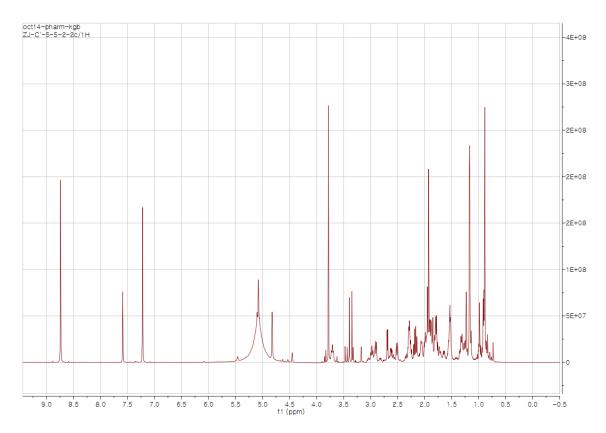
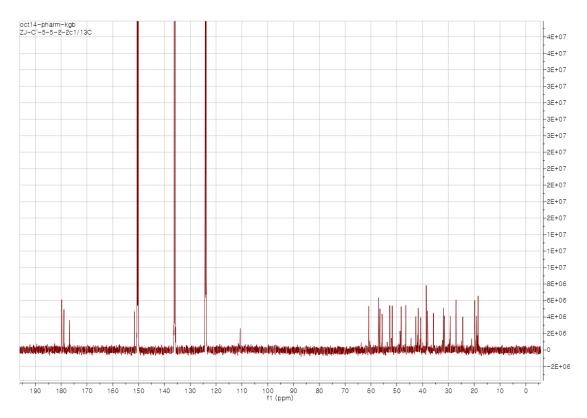
Contents

	Materials and Methods	
	Characterization data of 3DC2ME	
	Figure S1. ¹ H NMR spectrum of 3DC2ME5	
	Figure S2. ¹³ C NMR spectrum of 3DC2ME5	
	Figure S3. HRESIMS of 3DC2ME6	
	Figure S4. LC/MS analysis of 3DC2ME6	
	Figure S5. Protective effect of Z. jujuba root extract and its four fractions against cisplatic	n-
inc	luced kidney cell damage	

Materials and Methods


Preparation of fractions and 3DC2ME from Ziziphus jujuba

The roots of Z. jujuba were collected in April 2012 at Jinju, Korea and authenticated by Prof. Dr. Eun Ju Jeong (Gyeongnam National University of Science and Technology, Jinju, Korea). A voucher specimen (SUPH-1204-01) was deposited in the Herbarium of the Medicinal Plant Garden, College of Pharmacy, Seoul National University, Koyang, Korea. Pulverized, air-dried roots of Z. jujuba (7.5 kg) were extracted with EtOH (2 × 30 L, for 3 h each) with ultrasonication at room temperature and then concentrated in vacuo. The crude extract (630.4 g) was suspended in H₂O and partitioned successively into CHCl₃ (103.5 g), EtOAc (75.0 g), and n-BuOH fractions (127.3 g), respectively. The CHCl₃ fraction was subjected to silica gel column chromatography (CC) eluted with mixtures of CHCl₃-MeOH (100:1, 50:1, 25:1, 15:1, 10:1, 7:1, 5:1, and 3:1) to yield ten fractions (C1–C10). The MeOH-soluble part of fraction C5 was subjected to silica gel CC eluted with CHCl₃-MeOH mixtures of increasing polarity (100:1, 50:1, 25:1, 15:1, 10:1) to give ten subfractions (C5a-C5j). Subfraction C5e was separated into seven further subfractions (C5e1-C5e7) by silica gel CC with mixtures of CHCl₃-MeOH of increasing polarity (100:1, 50:1, 25:1, 15:1, 10:1). White pellets of subfraction C5e2, which were insoluble in MeOH, were filtered and purified by recrystallization with MeOH to yield 3dehydroxyceanothetric acid 2-methyl ester (3DC2ME) (45.8 mg).


Characterization data

3-Dehydroxyceanothetric Acid 2-Methyl Ester.

White amorphous powder; mp 296–298 °C; $[\alpha]_D^{20}$ +73.4 (c 0.10, MeOH); IR v_{max} 3704, 2950, 2869, 2361, 2327, 1687, 1054, 1033, 1013 cm⁻¹; ¹H NMR (600 MHz, pyridine-ds) δ 5.08 (s, 1H, H-29a), 4.82 (s, 1H, H-29b), 3.78 (s, -OCH₃), 3.71 (m, 1H, H-19), 2.98 (dt, 1H, J = 4.8, 12.9 Hz, H-13), 2.69 (d, 1H, J = 7.6 Hz), 1.92 (s, 3H, H-30), 1.17 (s, 3H, H-23), 1.16 (s, 3H, H-26), 0.89 (s, 3H, H-24), 0.89 (s, 3H, H-25); ¹³C NMR (150 MHz, pyridine-ds) δ 178.9 (C-27), 179.8 (C-28), 176.8 (C-2), 151.6 (C-20), 110.7 (C-29), 60.8 (C-14), 57.0 (C-17), 56.5 (C-5), 55.7 (C-1), 52.7 (C-18), 51.6 (C-10), 48. 3(C-19), 46.5 (C-9), 42.6 (C-3), 41.7 (C-8), 40.7 (C-13), 38.6 (C-4), 38.1 (C-22), 38.1 (C-7), 35.8 (C-16), 31.9 (C-23), 31.6 (C-21), 29.3 (C-15), 27.2 (C-12), 27.0 (C-24), 24.4 (C-11), 19.8 (C-25), 19.8 (C-30), 19.1 (C-6), 18.5 (C-26); HRESIMS m/z 513.3208 [M – H]⁻ (calcd for C₃₁H₄₅O₆, 513.3216).

Figure S1. ¹H NMR spectrum of 3DC2ME.

Figure S2. ¹³C NMR spectrum of 3DC2ME.

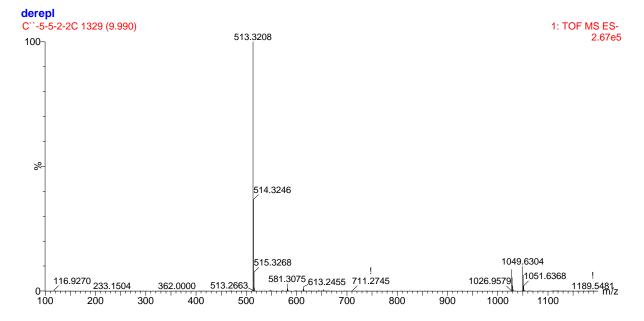
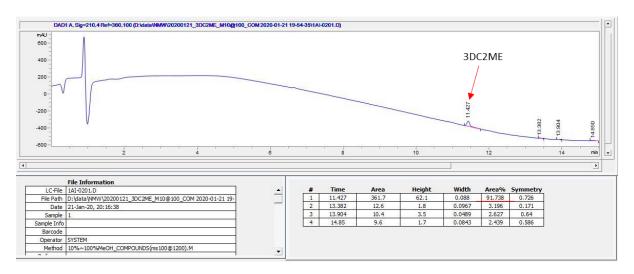
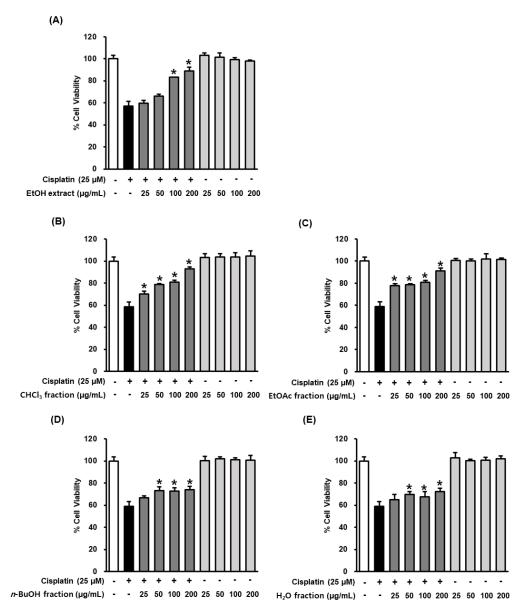




Figure S3. HRESIMS of 3DC2ME.

Figure S4. LC/MS analysis of 3DC2ME [detection wavelength was set at 210 nm; The mobile phase consisted of H_2O (A) and MeOH (B) with a gradient system as follows: 10-100% B (0-15 min); flow rate = 0.3 mL/min; analytical Kinetex (4.6 × 100 mm, 3.5 μ m) column].

Figure S5. Protective effect of *Z. jujuba* root extract and its four fractions against cisplatin-induced kidney cell damage. Effects of (A) EtOH extract and (B) CHCl₃, (C) EtOAc, (D) n-BuOH, (E) H₂O fractions on viability LLC-PK1 cells exposed to 25 μ M cisplatin for 24 h using the Ez-Cytox cell viability assay. (mean \pm SD, * p < 0.05 cisplatin-treated LLC-PK1 cells). EtOH, ethyl alcohol; CHCl₃, chloroform; EtOAc, ethyl acetate; n-BuOH, n-butanol; H₂O, water; SD, standard deviation.