynx Global Server 3.0.3 software for validation of protein hits and the peptide coverage map.

2.8. Differential Label-Free Quantitative and Qualitative Proteomics

Progenesis QI for Proteomics version 4.2 (Nonlinear Dynamics, Newcastle, UK) was used to
analyze the different MSE runs in triplicate. Samples were compared according to their exact mass
versus the retention time ratio after normalization to total proteins. Peptides were identified using
the Progenesis QI for proteomics internal MSe search engine based on ProteinLynx Global Server
3.0.3 and the human protein FASTA database created according to the respective UniProt sequences.
Progenesis was quantified by the built-in Hi-3 algorithm from Waters which allowed, after Apex 3D
peptide identification of the reference protein digest, the quantification of any protein based on their
three most abundant peptides. The fixed modification was carbamidomethyl cysteine (+57.02 Da),
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and other variable modifications were also accounted for in the search, such as deamidation (+0.98)
and oxidation Multihundred-Watt (15.99). The protein normalization method chosen in Progenesis, as
mentioned previously, was performed according to total proteins as well as absolute quantification.

2.9. Ingenuity Pathway Analysis (IPA) of the Proteomic Profiles in the Liver

Proteins identified and quantified by Progenesis QI with a 2-fold change in abundance (log2
ratio of >1.0 and <−1.0) were chosen and a p value cutoff of 0.05 was applied in the IPA (Ingenuity®

System, Redwood City, CA, USA. www.ingenuity.com). Protein data along with individual multiples
of change were uploaded to IPA software for grouping interactions and analyzing canonical pathways.
Matched proteins encoding genes identified pathways from the IPA Knowledge Base. Based on the
IPA’s analysis, significant canonical pathways, biological functions, diseases, and interaction networks
were algorithmically generated to predict the activation status of these processes.

2.10. Statistical Analyses

Data are expressed as the mean ± standard error of the mean (SEM). All analyses were conducted
using GraphPad Prism 5 (GraphPad Software, La Jolla, CA, USA). Differences between the NC
and high-fat sham (SH) groups were compared with a t-test. A one-way analysis of variance
(ANOVA) followed by the Bonferroni post-hoc test was used to analyze differences among the SH
and gastrectomy groups. A p value of <0.05 was considered statistically significant. ANOVA statistics
were also calculated using the built-in Progenesis statistics module. Significance levels of associations
between the dataset and canonical pathways were calculated by Fisher’s exact test, and p < 0.05 was
accepted as a significant difference.

3. Results

3.1. BW and Epididymal Weight Changes after Feeding the High-Fat Diet for 10 Weeks

Initial BWs were similar between the NC and HF groups. After 10 weeks of feeding, the BW of
the HF group was significantly higher than that of the NC group (NC 25.8 ± 0.8 g vs. HF 31.9 ± 1.6 g,
p < 0.05). The epididymal fat weight of the HF group was also higher than that of the NC group
(NC 0.45 ± 0.23 g vs. HF 1.58 ± 0.15 g, p < 0.05).

3.2. Plasma Adipokine, Glucose, and Insulin Levels after the High-Fat Diet Intervention

DIO resulted in elevated leptin and adiponectin concentrations. Glucose and insulin levels were
also higher after 10 weeks of high-fat diet feeding (Table 3).

Table 3. Plasma adipokine, glucose, and insulin levels after 10 weeks of feeding.

Parameter NC HF

Leptin (ng/mL) 4.64 ± 0.85 11.01 ± 1.40 *
Adiponectin (µg/mL) 5.69 ± 0.56 9.98 ± 0.80 *

Glucose (mg/dL) 100.32 ± 20.38 221.47 ± 21.36 *
Insulin (µIU/mL) 18.65 ± 0.12 55.23 ± 1.12 *

Data are expressed as the mean± SEM. NC, normal control group; HF, high-fat diet group. All data are representative
of duplicate measurements (n = 8). Differences between groups were analyzed by an unpaired t-test. * Significantly
differs from the NC group.

3.3. Effects of GLN on BW Change after a Gastrectomy

BW changes did not differ between the two gastrectomy groups 1 day after surgery
(1S −1.77 ± 0.82 g vs. 1G −1.49 ± 0.97 g; p > 0.05). However, mice administered GLN had lost
more weight than the saline group 3 days after the gastrectomy (3S −2.48 ± 0.33 g vs. 3G −3.62 ± 0.41 g;
p < 0.05).

www.ingenuity.com
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3.4. Effects of GLN on Plasma Biochemical Parameters in Obese Mice after a Gastrectomy

Compared to the SH and S groups, glucose and insulin concentrations were significantly lower
in the G group on both days 1 and 3 after the gastrectomy. There were no differences in glucose or
insulin levels between the SH and S groups after surgery (Table 4). Compared to the SH group, a sleeve
gastrectomy resulted in decreased plasma adiponectin, while leptin, ALT, and AST concentrations
increased several fold, especially on day 1 post-surgery. By day 3, the elevated levels of leptin, ALT,
and AST had diminished in both gastrectomy groups. Compared to the S group, the G group had higher
adiponectin, whereas leptin, ALT, and AST levels were lower on days 1 and 3 after the gastrectomy.
There were no differences in levels of leptin, ALT, or AST between the SH and G groups 3 days after
surgery (Figure 1).

Table 4. Plasma glucose and insulin levels of the experimental groups.

Group Glucose (mg/dL) Insulin (µIU/mL)

SH 213.9 ± 10.6 96.2 ± 27.2
1S 225.5 ± 10.3 88.9 ± 12.7
1G 122.4 ± 12.2 *,# 40.6 ± 6.1 *,#

3S 189.6 ± 10.1 80.2 ± 8.8
3G 108.2 ± 6.2 *,# 42.8 ± 6.6 *,#

Data are expressed as the mean ± SEM. SH, sham group; 1S, saline-injected group sacrificed 1 day after the
gastrectomy; 1G, GLN-injected group sacrificed 1 day after the gastrectomy; 3S, saline group sacrificed 3 days after
the gastrectomy; 3G, GLN-injected group sacrificed 3 days after the gastrectomy. * Significantly differs from the SH
group. # Significantly differs from the S group at the same time point (p < 0.05).
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Figure 1. Plasma levels of (A) adiponectin, (B) leptin, (C) AST and (D) ALT among the sham group
and experimental groups on days 1 and 3 after a sleeve gastrectomy. Data are presented as the
mean ± SEM. AST, aspartate aminotransferase; ALT, alanine aminotransferase. SH, sham group;
1S, saline-injected group sacrificed 1 day after the gastrectomy; 1G, GLN-injected group sacrificed 1 day
after the gastrectomy; 3S, saline group sacrificed 3 days after the gastrectomy; 3G, GLN-injected group
sacrificed 3 days after the gastrectomy. n = 8 for each group. Differences among groups were analyzed
by a one-way analysis of variance (ANOVA) followed by the Bonferroni post-hoc test. + Significantly
differs from the gastrectomy groups. * Significantly differs from the SH group. # Significantly differs
from the S group at the same time point (p < 0.05).
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3.5. Effects of GLN on Cytokine Levels in PLF

A gastrectomy resulted in increased IL-1β, IL-6, and TNF-α levels on day 1 in PLF.
These inflammatory cytokines exhibited more-pronounced elevations on day 3 after surgery. Compared
to the SH group, the G group had lower IL-1β and IL-6 at both time points and lower TNF-α on day 3
after the gastrectomy (Figure 2).Nutrients 2020, 12, x FOR PEER REVIEW  9 of 15 
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Figure 2. Concentrations of inflammatory cytokine (A) IL-1β, (B) IL-6 and (C) TNF-α in peritoneal
lavage fluid. IL-1β, interleukin-1β; IL-6, interleukin-6; TNF-α, tumor necrosis factor-α. SH, sham group;
1S, saline-injected group sacrificed 1 day after the gastrectomy; 1G, GLN-injected group sacrificed 1 day
after the gastrectomy; 3S, saline group sacrificed 3 days after the gastrectomy; 3G, GLN-injected group
sacrificed 3 days after the gastrectomy. n = 8 for each group. Values are presented as the mean ± SEM.
Differences among groups were analyzed by a one-way analysis of variance (ANOVA) followed by the
Bonferroni post-hoc test. + Significantly differs from the SH group. # Significantly differs from the S
group at the same time point (p < 0.05).
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after the Gastrectomy

Compared to the normal control, obesity and gastrectomy resulted in significantly higher CD68,
EMR-1, and MCP-1 gene expressions. However, there were no significant differences in expressions
of IL-1β, IL-6, or TNF-α between the NC and SH groups. The inflammatory cytokines of IL-1β, IL-6,
and TNF-α were all elevated after the gastrectomy. The macrophage infiltration markers of CD68,
EMR-1, and MCP-1, and the inflammatory cytokines were significantly lower in the G groups compared
to the S groups after the operation (Figure 3).
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Figure 3. Messenger RNA expression of (A) inflammatory cytokines and (B) macrophage infiltration
markers in epididymal fat tissues. IL-1β, interleukin-1β; IL-6, interleukin-6; TNF-α, tumor necrosis
factor-α; EMR-1, epidermal growth factor-like module-containing mucin-like hormone receptor-like
1, MCP-1, monocyte chemoattractant protein-1. NC, normal control group (n = 6). SH, sham group;
1S, saline-injected group sacrificed 1 day after the gastrectomy; 1G, GLN-injected group sacrificed 1
day after the gastrectomy; 3S, saline group sacrificed 3 days after the gastrectomy; 3G, GLN-injected
group sacrificed 3 days after the gastrectomy. n = 8 for the SH and gastrectomy groups. Values are
presented as the mean ± SEM. Differences among groups were analyzed by a one-way analysis of
variance (ANOVA) followed by the Bonferroni post-hoc test. + Significantly differs from the other
groups. * Significantly differs from the NC and SH groups. # Significantly differs from the S group at
the same time point (p < 0.05).

3.7. Hepatic Proteomic Profiles Analyzed by the IPA

There were 448 proteins identified by Progenesis QI, and 262 proteins showed significant differences
between the dataset and the canonical pathways analyzed by the IPA system. We focused on pathways
related to glucose metabolism. There were no differences in protein sets between the 1S and 1G
groups, however, the 3S and 3G groups showed significantly different protein sets in glycolysis and
gluconeogenesis. The p values of gluconeogenesis and glycolysis were 1.5 × 10−8 and 6.12 × 10−7,
respectively (Figure 4). The hepatic proteomic profiles showed that there were seven enzymes in
gluconeogenesis and four enzymes in glycolysis pathway which significantly differed between the
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3G and 3S groups. The fold changes of proteins were presented as log2 3S/3G. Positive numbers
indicate that the 3S group had higher aldolase, fructose-bisphosphate B (ALDOB), enolase 1 (ENO1),
fructose-bisphosphatase 1 (FBP1), malate dehydrogenase 1 (MDH1), pyruvate carboxylase (PC),
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and triosephosphate isomerase 1 (TPI1)
expressions than those of the 3G group (Table 5). The gluconeogenesis and glycolysis pathways
have some enzymes in common; however, the enzymes unique for glycolysis, including hexokinase,
phosphofructokinase, and pyruvate kinase, did not have statistical differences between the 3S and 3G
groups and were not analyzed by IPA.

Nutrients 2020, 12, x FOR PEER REVIEW  11 of 15 

glycolysis and gluconeogenesis. The p values of gluconeogenesis and glycolysis were 1.5 × 10−8 and 
6.12 × 10−7, respectively (Figure 4). The hepatic proteomic profiles showed that there were seven 
enzymes in gluconeogenesis and four enzymes in glycolysis pathway which significantly differed 
between the 3G and 3S groups. The fold changes of proteins were presented as log2 3S/3G. Positive 
numbers indicate that the 3S group had higher aldolase, fructose-bisphosphate B (ALDOB), enolase 
1 (ENO1), fructose-bisphosphatase 1 (FBP1), malate dehydrogenase 1 (MDH1), pyruvate carboxylase 
(PC), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and triosephosphate isomerase 1 
(TPI1) expressions than those of the 3G group (Table 5). The gluconeogenesis and glycolysis 
pathways have some enzymes in common; however, the enzymes unique for glycolysis, including 
hexokinase, phosphofructokinase, and pyruvate kinase, did not have statistical differences between 
the 3S and 3G groups and were not analyzed by IPA. 

 

 
 
 
 
 
 
 

Figure 4. Comparison of canonical pathways between the 3S and 3G groups. Only two different 
pathways were shown to be related to glucose metabolism. The vertical line indicates a threshold of 
p < 0.05. Significant canonical pathways were determined by an ingenuity system pathway analysis. 
The x-axis displays the negative log of the p value calculated by Fisher’s exact test. The 
gluconeogenesis pathway is shown in a deeper blue color, indicating greater significance than the 
glycolysis. p values of gluconeogenesis and glycolysis were 1.5 × 10−8 and 6.12 × 10−7, respectively.  

Table 5. Canonical pathway analysis of hepatic enzyme expressions in the gluconeogenesis pathway 
between two groups. 

Identifier Enzymes  Description 
Log2 

(3S/3G) p Value 

Q91Y97 ALDOB Aldolase, fructose-bisphosphate B 0.76 0.001 
P17182 ENO1 Enolase 1 0.68 0.006 

Q9QXD6 FBP1 Fructose-bisphosphatase 1 0.69 0.03 
P14152 MDH1 Malate dehydrogenase 1 0.41 0.04 
Q05920 PC Pyruvate carboxylase 1.18 0.03 
P16858 GAPDH Glyceraldehyde-3-phosphate dehydrogenase 1.6 0.03 
P17751 TPI1 Triosephosphate isomerase 1.59 0.03 

The multiple fold change of protein expressions was uploaded to IPA software to analyze interaction 
networks of differentially expressed proteins. Significance (p value of the overlap) was calculated by 
Fisher’s exact test; p < 0.05 represents a significant difference. 

4. Discussion 

Sleeve gastrectomy is the most commonly performed bariatric procedure worldwide [19]. In this 
study, a surgical procedure of sleeve gastrectomy was carried out in DIO mice. This animal model 
mimics bariatric surgery used in patients with obesity and allowed us to investigate the effects of a 
nutrient intervention on molecular mechanisms after surgery. This is the first study to investigate the 
effects of intravenous GLN administration on glucose homeostasis by identifying hepatic proteomic 
profiles after bariatric surgery. Moreover, the influence of GLN on adipocyte inflammatory responses 
was evaluated. This study reported differential proteomics of the GLN intervention after sleeve 
gastrectomy. The proteomic datasets were analyzed by an IPA, and significant glycolysis and 

Figure 4. Comparison of canonical pathways between the 3S and 3G groups. Only two different
pathways were shown to be related to glucose metabolism. The vertical line indicates a threshold of
p < 0.05. Significant canonical pathways were determined by an ingenuity system pathway analysis.
The x-axis displays the negative log of the p value calculated by Fisher’s exact test. The gluconeogenesis
pathway is shown in a deeper blue color, indicating greater significance than the glycolysis. p values of
gluconeogenesis and glycolysis were 1.5 × 10−8 and 6.12 × 10−7, respectively.

Table 5. Canonical pathway analysis of hepatic enzyme expressions in the gluconeogenesis pathway
between two groups.

Identifier Enzymes Description Log2 (3S/3G) p Value

Q91Y97 ALDOB Aldolase, fructose-bisphosphate B 0.76 0.001
P17182 ENO1 Enolase 1 0.68 0.006

Q9QXD6 FBP1 Fructose-bisphosphatase 1 0.69 0.03
P14152 MDH1 Malate dehydrogenase 1 0.41 0.04
Q05920 PC Pyruvate carboxylase 1.18 0.03
P16858 GAPDH Glyceraldehyde-3-phosphate dehydrogenase 1.6 0.03
P17751 TPI1 Triosephosphate isomerase 1.59 0.03

The multiple fold change of protein expressions was uploaded to IPA software to analyze interaction networks of
differentially expressed proteins. Significance (p value of the overlap) was calculated by Fisher’s exact test; p < 0.05
represents a significant difference.

4. Discussion

Sleeve gastrectomy is the most commonly performed bariatric procedure worldwide [19]. In this
study, a surgical procedure of sleeve gastrectomy was carried out in DIO mice. This animal model
mimics bariatric surgery used in patients with obesity and allowed us to investigate the effects of a
nutrient intervention on molecular mechanisms after surgery. This is the first study to investigate the
effects of intravenous GLN administration on glucose homeostasis by identifying hepatic proteomic
profiles after bariatric surgery. Moreover, the influence of GLN on adipocyte inflammatory responses
was evaluated. This study reported differential proteomics of the GLN intervention after sleeve
gastrectomy. The proteomic datasets were analyzed by an IPA, and significant glycolysis and
gluconeogenesis pathways were identified between groups with and without GLN administration 3 d
post-surgery. We focused on the metabolic changes at postoperative days 1 and 3, because despite
there has strong evidence for the long-term efficacy and safety [19], the bariatric surgery itself may
exacerbate the inflammation with increased oxidative stress [20]. Attenuation of the inflammatory
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response shortly after the surgery may have metabolic benefits afterward. The main findings showed
that intravenous GLN administration downregulated the pathway of gluconeogenesis and attenuated
adipose tissue inflammation in DIO mice shortly after the sleeve gastrectomy.

High-fat diet feeding for 10 weeks produced significant increases in weight gain, adiposity,
glucose intolerance, and IR. These findings were consistent with previous reports in DIO mice [21,22].
Adipose tissues are recognized as a multifunctional organ. In addition to lipid storage, they secrete
several hormones called adipokines, which participate in energy balance, lipid metabolism,
vascular homeostasis, inflammation, acute-phase responses, etc. [23]. Among the adipokines, leptin and
adiponectin are the most notable that are involved in immune modulation in obesity. Leptin promotes
inflammatory responses in obesity [24], while adiponectin inhibits TNF-α production in macrophages
and is considered to have anti-inflammatory properties [23]. In this study, high-fat diet feeding
produced significant increases in leptin and adiponectin levels indicating enhanced adipokine secretion
in response to adipose tissue accumulation.

Obesity is recognized as a chronic inflammatory state. IL-1β, IL-6, and TNF-α are cytokines
secreted during an inflammatory response. CD68 is a protein highly expressed by macrophages of
inflamed tissues [25]. EMR-1, also known as F4/80, is a well-known and widely used marker of murine
macrophages [26]. MCP-1, a monocyte activating protein, is involved in recruiting leukocytes to sites
of inflammation [27]. Higher plasma leptin levels accompanying epididymal inflammatory cytokines
and macrophage-infiltration gene expressions after sleeve gastrectomy suggest systemic inflammation
occurred after surgery. A previous animal study showed that glucose tolerance had improved 3 weeks
after bariatric surgery [22]. Since this study focused on bariatric surgery-associated glucose metabolism
and inflammation, biochemical parameters were analyzed shortly after the operation. Therefore,
weight loss and alterations in plasma glucose and insulin were not obvious when treated with saline.
We also observed that obese mice performed gastrectomy resulted in higher liver transaminase levels.
These results were consistent with previous clinical study, the authors reported a transient elevation of
hepatic transaminases after gastric bypass in obese subjects. The ALT and AST levels peaked at 24 h
and almost return to within baseline levels by 72 h. The mechanisms were found to be correlated with
the operative time, the pressure of pneumoperitoneum, or musculoskeletal injury of the abdominal
wall after open abdominal operations [28].

In this study, we found that DIO mice intravenously administered GLN after sleeve gastrectomy
exhibited several favorable effects that were not observed in the saline groups. First, GLN administration
improved glucose tolerance after the surgery. Hepatic proteomic profiles showed that GLN
administration to DIO mice downregulated gluconeogenesis-specific enzyme expressions after sleeve
gastrectomy. Gluconeogenesis and glycolysis are reciprocally regulated. Gluconeogenesis is a pathway
that generates glucose from non-carbohydrate substrates, while glycolysis breaks down glucose
into pyruvate to generate energy. These two pathways have some of the enzymes in common;
however, there are irreversible steps to ensure that glycolysis and gluconeogenesis do not take place
simultaneously in the same cell to a significant extent. Aldolase, enolase, GAPDH, and TPI1 are
common enzymes in both gluconeogenesis and glycolysis, whereas MDH, FBP1, and PC are enzymes
specifically involved in the process of gluconeogenesis. MDH and PC participate in the conversion of
pyruvate to phosphoenolpyruvic acid, and FBP1 converts fructose-1,6-bisphosphate to fructose-6-P [29].
Our findings revealed that enzymes involved in gluconeogenesis were downregulated, whereas the
process of glycolysis was not obviously changed when GLN was administered. Since inhibition of
gluconeogenesis reduces glucose production, this might improve glucose tolerance after gastrectomy.
These results are consistent with a report that GLN supplementation improved insulin’s systemic
action, increased muscle glucose uptake, and reduced hepatic glucose production in DIO rats [14].
Our previous study also showed that dietary GLN supplementation increased hepatic glycogen
synthesis and reduced gluconeogenesis through regulating the PI3K-Akt pathway in DIO mice
complicated with limb ischemia [30]. On the other hand, elevated adiponectin levels observed in the
GLN group were considered to have a glucose-lowering effect and improve IR [31,32]. Second, the GLN
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group showed more-pronounced weight loss at day 3 after the gastrectomy. A previous study reported
that rats treated with a GLN-supplemented high-fat diet exhibited improved insulin action and
signaling only in the liver and muscles but not in adipose tissues. This tissue-specific IR response
prevents adipose mass accumulation and reduces weight gain [15]. A human study also showed
that oral GLN supplementation reduced the waist circumference in subjects with overweight and
obesity [15]. In addition, adiponectin-induced energy expenditure and fatty acid oxidation may
also promote weight loss after surgery [29,30]. Third, GLN administration attenuated adipocyte
inflammation and macrophage infiltration after the gastrectomy. Moreover, the inflammatory cytokines
produced in the PLF, the primary abdomen injury site, were reduced. A recent in vitro study reported
that GLN is the most markedly reduced amino acid in fat tissues obtained from subjects with obesity.
Decreased GLN levels in adipose tissues result in increased nuclear O-GlcNAcylation in adipocytes
that may consequently activate the transcription of proinflammatory proteins [33]. Our results are
consistent with a report that administration of GLN reduced macrophage infiltration and attenuated
expressions of proinflammatory genes and proteins in adipocytes [33]. There is a close link between
inflammation and IR. Attenuated inflammation may contribute to the improvements in IR and glucose
tolerance [34] as observed in the group with GLN administration. Since only 3 days after sleeve
gastrectomy was observed in this study, the long-term effects of GLN on obesity with sleeve gastrectomy
require further investigation.

5. Conclusions

This is the first study to investigate the impacts of intravenous GLN administration on glucose
homeostasis and inflammation in DIO mice after bariatric surgery. The results demonstrated
that treatment of DIO mice with GLN downregulated hepatic proteomic profiles associated with
gluconeogenesis and improved glucose tolerance. Moreover, macrophage infiltration and adipose
tissue inflammation were attenuated 1 d and 3 d after the sleeve gastrectomy. The findings provide
basic information and imply that GLN may improve glucose tolerance and attenuate inflammation
shortly after the bariatric surgery in subjects with obesity.
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