Supplemental Material

A guide to human zinc absorption: general overview and recent advances of *in vitro* intestinal models

Maria Maares ¹, Hajo Haase ^{1,2,*}

¹ Technische Universität Berlin, Chair of Food Chemistry and Toxicology, Germany

² TraceAge - DFG Research Unit on Interactions of essential trace elements in healthy

and diseased elderly, Potsdam-Berlin-Jena, Germany

*Corresponding author:

Technische Universität Berlin, Chair of Food Chemistry and Toxicology, Straße des 17. Juni 135, 10623 Berlin, Germany Tel: +49 (0) 30 31472701 Fax: +49 (0) 30 31472823 E-Mail: Haase@TU-Berlin.de

Tissue	Weight (g) *	Ref.	Zinc Concentration (µg/g tissue wet weight)	Ref.	Total Zinc Content (g)	Proportion of Total Body Zinc * (%)
Eye	7.5	[1]	1.3	[2]	< 0.01	< 0.01
Liver	1,500	[3]	58	[4]	0.09	3.4
Heart	331	[5]	26.5	[6]	0.01	0.3
Brain	1,407	[3]	11	[6]	0.02	0.6
Lung	840	[3]	16	[6]	0.01	0.5
Kidneys	266	[3]	55	[4]	0.01	0.6
Intestine	2,100	[7]	15.5	[6]	0.03	1.3
Stomach	130	[8]	13.4	[6]	< 0.01	0.1
Bone	9,458	[9]	100	[4]	0.95	36.7
Muscle	25,100	[10]	51	[4]	1.28	49.7
Blood plasma	3,437	[11]	1.25 [µg/mL]	[12]	<0.01	0.2
Whole Blood	5,509	[11]	6.81 [µg/mL]	[6]	0.04	1.5
Hair and nails	53.8	[9]	247	[13]	0.01	0.5
Skin	3,405.54	[9]	32	[4]	0.11	4.2
Spleen	139	[3]	14.7	[6]	< 0.01	0.1
Pancreas	119	[14]	33.3	[15]	< 0.01	0.2
					Σ 2.6	100

Table 1. Zinc content of the human body.

* calculated for a 60–70 kg adult, based on the respective body weight used as references for tissue weight.

	WHO [16]			EFSA [1	7]		-		D	GE [18]			
Age, Sex	RN LLich 2	II (mg/d)	I	- A	lge	PRI (mg/d)	Age	-		RDI (mg/d)		
	nign "	WIOU ⁹	LOW											
7–12 mos	0.8 d; 2.5 e	4.1	8.4	7-11	1 mos	2	.9	<4 mos			1	.5		
1–3 yr	2.4	4.1	8.3	1-	-3 yr	4	.3	4–12 mos			2	.5		
4–6 yr	2.9	4.8	9.6	4	-6	5	.5	1–4 yr			3	.0		
7–9 yr	3.3	5.6	11.2	7-	-10	7	.4	4–7 yr			4	.0		
10–18 yr, m	5.1	8.6	17.1			m	f	7–10 yr			6	.0		
10–18 yr, f	4.3	7.2	14.4	11-	-14 yr	9.4	9.4			m			f	
19–65 yr, m	4.2	7.0	14.0	15-	·17 yr	12.5	10.4	Phytate	Low ^f	Med g	High ^h	Low ^f	Med g	High ^h
19–65 yr, f	3.0	4.9	9.8	Age	Phytate (mg/d)			10–13 yr		9			8	
> 65 yr, m	4.2	7.0	14.0	≥ 18 yr	300	9.4	7.5	13–15 yr		12			10	
> 65 yr, f	3.0	4.9	9.8	≥ 18 yr	600	11.7	9.3	15–19 yr		14			11	
Pregnancy				≥ 18 yr	900	14.0	11.0	≥19 yr	11	14	16	7	8	10
1 st TT	3.4	5.5	11.0	≥ 18 yr	1200	16.3	12.7	Pregnancy						
2nd TT	4.2	7.0	14.0					1 st TT				7	9	11
3 rd TT	6.0	10.0	20.0	Preg	nancy		+1.6	2 nd –3 rd TT				9	11	13
Lactation				Lact	tation		+2.9	Lactation				11	13	14
0 3 mo	5.8	9.5	19.0											
3 - 6 mo	5.3	8.8	17.5											
6–12 mo	4.3	7.2	14.4											

Table 2. Recommended daily allowance for dietary zinc intake for selected life-stages.

BV, bioavailability; EFSA, European Food Safety Authority; DGE, German Society for Nutrition (*ger.: Deutsche Gesellschaft für Ernährung*); f, female; m, male; mos, months; PRI, population reference intake; RDI, recommended daily intake; RNI, recommended nutrient intake; TT, trimester; WHO, World Health Organization; yr, years; ^aHigh bioavailability (50%); ^bModerate bioavailability (30%); ^cLow bioavailability (15%); ^dexclusively breastfed infants (bioavailability 80%); ^enot exclusively breastfed; ^f300 mg phytate/d; ^g660 mg phytate/d; ^h990 mg phytate/d; Recommendations for adults from EFSA and DGE include different phytate levels using a trivariate model by Miller *et al.* [19] for assessing the relationship between dietary phytate, dietary zinc, and absorbed zinc.

Cell Model	Incubation Parameter	Analysis	Main Outcome	Reference
Caco-2 Differentiation time: 14 d 2D	Recombinant expression of myc-tagged hZnT-5B in Caco-2 cells Addition of ZnCl ₂ to growth medium: Stepwise increase from 20, 50 and 100 µM each for 7d	Recombinant transfection Gene expression: RT-PCR Immunochemical staining	 highest expression of ZTL1 in mouse kidney, brain, duodenum and jejunum apical localization of hZTL1 at apical membrane of Caco-2 hZTL1 (later named ZnT-5B) and MT expression increased in Caco-2-WT cells after prolonged zinc treatment 	[20]
Caco-2 Cultivation time: 14 d 2D	Human study: 25 mg ZnSO4/d (placebo Na SO4); duration: 14 d Caco-2: 100 μM or 200 μM ZnCl2 (in DMEM + 10% FCS) for 3 d	Gene expression: RT-PCR Protein quantification: Immunocytochemistry	 mRNA and protein expression of ZnT-1, ZnT-5, ZnT-5, ZIP4 in enterocytes (biopsies of ileal mucosa) ↓ znt-1↓ MT mRNA increased ↑ mRNA and protein expression in Caco-2 cells was in agreement with human study localization of ZnT-5 at apical membrane of human enterocytes and Caco-2 cells 	[21]
Caco-2 Cultivation time: 24 h 2D	0-100 µM ZnCl₂ (in serum-free DMEM)	Transient transfection of Caco-2 cells with pEGFP- ZnT5B	 ZnT-5 variant b is a bidirectional zinc transporter and can operate in an efflux mode, increasing cytoplasmic zinc concentration of Caco-2 cells upregulation of MT-2 indicates increase of intracellular zinc content in transfected Caco-2 cells 	[22]
Caco-2 Cultivation time: 24 h, pre-confluent 2D	0-300 μM ZnSO4 or 0-10 μM TPEN (in n.a.) for 6 or 12 h	Gene expression: qPCR	 zinc-dependent mRNA expression of <i>mt</i>-1, <i>dmt</i>-1, <i>zip</i>4 and <i>znt</i>-1 regulates zinc homeostasis in Caco-2 cells <i>zip</i>4 ↑ after zinc depletion with TPEN <i>mt</i>-1 ↑ <i>and znt</i>-1 with added zinc concentration 	[23]

Table 3. Application of human *in vitro* intestinal models to study zinc-dependent gene expression in enterocytes.

•

Caco-2 Differentiation time: 11-13 d 2D	Iron/zinc interaction 0-200 μM ZnCl2 or FeCl3, respectively, (in DMEM) for 2h	Zinc uptake: radioactive zinc (65Zn)	 iron uptake was inhibited dose- dependently by zinc iron increased cellular zinc uptake analysis suggests that iron and zinc transport by DMT-1 is not occurring simultaneously 	[24]
Caco-2 Cultivation time: 14 d 2D	3-100 μM ZnCl2 (in DMEM+ 10%FCS) for 12 or 24 h	Transcriptomic study: Micro-array Gene expression: qPCR	 zinc-regulated genes were analyzed with an micro-array identification of several genes which are regulated zinc-dependent (such as <i>mt-1h</i>, <i>mt-2a</i>, <i>mt-3</i>, <i>mtf-1</i>) 	[25]
Caco-2 Cultivation time: 21d 3D Transwell (comparison undifferentiated and differentiated cells)	100-800 µM ZnCl₂ (in DMEM + 5% FCS) apical or basolateral incubation) for 24 h	Gene expression: qPCR	 influence of polarization and differentiation of Caco-2 cells on zinc tolerance mRNA expression of <i>znt-1</i> ↑, <i>znt-5</i>, <i>zip1</i>, <i>zip4</i>, <i>mt-1a</i> ↑, <i>mt-1x</i> ↑, <i>mt-2a</i> ↑ after exposure with higher zinc concentrations (100-800 µM; apical or basolateral, respectively) under physiologic zinc concentrations (apical: 100 µM; basolateral: 15 µM zinc) only <i>mt-1a</i> ↑ 	[26]
Caco-2 (1) FHs 74 Int cells (2) Cultivation time (1): Undifferentiated (U) (4 d) Differentiated (D) (12 d) 2D	50 µM ZnSO₄ (in serum free medium) for 15 min	Zinc uptake: radioactive zinc (⁶⁵ Zn) Gene expression: <i>q</i> PCR Western Blot Biotinylation of surface proteins	 role of zinc exposure on intestinal cells of varying maturity; zinc uptake in fetal intestinal cells and undifferentiated cells was higher than in differentiated cells ZnT-1 protein and <i>znt-1</i>, <i>znt-2</i> as well as <i>mt-1</i> ↑, <i>while zip4</i> ↑ in U and ↓ in D Caco-2 cells localization of ZIP4 and ZnT-1 at the plasma membrane of differentiated Caco-2 cells was significantly changed by zinc exposure 	[27]
Caco-2 confluent cells 2D; 3D Transwell	0-100 µM ZnSO4 (DMEM +10% FCS) for 7 d	Zinc Uptake: total Zn Western blot	- cellular zinc content increased concentration-dependent (100 μM: 0.4 μg mg ⁻¹ protein)	[28]

			 expression of TJ protein claudin-2 and tricellulin decreased with added zinc concentration TEER increased with added zinc concentration 	
Caco-2 Cultivation time: Undifferentiated: n.a. Differentiated: 21d 2D; 3D Transwell (EHS-coated matrix membrane)	100 μM ZnCl2 (DMEM +10% FCS) for 48 h	Transient transfection of Caco-2 cells with hZIP1 Gene expression: <i>q</i> PCR Zinc uptake: radioactive zinc (⁶⁵ Zn) Immunocytochemistry	 role of hZIP1 in intestinal epithelial cells hZIP1 tend to localize to the microvilli of Caco-2 cells during differentiation Caco-2 cells overexpressing hZIP1 accumulated intracellular zinc hZIP1 might act as a zinc sensing protein 	[29]
Caco-2 (1) IPEC-J2 (2) Cultivation time (1): Pre-confluent (2-3 d) Post-confluent (19-21 d) 2D	0-200 μM ZnSO4 (in DMEM +10% FCS) for 6 h and 24 h	Zinc uptake: total Zn Gene expression: qPCR	 cellular zinc uptake increases significantly after incubating with 200 µM zinc for 24 h zinc incubation of post-confluent Caco-2 cells did not change <i>zip-4</i> and only showed a trend in <i>mt1a</i> and <i>znt-1</i> upregulation enterocyte zinc homeostasis is maintained by expression of these genes 	[30]
Caco-2 (1) IPEC-J2 (2) Cultivation time (1): 21 d 3D Transwell	0-200 μM ZnSO4 (apical or basolateral side, in DMEM + 10% FCS) for 24 h	Gene expression: qPCR	 <i>znt-1</i> and <i>mt</i> expression ↑ with higher added zinc concentrations basolaterally <i>zip4</i> expression did not change 	[31]
Caco-2 Cultivation time: 24 h	3 or 150 μM zinc (in serum free DMEM) for 24 h	MTF-1 depletion by transient transfection with siRNA MT-2a stable transfection Transiently transfection with ZnT-5 promotor Gene expression: Microarray <i>q</i> PCR	 zinc-dependent expression of MTF-1 dependent genes in MTF-1 depleted Caco-2 compared to CTR: znt-1) ↓and mt-1b) ↓, mt-1e) ↓, mt-1g) ↓, mt-1h) ↓, mt-1m) ↓, mt-2a) ↓, mt-1a , mt-2a and mt-x did not change in MTF-1 depleted cells, zinc incubation changed mRNA expression of genes that are normally not affected by increased cellular zinc, 	[32]

indicating that MT and ZnT-1 are buffering their expression - MT-2a overexpressed Caco-2 cells showed higher ZnT-5 promoter activity upon zinc uptake - MTF-1 is controlling intracellular zinc homeostasis by regulating MT and ZnT-1

3D, three-dimensional; DMEM, Dulbecco's Modified Eagles Medium; EHS, Engelbreth-Holm-Swarm cells; (FCS, fetal calf serum; HBSS, Hank's Balanced Salt Solution; n.a., not available; PC, polycarbonate; TEER, transepithelial electrical resistance; TJ, tight junction; Zn, zinc.

Cell Model	Zinc Added	Food Component or Ligand	Quantification	Main Outcome	Reference
Caco-2 Cultivation time: 10-12 d 2D and 3D Transwell	ZnSO₄ FeCl₃ (apical: HEPES buffer, basolateral: DMEM + 15% FCS) for 1 h (uptake), 1-5 h (transport)	- Inositolphosphates (IP) (phytic acid): IP3, IP4, IP5, IP6	radioactive zinc and iron (⁶⁵ Zn, ⁵⁵ Fe)	 inhibition of iron and zinc transport by phytate in Caco-2 reduction of zinc uptake and transport rate correlated with level phosphorylation (IP3 to IP6) cellular uptake was analyzed in 2D, transport with 3D transwell 	[33]
Caco-2 Cultivation time: 15-18 d 2D	40.22 μM ZnCl ₂ , 88.24 μM FeCl ₃ or 823.53 μM CaCl ₂ respectively (in uptake buffer)	 infant formulas: adapted (milk based) and soy-based <i>in vitro</i> digestion model 	total zinc	 lower zinc uptake von soy- based than from milk-based infant formulas cellular zinc uptake solely observed from digested infant formulas and not from liquid metal solutions 	[34]
Caco-2 Cultivation time: 19 – 21 d 3D Transwell (PE membrane)	sample ^c (apical: soluble mineral fraction, basolateral: HBSS buffer) for 2 h	 raw legumes: white beans, chickpeas, lentils effect on cooking of lentils <i>in vitro</i> digestion model 	total zinc	 chickpeas yielded the highest amount of transported zinc cooking process negatively affected the mineral content of lentils and the soluble zinc fraction decreased 	[35]
Caco-2 Cultivation time: 21 d 3D Transwell (PES membrane)	sample ^c (apical: soluble mineral fraction; basolateral: HBSS buffer) for 2 h	 school meals <i>in vitro</i> digestion model 	total zinc	 iron, copper, zinc and calcium uptake and transport was analyzed protein content of meals had no influence on zinc uptake negative mineral interaction of iron and zinc: 	[36]

Table 4. Application of *in vitro* Caco-2 monocultures to investigate the effect of dietary factors on zinc bioavailability.

Caco-2 Cultivation time: 14-12 d 2D	25 μM ⁶⁵ ZnCl₂ (in MEM) for 3 h	 phytic acid, tannic acid, tartaric acid, polyphenols (from tea extract and grape juice), wheat, arginine, methionine, histidine molar ratio: zinc/dietary ligands (1:1; 1:5; 1:10) <i>in vitro</i> digestion model (use of dialysis membrane for incubation of cells with digested samples) 	radioactive zinc (⁶⁵ Zn)	soluble iron decreased and transported zinc; soluble zinc and iron retention - zinc depletion with TPEN increased zinc uptake, but zinc repletion did not affect uptake - zinc uptake in Caco-2 cells shows a saturable and non- saturable component depending on added zinc concentration - tannic acid (1:50) enhanced zinc uptake from wheat- and rice- food-matrix - histidine, phytate, tartaric acid (1:1) and methionine (1:10) resulted in decreased zinc uptake relative to control cells	[37]
Caco-2 Cultivation time: 14-21 d 3D Transwell (PE membrane)	sample ^c (in salt buffer) for 2 h	 influence of caseinophosphopeptides (CPPs) and milk on zinc uptake from fruit beverages <i>in vitro</i> digestion model 	total zinc	- zinc retention, transport and uptake was higher for milk- containing fruit beverages than for CPPs-based fruit beverages	[38]
Caco-2 Cultivation time: 21 d 3D Transwell (PC membrane)	sample ^c (apical: HEPES,MES, glucose, basolateral: HBSS) for 3 h	 cereals and dephytinized cereals (phytase) <i>in vitro</i> digestion model 	total zinc	 effect of dephytinization on zinc, iron and calcium bioavailability in Caco-2 cells zinc and iron solubility and fractional zinc and iron absorption increased after dephytinization of cereals 	[39]
Caco-2 Cultivation time: 11-13 d 2D	50 μM ⁶⁵ ZnCl2 Iron-zinc interactions: Zn:Fe (1:1)	- ascorbic acid (1 mM) and phytic acid, tannic acid, tartaric acid, cysteine, histidine, methionine (each 500 μM)	radioactive zinc (⁶⁵ Zn)	- ascorbic acid, tartaric acid and tannic acid increased zinc uptake	[40]

	(in DMEM) for 2 h			 phytic acid and histidine decreased cellular zinc uptake increase of iron uptake in presence of methionine, increased also zinc uptake without added ligands, zinc inhibited iron uptake into Caco-2 ligands can modulate iron : zinc-interaction 	
Caco-2 Cultivation time: 12-14 d 2D	25 μM ⁵ZnCl₂ (in MEM) for 3 h	 polyphenol-rich beverages: red wine, green tea, red grape juice tannic acid, quercetin, gallic acid, caffeic acid (each 250µM) <i>in vitro</i> digestion model (including a rice matrix) 	radioactive zinc (⁶⁵ Zn)	 polyphenol-rich beverages increased cellular zinc uptake from digested rice matrix tannic acid and quercetin enhanced zinc uptake 	[41]
Caco-2 Cultivation time: 21-28 d 3D Transwell (PET-HD membrane)	50 μM zinc (in HEPES buffer) for 1 h	 water soluble vitamins: folic acid, nicotinic acid, ascorbic acid, riboflavin, thiamine, pyridoxine effect of oxidative species on vitamin-dependent zinc uptake was analyzed phytic acid and histidine 	total zinc	 zinc transport was slightly enhanced by nicotinic acid and slightly decreased by thiamine, riboflavin, and pyridoxine phytic acid significantly decreased zinc uptake compared to control cells, where histidine resulted in a slight increase of zinc uptake 	[42]
Caco-2 Cultivation time: 21 d 3D Transwell (PC membrane)	sample ^c (in apical and basolateral HBSS) for 1 h	 samples from each stage of processing: wheat flour, whole wheat flour; fermented and final product: white bread, whole wheat bread, muffin <i>in vitro</i> digestion model 	total zinc	 effect of 'processing' of baking products on bioavailability of calcium, iron and zinc in Caco-2 cells no differences in zinc uptake from fermented dough and after baking 	[43]

Caco-2 Cultivation time: 21 d 2D	0 - 25 μM ZnCl2 (in minimum essential medium) for 24 h	 varying zinc : phytic acid- ratios <i>in vitro</i> digestion model (red beans, fish samples) 	stable zinc isotope (n.a.) MT quantification ª	 MT formation was investigated as a proxy for zinc uptake phytic acid significantly decreased zinc uptake and MT formation for Zn : phytic acid ratios < 1:5 	[44]
Caco-2 Cultivation time: 17 d 3D Transwell (collagen coated)	10 μM ⁶⁵ ZnCl2 (apical: HBSS buffer, basolateral: DMEM) for 1-3 h	 bioactive dietary polyphenols: epigallocatechin-3-gallate (EGCG), green tea extract (GT), and grape seed extract (GSE) (each 46 mg/L) phytate (100 µM) 	radioactive zinc (65Zn)	 GSE decreased zinc absorption by inhibiting cellular zinc uptake, similar to phytate EGCG and GT did not reduce zinc absorption 	[45]
Caco-2 Cultivation time: 14 d 2D	sample ^c (in medium) for 6 h	 different rice varieties and zinc biofortified rice (polished or parboiled samples) <i>in vitro</i> digestion model 	radioactive zinc (⁶⁵ Zn)	 comparison of zinc uptake from biofortified rice with <i>in vivo</i> rat pups biofortified rice yielded significant higher net absorption <i>in</i> <i>vitro</i> and <i>in vivo</i> net absorption was smaller in Caco-2 but showed the same correlation between different rice samples 	[46]
Caco-2 Cultivation time: 13 d 2D	sample ^c for 2 h followed by additional incubation for 10 h	 biofortified wheat (low- phytate mutants with varying zinc content) <i>in vitro</i> digestion model 	Reporter gene assay ^b	- positive and negative correlations for zinc bioavailability dependent on zinc : phytate-ratios	[47]
Caco-2 Cultivation time: n.a. 2D	sample ^c (in MEM + 3% FCS) for 6 h	 reduction of phytate content in sorghum (genetic modification) <i>in vitro</i> digestion model 	radioactive zinc and iron (⁶⁵ Zn, ⁵⁹ Fe)	 comparison of fractional absorption in Caco-2 and <i>in vivo</i> suckling rat pup model phytate reduction significantly increased zinc 	[48]

				bioavailability in Caco-2 cells comparable to <i>in vivo</i> analysis	
Caco-2 Transwell (PE) Cultivation time: 21 d 3D Transwell (PE membrane)	250 μM ZnSO₄ (in DPBS) for 2 h	- GPAGPHGPPG peptide (derived from Alaska pollock)	total Zn	 influence of GPAGPHGPPG peptide on zinc, iron and calcium transport GPAGPHGPPG peptide significantly increased mineral transport. 	[49]
Caco-2 Cultivation time: 10 d 2D	50 μM ZnCl₂ (in PBS) for 30 min	- amino acids (AAs): glutamate (Glu), lysine (Lys), methionine (Met) - ZnAAs complexes: ZnGlu, ZnMet, ZnLys	Free zinc (Fluorescent zinc sensor Zinpyr-1)	 ZnAAs are probably absorbed by AAs transporters zinc uptake into Caco-2 cells is not enhanced by ZnAAS complexes results suggest that ZnAAs represent a more efficient war for zinc supplementation that zinc salts; especially for AE patients 	[50]

3D, three-dimensional; AAs, amino acids BSA, bovine serum albumin; DMEM, Dulbecco's Modified Eagles Medium; FCS, fetal calf serum; HBSS, Hank's Balanced Salt Solution; HD, high density; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid;; IP, inositolphosphate; MEM, minimum essential medium; n.a., not available; PC, polycarbonate; PE, polyethylene; PES, polyester; Zn, zinc; ^a MT formation was analyzed using a cadmium/hemoglobin assay; ^b reporter gene assay based on the metal response element (MRE)-binding transcription factor-1 (MTF-1) and MRE luciferase, ^c mineral bioavailability from the sample solely was examined; no extra zinc added.

Abbreviations:	
2D	two-dimensional
3D	three-dimensional
DGE	German Society for Nutrition; ger. Deutsche Gesellschaft für Ernährung
DMEM	Dulbecco's Modified Eagles Medium
DMT-1	divalent metal transporter
EFSA	European Food Safety Authority
EHS	Engelbreth-Holm-Swarm cells
FAAS	flame atomic absorption spectrometry
FCS	fetal calf serum
HD	high density
HBSS	Hanks' Balanced Salt Solution
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
IP	inositolphosphate
KHB	Krebs-Henseleit buffer
LMW	low molecular weight
mRNA	messenger ribonucleic acid
MEM	minimum essential medium
MT	metallothionein
MTF-1	metal regulatory transcription factor 1
PBMC	peripheral blood mononuclear cells
PBS	phosphate buffered saline
PC	polycarbonate
PE	polyethylene
PES	polyester
PET	photo-induced electron transfer
qPCR	quantitative real time polymerase chain reaction (PCR)
TEER	transepithelial electrical resistance
TJ	tight junction
TPEN	N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine
WHO	World Health Organization
ZIP	Zrt-, Irt-like protein
Zn	zinc
ZnT	zinc transporter

Supplementary References:

- 1. Sachsenweger, M. Augenheilkunde. 2003; Vol. 2.
- 2. Karcioglu, Z.A. Zinc in the eye. *Survey of Ophthalmology* **1982**, *27*, 114-122.
- 3. Molina, D.K.; DiMaio, V.J. Normal organ weights in men: Part ii-the brain, lungs, liver, spleen, and kidneys. *Am J Forensic Med Pathol* **2012**, *33*, 368-372.
- 4. Jackson, M.J. Physiology of zinc: General aspects. In *Zinc in human biology*, Mills, C.F., Ed. Springer London: London, 1989; pp 1-14.
- 5. Molina, D.K.; DiMaio, V.J. Normal organ weights in men: Part i-the heart. *Am J Forensic Med Pathol* **2012**, *33*, 362-367.
- 6. Lech, T.; Sadlik, J.K. Zinc in postmortem body tissues and fluids. *Biological trace element research* 2010, 142, 11-17.
- 7. Yamanaka, H.; Nakajima, M.; Katoh, M.; Yokoi, T. Glucuronidation of thyroxine in human liver, jejunum, and kidney microsomes. *Drug Metabolism and Disposition* **2007**, *35*, 1642.
- 8. Boyd, R. Xii. Tables of the weights of the human body and internal organs in the sane and insane of both sexes at various ages, arranged from 2614 post-mortem examinations. *Philosophical Transactions of the Royal Society of London* **1861**, *151*, 241-262.
- 9. Forbes, R.M.; Cooper, A.R.; Mitchell, H.H. The composition of the adult human body as determined by chemical analysis. *J Biol Chem* **1953**, 203, 359-366.
- 10. Clarys, J.P.; Martin, A.D.; Drinkwater, D.T. Gross tissue weights in the human body by cadaver dissection. *Human Biology* **1984**, *56*, 459-473.
- 11. Yiengst, M.J.; Shock, N.W. Blood and plasma volume in adult males. Journal of Applied Physiology 1962, 17, 195-198.
- 12. Folin, M.; Contiero, E.; Maria Vaselli, G. Zinc content of normal human serum and its correlation with some hematic parameters. *Biometals* **1994**, *7*, 75-79.
- 13. Wilhelm, M.; Hafner, D.; Lombeck, I.; Ohnesorge, F.K. Monitoring of cadmium, copper, lead and zinc status in young children using toenails: Comparison with scalp hair. *The Science of the total environment* **1991**, *103*, 199-207.
- 14. Scott, D.A.; Fisher, A.M. The insulin and the zinc content of normal and diabetic pancreas. *The Journal of clinical investigation* **1938**, *17*, 725-728.
- 15. Rahil-Khazen, R.; Bolann, B.J.; Myking, A.; Ulvik, R.J. Multi-element analysis of trace element levels in human autopsy tissues by using inductively coupled atomic emission spectrometry technique (icp-aes). *Journal of Trace Elements in Medicine and Biology* **2002**, *16*, 15-25.
- 16. World Health Organization / Food and Agricultural Organization. *Vitamin and mineral requirements in human nutrition*. 2 ed.; World Health Organization: Geneva, Switzerland, 2004.
- 17. EFSA Panel on Dietetic Products, N.a.A.N. Scientific opinion on dietary reference values for zinc. *EFSA Journal* 2014 **2014**, 12.
- Deutsche Gesellschaft für Ernährung; Österreichische Gesellschaft für Ernährung; Schweizerische Gesellschaft für Ernährung. *Referenzwerte für die nährstoffzufuhr*. 2 ed.; Deutsche Gesellschaft für Ernährung e. V.: Bonn, Germany, 2019; Vol. 2.
- 19. Miller, L.V.; Krebs, N.F.; Hambidge, K.M. A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate. *The Journal of nutrition* **2007**, *137*, *135-141*.
- Cragg, R.A.; Christie, G.R.; Phillips, S.R.; Russi, R.M.; Kury, S.; Mathers, J.C.; Taylor, P.M.; Ford, D. A novel zincregulated human zinc transporter, hztl1, is localized to the enterocyte apical membrane. *The Journal of Biological Chemistry* 2002, 277, 22789-22797.
- 21. Cragg, R.A.; Phillips, S.R.; Piper, J.M.; Varma, J.S.; Campbell, F.C.; Mathers, J.C.; Ford, D. Homeostatic regulation of zinc transporters in the human small intestine by dietary zinc supplementation. *Gut* **2005**, *54*, 469-478.
- 22. Valentine, R.A.; Jackson, K.A.; Christie, G.R.; Mathers, J.C.; Taylor, P.M.; Ford, D. Znt5 variant b is a bidirectional zinc transporter and mediates zinc uptake in human intestinal caco-2 cells. *The Journal of Biological Chemistry* **2007**, *282*, 14389-14393.
- 23. Shen, H.; Qin, H.; Guo, J. Cooperation of metallothionein and zinc transporters for regulating zinc homeostasis in human intestinal caco-2 cells. *Nutrition Research* **2008**, *28*, 406-413.

- 24. Pieri, M.; Christian, H.C.; Wilkins, R.J.; Boyd, C.A.; Meredith, D. The apical (hpept1) and basolateral peptide transport systems of caco-2 cells are regulated by amp-activated protein kinase. *American Journal of Physiology Gastrointestinal and liver physiology* **2010**, 299, G136-143.
- 25. Jackson, K.A.; Valentine, R.A.; McKay, J.A.; Swan, D.C.; Mathers, J.C.; Ford, D. Analysis of differential generegulatory responses to zinc in human intestinal and placental cell lines. *The British journal of nutrition* **2009**, *101*, 1474-1483.
- 26. Zemann, N.; Zemann, A.; Klein, P.; Elmadfa, I.; Huettinger, M. Differentiation- and polarization-dependent zinc tolerance in caco-2 cells. *European journal of nutrition* **2011**, *50*, 379-386.
- 27. Jou, M.Y.; Philipps, A.F.; Kelleher, S.L.; Lonnerdal, B. Effects of zinc exposure on zinc transporter expression in human intestinal cells of varying maturity. *Journal of pediatric gastroenterology and nutrition* **2010**, *50*, 587-595.
- 28. Wang, X.; Valenzano, M.C.; Mercado, J.M.; Zurbach, E.P.; Mullin, J.M. Zinc supplementation modifies tight junctions and alters barrier function of caco-2 human intestinal epithelial layers. *Digestive Diseases and Sciences* **2012**, *58*, 77-87.
- 29. Michalczyk, A.A.; Ackland, M.L. Hzip1 (hslc39a1) regulates zinc homoeostasis in gut epithelial cells. *Genes & nutrition* **2013**, *8*, 475-486.
- 30. Gefeller, E.M.; Bondzio, A.; Aschenbach, J.R.; Martens, H.; Einspanier, R.; Scharfen, F.; Zentek, J.; Pieper, R.; Lodemann, U. Regulation of intracellular zn homeostasis in two intestinal epithelial cell models at various maturation time points. *The Journal of Physiological Sciences* **2015**, *65*, 317-328.
- 31. Lodemann, U.; Gefeller, E.M.; Aschenbach, J.R.; Martens, H.; Einspanier, R.; Bondzio, A. Dose effects of apical versus basolateral zinc supplementation on epithelial resistance, viability, and metallothionein expression in two intestinal epithelial cell lines. *Journal of biochemical and molecular toxicology* **2015**.
- 32. Hardyman, J.E.; Tyson, J.; Jackson, K.A.; Aldridge, C.; Cockell, S.J.; Wakeling, L.A.; Valentine, R.A.; Ford, D. Zinc sensing by metal-responsive transcription factor 1 (mtf1) controls metallothionein and znt1 expression to buffer the sensitivity of the transcriptome response to zinc. *Metallomics : integrated biometal science* **2016**, *8*, 337-343.
- 33. Han, O.; Failla, M.L.; Hill, A.D.; Morris, E.R.; Smith, J.C., Jr. Inositol phosphates inhibit uptake and transport of iron and zinc by a human intestinal cell line. *The Journal of nutrition* **1994**, *124*, 580-587.
- 34. Jovani, M.; Barbera, R.; Farre, R.; Aguilera, E.M.d. Calcium, iron, and zinc uptake from digests of infant formulas by caco-2 cells. *Journal of Agricultural and Food Chemistry* **2001**, *49*, 3480–3485.
- 35. Viadel, B.; Barberá, R.; Farré, R. Uptake and retention of calcium, iron, and zinc from raw legumes and the effect of cooking on lentils in caco-2 cells. *Nutrition Research* **2006**, *26*, 591-596.
- 36. Cámara, F.; Barberá, R.; Amaro, M.A.; Farré, R. Calcium, iron, zinc and copper transport and uptake by caco-2 cells in school meals: Influence of protein and mineral interactions. *Food Chemistry* **2007**, *100*, 1085-1092.
- 37. Sreenivasulu, K.; Raghu, P.; Ravinder, P.; Nair, K.M. Effect of dietary ligands and food matrices on zinc uptake in caco-2 cells: Implications in assessing zinc bioavailability. *Journal of Agricultural and Food Chemistry* **2008**, *56*, 10967-10972.
- 38. García-Nebot, M.J.; Alegría, A.; Barberá, R.; Clemente, G.; Romero, F. Does the addition of caseinophosphopeptides or milk improve zinc in vitro bioavailability in fruit beverages? *Food Research International* **2009**, *42*, 1475-1482.
- 39. Frontela, C. Effect of dephytinization on bioavailability of iron, calcium and zinc from infant cereals assessed in the caco-2 cell model. *World Journal of Gastroenterology* **2009**, *15*, 1977.
- 40. Iyengar, V.; Pullakhandam, R.; Nair, K.M. Dietary ligands as determinants of iron-zinc interactions at the absorptive enterocyte. *Journal of Food Science* **2010**, *75*, H260-264.
- 41. Sreenivasulu, K.; Raghu, P.; Nair, K.M. Polyphenol-rich beverages enhance zinc uptake and metallothionein expression in caco-2 cells. *Journal of Food Science* **2010**, *75*, H123-128.
- 42. Tupe, R.S.; Agte, V.V. Effect of water soluble vitamins on zn transport of caco-2 cells and their implications under oxidative stress conditions. *European journal of nutrition* **2009**, *49*, 53-61.
- 43. Frontela, C.; Ros, G.; Martínez, C. Phytic acid content and "in vitro" iron, calcium and zinc bioavailability in bakery products: The effect of processing. *Journal of Cereal Science* **2011**, *54*, 173-179.
- 44. Cheng, Z.; Tako, E.; Yeung, A.; Welch, R.M.; Glahn, R.P. Evaluation of metallothionein formation as a proxy for zinc absorption in an in vitro digestion/caco-2 cell culture model. *Food & function* **2012**, *3*, 732-736.

- 45. Kim, E.-Y.; Pai, T.-K.; Han, O. Effect of bioactive dietary polyphenols on zinc transport across the intestinal caco-2 cell monolayers. *Journal of Agricultural and Food Chemistry* **2011**, *59*, 3606-3612.
- 46. Jou, M.-Y.; Du, X.; Hotz, C.; Lönnerdal, B. Biofortification of rice with zinc: Assessment of the relative bioavailability of zinc in a caco-2 cell model and suckling rat pups. *Journal of Agricultural and Food Chemistry* **2012**, *60*, 3650-3657.
- 47. Salunke, R.; Rawat, N.; Tiwari, V.K.; Neelam, K.; Randhawa, G.S.; Dhaliwal, H.S.; Roy, P. Determination of bioavailable-zinc from biofortified wheat using a coupled in vitro digestion/caco-2 reporter-gene based assay. *Journal of Food Composition and Analysis* **2012**, *25*, 149-159.
- 48. Kruger, J.; Taylor, J.R.N.; Du, X.; De Moura, F.F.; Lönnerdal, B.; Oelofse, A. Effect of phytate reduction of sorghum, through genetic modification, on iron and zinc availability as assessed by an in vitro dialysability bioaccessibility assay, caco-2 cell uptake assay, and suckling rat pup absorption model. *Food Chemistry* **2013**, *141*, 1019-1025.
- 49. Chen, Q.; Guo, L.; Du, F.; Chen, T.; Hou, H.; Li, B. The chelating peptide (gpagphgppg) derived from alaska pollock skin enhances calcium, zinc and iron transport in caco-2 cells. *International Journal of Food Science & Technology* **2017**, *52*, 1283-1290.
- 50. Sauer, A.K.; Pfaender, S.; Hagmeyer, S.; Tarana, L.; Mattes, A.K.; Briel, F.; Kury, S.; Boeckers, T.M.; Grabrucker, A.M. Characterization of zinc amino acid complexes for zinc delivery in vitro using caco-2 cells and enterocytes from hipsc. *BioMetals* **2017**, *30*, 643-661.