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Abstract: Varicocele is one of the main causes of infertility in men. Oxidative stress and consequently
apoptosis activation contribute to varicocele pathogenesis, worsening its prognosis. Natural products,
such as lycopene, showed antioxidant and anti-inflammatory effects in several experimental models,
also in testes. In this study we investigated lycopene effects in an experimental model of varicocele.
Male rats (n = 14) underwent sham operations and were administered with vehicle (n = 7) or
with lycopene (n = 7; 1 mg/kg i.p., daily). Another group of animals (n = 14) underwent surgical
varicocele. After 28 days, the sham and 7 varicocele animals were euthanized, and both operated and
contralateral testes were weighted and processed. The remaining rats were treated with lycopene
(1 mg/kg i.p., daily) for 30 days. Varicocele rats showed reduced testosterone levels, testes weight,
Bcl-2 mRNA expression, changes in testes structure and increased malondialdehyde levels and BAX
gene expression. TUNEL (Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling) assay
showed an increased number of apoptotic cells. Treatment with lycopene significantly increased
testosterone levels, testes weight, and Bcl-2 mRNA expression, improved tubular structure and
decreased malondialdehyde levels, BAX mRNA expression and TUNEL-positive cells. The present
results show that lycopene exerts beneficial effects in testes, and suggest that supplementation with
the tomato-derived carotenoid might be considered a novel nutraceutical strategy for the treatment of
varicocele and male infertility.

Keywords: varicocele; testis; carotenoids; lycopene; diet; nutraceuticals; oxidative stress; apoptosis;
rat

1. Introduction

Varicocele is one of the main causes of infertility in men, and it represents an important clinical
problem worldwide [1]. Varicocele is characterized by an abnormal dilatation of the veins in the
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pampiniform plexus within the scrotum, and in 90% of patients it is mainly present on the left side [2].
Molecular processes, such as the release of pro-apoptotic molecules which activates apoptosis, and
the accumulation of pro-inflammatory cytokines which exacerbates inflammation, contribute to the
pathogenesis of varicocele [1,3].

Nowadays, the exact mechanisms that correlate varicocele and infertility are still unknown;
however, scrotal hyperthermia, hypoxia and oxidative stress seem to play important roles [4]. The
treatment of varicocele and the care of the associated fertility problems still represent an area of interest
for researchers, although many advances have occurred in recent years.

Antioxidants use is considered among the proposed methods as the most appropriate therapeutic
approach to reduce the effects of varicocele, such as infertility [5].

Recently, experimental studies demonstrated that functional foods of natural origin have
antioxidant, anti-inflammatory and anti-apoptotic effects in varicocele [1,3,6–9]. The principal
antioxidants present in the Mediterranean diet (MD) are carotenoids; in particular β-carotene,
α-carotene, lycopene, β-cryptoxanthine, lutein and zeaxanthin account for over 90% of all
carotenoids [10]. Among these, lycopene represents between 21% and 43% of total carotenoids
contained in the blood [11]. Among the vegetables, tomatoes are a main component of MD and, in
addition to lycopene, they contain significant quantities of vitamins C and E, folate, polyphenols, and
other carotenoids such as phytoene and phytofluene [12]. Significant concentrations of lycopene are
only found in a select number of foods (such as tomato, watermelon, guava and pink grapefruit) and
lycopene intake coming from fresh and processed tomato products is highly relevant [13].

Many epidemiological studies have suggested that intake of lycopene-containing foods, as well
as blood lycopene concentrations, are inversely related to the incidence of cardiovascular disease
and prostate cancer [14]. Lycopene may provide some of the cardiovascular or cancer protection
associated with tomato intake, but is not likely to be the only bioactive compound in tomatoes. In
this regard, many researchers have done relevant work to better understand the role of lycopene
and its derivatives in the process of chronic diseases [15]. For example, the characterization and
study of β-carotene 9′,10′-oxygenase (BCO2) showed that this enzyme can catalyze the excentric
cleavage of both provitamin and non-provitamin A carotenoids to form apo-10′-carotenoids, including
apo-10′-lycopenoids, from lycopene [16,17], underlining the crucial impact of liver enzymatic function
on carotenoid metabolism, including lycopene and lycopenoids.

Once ingested, lycopene is absorbed into the intestinal mucosa via passive diffusion, incorporated
into dietary lipid micelles and chylomicrons, and transported to various organs. Different factors may
influence lycopene absorption, such as age, gender, hormones, smoking, alcohol, and the interaction
with other components of the diet [18]. From a translational point of view, it is particularly interesting
to consider that lycopene obtained from processed and heated tomato is better absorbed [19], and
lycopene distribution in tissues depends on its structure. The highest concentrations have been found
in the testes, adrenal glands, liver and prostate, thanks to the high concentrations of polyunsaturated
fatty acids [10,20].

Thanks to its high concentration in testes, lycopene may be useful for the treatment of the diseases
that affects the male reproductive tract. However, conflicting results have been so far reported: it
has been demonstrated that lycopene restores spermatogenesis, modulating oxidative stress and
apoptosis [21,22], but contrasting data described the negative role of lycopene in experimental testicular
ischemia/reperfusion, thus demonstrating that a long-term treatment with lycopene might be not
effective in restoring testicular damages [23].

As far as we know, no data are currently available on the effects of lycopene in varicocele. Moreover,
while there has been great interest in the antioxidant properties of lycopene, other mechanisms of actions
that may or may not be related to antioxidant function could be implicated in this medical condition.
Of course, multiple factors, including carotenoid metabolism, molecular biological properties, and their
interaction with genetic and epigenetic factors, must undoubtedly be carefully considered to better
define the role and application of carotenoids and their metabolites in human health and disease [15].
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Therefore, the aim of this study was to evaluate the effects of lycopene in an experimental rat model
of varicocele, eventually providing further insight into the mechanisms of action, and to investigate
whether this nutraceutical approach might preserve testis structure.

2. Materials and Methods

2.1. Animals and Experimental Procedures

A total of 28 male Sprague-Dawley rats aged 7 weeks and weighing 200–230 g were purchased
from Charles River Laboratories Italia srl (Calco, Italy). Animals were maintained under controlled
environmental conditions, with a cycle of 12 h light/dark and a temperature of approximately 23 ◦C,
and provided with food and water ad libitum. The standards for care and use of animals as stated in the
ARRIVE (Animal Research: Reporting In Vivo Experiments) guidelines were followed in the present
study and all procedures were approved by the Italian Ministry of Health (authorization number
90/2017 - PR). All animals were anesthetized with an intraperitoneal (i.p.) injection of ketamine and
xylazine (75/2.5 mg/kg, i.p., respectively). Varicocele was induced in fourteen animals, as previously
described in detail [24,25]. A group of male rats (n = 14) underwent a sham operation to evaluate the
possible response of the testis to the surgical inflammatory stress and were administered with vehicle
(corn oil; n = 7) or with lycopene (n = 7; 1 mg/kg i.p., daily) throughout the experimental period. The
i.p. route of administration was chosen as it would overcome the possible malabsorption by different
food formulations experimentally administered in rats, on the basis of the animal model used, which
aims to reproduce an acute experimental model of varicocele; the dose of lycopene (1 mg/kg) was
chosen accordingly to previous studies [26].

After a period of 28 days following the surgical procedure, 7 varicocele animals and 7 sham rats
were euthanized with an intraperitoneal (i.p.) injection of ketamine and xylazine (75/10 mg/kg, i.p.,
respectively) and blood and both operated and contralateral testes were weighted and processed
for biochemical, histopathological and immunohistochemical evaluation. The remaining sham and
varicocele rats were treated with lycopene (1 mg/kg i.p., daily) for 30 days and then euthanized to
collect blood and both testes for the analysis.

2.2. Drugs

Lycopene was purchased from Sigma Aldrich, Milan, Italy (Cat. Number #36275). Lycopene has a
purity ≥ 95.0%. All chemicals and reagents were commercially available reagent grades.

2.3. Determination of Testosterone

Testosterone was measured in serum by ELISA methodology using a commercially available kit,
according to the protocol suggested by the manufacturer. In brief, blood was obtained from cardiac
puncture and serum was achieved by centrifugation at 1000× g for 10 min. An HRP (Horseradish
Peroxidase)-conjugate and the specific antibody were added, followed by substrates and stop solution.
The mean absorbance was calculated using a microplate reader at 450 nm and correlated with the
values of the standard curve. Data were expressed in ng/mL.

2.4. Malondialdehyde Assay

Malondialdehyde (MDA) levels in testes were measured to evaluate lipid peroxidation and
oxidative stress [27]. Testes were weighed to obtain the same amount of tissue for each animal and were
mixed with 1.15% of KCl solution to be homogenized using a homogenizer (Miccra Gmbh, Müllheim,
Germany). The homogenate (0.1 mL) was added to a 0.2 mL of sodium dodecyl sulfate (SDS; 8.1%), 1.5
mL of acetic acid (20%), 1.5 mL of thiobarbituric acid (0.8%) and distilled water (700 mL). Samples
were boiled at 95 ◦C for 1 h and then centrifuged at 3000× g for 10 min. The supernatant was collected
and the absorbance was read at 650 nm with a spectrophotometer.
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2.5. Real Time (RT) PCR Assay

Rat testes were collected to extract total RNA with Trizol LS reagent (Invitrogen, Carlsbad, CA,
USA). A spectrophotometer (NanoDrop Lite, Thermo Fisher, Waltham, MA, USA) was used to quantify
RNA and 2 µg of RNA were reverse transcribed with the Superscript VILO kit (Invitrogen). A final
volume of 20 µL per well was obtained adding 1 µL of cDNA to the EvaGreen qPCR Master Mix
(Biotium Inc., Fremont, CA, USA). Samples were run in duplicate, GADPH was used as housekeeping
gene and the final concentration of primers was 10 µM. Target genes were BAX and Bcl-2.

Primers used for target and reference genes were:
GADPH
Fw: 5′CTCATGACCACAGTCCATGC3′

Rv: 5′TTCAGCTCTGGGATGACCTT′

BAX
Fw: 5′CGAGCTGATCAGAACCATCA3′

Rv: 5′CTCAGCCCATCTTCTTCCAG′

Bcl-2
Fw: 5′ATACCTGGGCCACAAGTGAG3′

Rv: 5′TGATTTGACCATTTGCCTGA3′

Results were expressed as 2-∆∆Ct, as n-fold increase of gene expression and compared to sham.

2.6. Histological Evaluation

Testes were immediately fixed in freshly prepared Bouin solution, dehydrated in graded ethanol,
cleared in xylene and embedded in paraffin (Paraplast, Supplies SPI, West Chester, PA, USA). 5 µm
sections were cut with a rotary microtome (RM2125 RT, Leica Instruments, Nussloch, Germany),
cleared with xylene, rehydrated in graded ethanol, and stained with hematoxylin and eosin (HE). The
slides were photographed with a Nikon Ci-L (Nikon Instruments, Tokio, Japan) light microscope; the
images were taken with a digital camera Nikon Ds-Ri2 and processed to the final magnification of
800×.

2.7. Morphometric Evaluation

Five non-serial sections per animal were evaluated for each group. Two experienced investigators
performed morphological evaluation independently, blinded to the experimental group of each animal.
Five microscopic fields (MFs), all including two entire seminiferous tubules from 10 non-serial sections
of each group, were considered. For morphological assessment, the mean tubular diameter (MTD) was
calculated by measuring the diameters of 100 separate seminiferous tubules, all showing a circular
profile. A Peak Scale Loupe 7x (GWJ Company, Hacienda Heights, La Quinta, CA, USA) micrometer
was used as a scale calibration standard to calculate the diameters, expressed in µm. Seminiferous
epithelium was evaluated with the Johnsen’s scoring system [28], as modified for rodents [29].
Briefly, a score of 10 to 1 was given to each tubule according to its epithelial organization: 10, full
spermatogenesis; 9, many late spermatids and disorganized tubular epithelium; 8, few late spermatids;
7, no late spermatids, few early spermatids; 6, no late spermatids, arrest of spermatogenesis at the
spermatid stage, disturbance of spermatid differentiation; 5, no spermatids, many spermatocytes; 4, no
spermatids, few spermatocytes, arrest of spermatogenesis at the primary spermatocytes stage; 3, only
spermatogonia; 2, no germ cells, Sertoli cells only; 1, no seminiferous epithelial cells, tubular sclerosis.

2.8. Measurement of Apoptosis with Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling
(TUNEL) Assay

For the TUNEL technique, an apoptosis detection kit (In situ Apoptosis Detection kit, Abcam,
Cambridge, UK) was used. From the same blocks used for histological evaluation, 5 µm
sections were cleared in xylene and rehydrated in graded ethanol. After permeabilization with
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proteinase K, endogenous peroxidase activity was stopped with 3% H2O2 in methanol. Sections
were incubated with terminal deoxynucleotidyl transferase, with biotin-labeled deoxynucleotides,
with streptavidin–horseradish peroxidase conjugate and with the diaminobenzidine solution, and
counterstained with Harris hematoxylin. The slides were photographed with a Nikon Ci-L (Nikon
Instruments, Tokyo, Japan) light microscope using a digital camera Nikon Ds-Ri2. From each group,
two trained observers without knowledge of the treatment blindly evaluated from 100 seminiferous
tubules the distribution of apoptosis, expressed as percentage of tubules with apoptotic cells (%TWAC),
and the mean number of TUNEL-positive cells per tubule, expressed as apoptotic index [30].

2.9. Statistical Analysis

The statistical significance of differences among groups was performed with ANOVA comparison
tests. Mann–Whitney U tests with Bonferroni correction was used for the statistical analysis of
histological scores. A p value ≤ 0.05 was considered statistically significant. Values are provided as
mean ± standard deviation (SD).

3. Results

3.1. Lycopene Effects on Testis Weight

All testes were weighted after sacrifice. No significant differences were observed in testes weight
among any sham groups: therefore, for the clarity of data, a single value is provided as representative
of sham.

Varicocele operated testes showed a weight significantly lower than sham (−41%). On the contrary,
in varicocele contralateral testes, and in both the operated and the contralateral testes of rats treated with
lycopene, no significant differences were observed versus sham (+3%, −11% and +10%, respectively)
(Table 1).

Table 1. Effects on testis weight and testosterone induced by lycopene in varicocele rats as compared to
varicocele and sham rats. All values are expressed as mean ± SD; n = 7 animals for each group.

Testis Weight (g) Testosterone (ng/mL)

Sham 1.552 ± 0.129 5.8 ± 0.7
Varicocele operated testis 0.926 ± 0.186 a

2.6 ± 0.3 a
Varicocele contralateral testis 1.608 ± 0.204 b

Varicocele + lycopene operated testis 1.386 ± 0.149 b
5.2 ± 0.6 b

Varicocele + lycopene contralateral testis 1.727 ± 0.223 b

a = p < 0.05 vs. sham; b = p < 0.05 vs. varicocele.

3.2. Lycopene Effects on Testosterone and MDA Levels

Testosterone levels were similar in sham groups; therefore, for the clarity of data, a single value is
provided as representative of controls. A significant decrease in testosterone levels was observed in
varicocele operated animals compared to sham (−55%), whereas lycopene administration caused a
significant increase in testosterone levels (+50%) (Table 1).

MDA levels were markedly increased in varicocele rats compared to sham animals. Lycopene
treatment significantly decreased lipid peroxidation, thus demonstrating the efficacy of lycopene in
reducing oxidative stress (Table 2).
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Table 2. Effects on testis malondialdehyde induced by lycopene in varicocele rats as compared to
varicocele and sham rats. All values are expressed as mean ± SD; n = 7 animals for each group.

Malondialdehyde (µmol/mg Tissue)

Sham 2.12 ± 0.27
Varicocele operated testis 4.46 ± 0.45 a

Varicocele contralateral testis 2.91 ± 0.38 b

Varicocele + lycopene operated testis 2.37 ± 0.35 b

Varicocele + lycopene contralateral testis 2.09 ± 0.29 b

a = p < 0.05 vs. sham; b = p < 0.05 vs. varicocele.

3.3. Lycopene Modulates the Expression of BAX and Bcl-2

Animals subjected to varicocele showed an increased mRNA expression of the pro-apoptotic BAX
compared to sham and also to contralateral testes. The treatment with lycopene significantly reduced
BAX mRNA expression in both operated and contralateral testes, compared to the testes of varicocele
rats (Figure 1A).
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Figure 1. Real time PCR analysis for BAX (A) and Bcl-2 (B) in testes of sham and varicocele rats treated
with vehicle or lycopene (1 mg/kg i.p., daily), respectively. * p < 0.05 versus sham rats; § p < 0.05 versus
testes of varicocele-treated rats. Bars represent the mean ± SD of 7 experiments.

The anti-apoptotic Bcl-2 showed an opposite trend. In fact, Bcl-2 mRNA expression was
significantly reduced in varicocele rats, whereas lycopene administration significantly increased its
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expression in both operated and contralateral testes, thus demonstrating that apoptotic pathway was
reduced following lycopene treatment (Figure 1B).

3.4. Lycopene Administration Counteracts Seminiferous Tubules Damages

All sham groups showed a normal morphology of both the seminiferous tubules and the
extratubular compartment. Therefore, for the clarity of results, a single image is provided as
representative of sham (Figure 2A) and a single datum is provided for the MTD and the Johnsen’s
score (Figure 2F,G).
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Figure 2. Histological organization of the testes with Hematoxylin-Eosin stain. (A): Sham rats. A
normal tubular structure is present. (B): Varicocele operated rats. The seminiferous epithelium is
thinner and sometimes atrophic with disorganized germ cells and residual sperm tails in the adluminal
compartment. In the extratubular compartment, a marked edema is present. (C): Contralateral testes of
varicocele operated rats. The seminiferous tubules show a better-preserved epithelium, with many
spermatids and some immature spermatozoa. The extratubular compartment shows only a mild
edema. (D): Varicocele rats treated with lycopene. The seminiferous epithelium is better preserved and
shows round or elongated spermatids. A mild edema is present in the extratubular compartment. (E):
Contralateral testes of varicocele rats treated with lycopene. The seminiferous epithelium has a normal
structure with many spermatids and mature spermatozoa; also, the extratubular compartment is close
to normal. (F): Quantitative evaluation of the mean tubular diameter in the different groups of rats.
(G): Johnsen’s score in the different groups of rats. * p < 0.05 versus sham; § p < 0.05 versus varicocele
operated. (Scale bar: 50 µm).
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A destruction of the seminiferous epithelium was present in the testes of varicocele rats; a thin and
sometimes atrophic epithelium, with disorganized germ cells and residual sperm tails in the adluminal
compartment, was observed (Figure 2B). Consequently, the tubules showed a reduced mean diameter
and the Johnsen’s score was low (Figure 2F,G). A marked edema was present in the extratubular
compartment. The seminiferous tubules showed a better-preserved epithelium (Figure 2C) in the
contralateral testes of varicocele rats, with many spermatids and some immature spermatozoa. The
tubules had a larger mean diameter (Figure 2F) and the Johnsen’s score was higher than that of the
sham group (Figure 2G). The extratubular compartment showed only a mild edema.

The seminiferous epithelium was better preserved and showed round or elongated spermatids
in the testes of varicocele rats treated with lycopene (Figure 2D); the tubules had a significant large
mean diameter (Figure 2F) and an increased Johnsen’s score (Figure 2G). Only a mild edema was
observed in the extratubular compartment. The germinal epithelium had a normal structure, with
many spermatids and mature spermatozoa in the contralateral testes of varicocele rats treated with
lycopene; the extratubular compartment was also close to normal (Figure 2E). The seminiferous tubules
had normal mean diameters (Figure 2F) and Johnsen’s score (Figure 2G).

3.5. Lycopene Administration Counteracts Seminiferous Epithelial Cells Apoptosis

All sham animals showed identical morphology following TUNEL assay. Therefore, for the clarity
of results, a single image is provided as representative of the sham group (Figure 3A), and a single
datum is provided for the TWAC and apoptotic index (Figure 3F,G). No TUNEL-positive germ cells
were observed in the seminiferous tubules in the sham animals.

On the contrary, a large number of TUNEL-positive germ cells, evenly distributed along the
periphery of the tubules, were observed in the seminiferous tubules of varicocele rats (Figure 3B). In
fact, both the TWAC and apoptotic index were significantly higher than those observed in the sham
group (Figure 3F,G). By contrast, few isolated TUNEL-positive germ cells were present at the periphery
of the seminiferous tubules in the contralateral testes of varicocele rats (Figure 3C). Both the TWAC
and apoptotic index were significantly lower than those of varicocele rats (Figure 3F,G).

Only few peripheral TUNEL-positive cells were present in the seminiferous tubules in the testes
of varicocele rats treated with lycopene (Figure 3D); the TWAC and apoptotic index were significantly
reduced (Figure 3F,G). Rare TUNEL-positive cells were present in the seminiferous tubules in the
contralateral testes of varicocele rats treated with lycopene (Figure 3D), so that TWAC and apoptotic
index were similar to those for the sham group (Figure 3F,G).
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Figure 3. Assessment of apoptosis in the testes with TUNEL staining technique. (A): In sham rats no
TUNEL-positive cells can be observed. (B): Varicocele operated rats. In the seminiferous epithelium
a large number of TUNEL-positive germ cells (arrowheads) are present along the periphery of the
tubules. (C): Contralateral testes of varicocele operated rats. Few isolated TUNEL-positive germ
cells (arrowheads) are present at the periphery of the seminiferous tubules. (D): Varicocele rats
treated with lycopene. Few peripheral TUNEL-positive cells are present in the seminiferous tubules.
(E): Contralateral testes of varicocele rats treated with lycopene. Rare TUNEL-positive cells can be
demonstrated. (F): Tubules with apoptotic cells (TWAC) (expressed in %) in the different groups of rats.
(G): Apoptotic index (apoptotic cells/tubule) in the different groups of rats. * p < 0.05 versus controls; §
p < 0.05 versus varicocele; , p < 0.05 versus contralateral testes of varicocele operated rats and testes of
varicocele rats treated with lycopene. (Scale bar: 50 µm).

4. Discussion

Several therapeutic strategies have been proposed to reduce testicular damage and counteract
human infertility related to varicocele. The use of functional foods of natural origin in recent decades
has sparked the interest of researchers in the possible use of nutraceuticals for the treatment of
varicocele. A previous study indicated that a high intake of green vegetables, fruits, whole grains, fish,
chicken, and low-fat dairy products, and a simultaneous reduced consumption of meat, treated foods,
sweets, and high-fat products improved the quality of semen [31].

The MD is a plant-based eating plan that ameliorates sperm concentration, total sperm count
and sperm motility in men affected by reduced fertility [32]. Among the nutrients available in the
MD, lycopene is a carotenoid mainly contained in tomatoes [33]. Lycopene is considered as a strong
antioxidant and anti-apoptotic agent [34], but the role of lycopene as a possible antioxidant product
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is controversial because of its low distribution in tissues. Most of the effects of lycopene seem to be
ascribed to lycopenoids, which are the active metabolic products resulting from lycopene metabolism.

According to some evidence, the positive anti-cancer effects on the prostate are related to the
consumption of lycopene/lycopenoids-containing foods, such as tomatoes.

Moreover, tomatoes contain other bioactive molecules, such as vitamins C, vitamin E, folate,
polyphenols, phytoene and phytofluene, which are other carotenoids in addition to lycopene; thus, the
efficacy and the curative effects of lycopene could be related to the combination of all these components,
and not only to lycopene [14].

In this regard, it has been shown that lycopenoids reduce the proliferation of cancer cells,
induce apoptosis, regulate flow through the cell cycle, induce nuclear transcription factors, enhance
cell-to-cell communication, and modulate androgen signaling [14]. Moreover, the consumption
of lycopene-containing foods and the tissue specific expression of carotenoid cleavage enzymes
determine tissue lycopenoid concentrations [14]. For example, enzymatic kinetic analysis indicates
that the non-provitamin A carotenoids, including lycopene, are preferentially cleaved over provitamin
A carotenoids, indicating a key role of β-carotene 9′,10′-oxygenase (BCO2) in non-provitamin A
carotenoid metabolism. Accordingly, non-provitamin A carotenoids were shown to induce several
phase II enzymes both in vivo and in vitro [35,36]. Then, because induction of phase II detoxifying
or antioxidant genes by dietary carotenoids represents an important cellular defense in response
to oxidative and electrophilic insults, more research is clearly needed to identify and characterize
additional carotenoid metabolites and their biological activities.

So far, a clinical study, involving 47,365 persons, has demonstrated the reduced risk of prostate
cancer following lycopene intake, and a reduction of male infertility and improvement of sperm quality
using lycopene as a dietary supplement, thus increasing sperm number and viability [33,37]. In the
light of these observations, in the present study we chose not to measure lycopene in testes, but we
preferred to have an indirect read-out of its bioavailability and efficacy. Since it has been shown that
the bioavailability of lycopene varied significantly depending on the administered matrix [38], we
have chosen, in this experimental protocol, the i.p. route of administration, thus overcoming a possible
malabsorption by different food formulations, as well as allowing us to reach an adequate blood and
tissue bioavailability. As to its efficacy, we evaluated its antioxidant activity by testing the behavior
of MDA.

Varicocele is a multifactorial disease, and oxidative stress seems to play an important role in
the pathogenesis of the disease. Oxidative stress causes both direct and indirect damage of germ
cells, negatively influencing Sertoli cells and resulting in dramatic morphological alterations of the
seminiferous epithelium and apoptosis induction [39]. In the present study, varicocele was reproduced
in experimental animals by partial ligation of the left renal vein [3]. Varicocele rats showed a thin and
atrophic epithelium with disorganized germ cells, reduced mean diameter of the tubules, and a low
Johnsen’s score, as previously described [3,7,8,24,25,40–42]. These alterations were also slightly present
in the contralateral testes. The modulation of the oxidative stress processes, thanks to lycopene use,
significantly ameliorated structural damage of tubules in testes [43]. In our experiment, administration
of lycopene, at a dose comparable to that previously utilized in experimental models of prostate growth
induced in rats by testosterone [9], caused significant testicular protective effects, with an improvement
of testes structure and an increase in both the diameter of the seminiferous epithelium and Johnsen’s
score, thus indicating a possible improvement in male fertility.

Oxidative stress triggers apoptosis, which is considered one of the mechanisms that contribute to
the pathophysiology of varicocele [44]. As a matter of fact, apoptotic activation was also observed in
germ cells, in testicular tissues, and in ejaculated spermatozoa [45]; this impaired condition led us to
hypothesize the presence of damaged DNA in sperm [46].

Varicocele-induced damage markedly increased and decreased the pro-apoptotic BAX and the
anti-apoptotic Bcl-2 gene expression, respectively; this strongly suggests that the apoptotic process was
stimulated in varicocele rats. Moreover, TUNEL-positive cells in the seminiferous tubules of varicocele
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testes were present, and the number of TUNEL-positive cells was increased compared to the sham rats.
Since testes are constituted by a large amount of polyunsaturated fatty acids, and, at the same time,
sperm cytoplasm contains low concentrations of scavenging enzymes, sperm cells are particularly
susceptible to ROS; the elevated apoptotic cell rates observed in the present study let us hypothesize
that apoptotic activation was related to increased ROS formation in testicular tissue.

Lycopene is involved in the scavenging of two of the reactive oxygen species (ROS): singlet
molecular oxygen and peroxyl radicals [47]. Previous studies demonstrated that lycopene protected
testes, thus increasing sperm motility and reducing apoptosis [48]. Interestingly, lycopene
administration not only significantly reduced BAX and increased Bcl-2 expression, but also decreased
the number of TUNEL-positive cells in the seminiferous tubules, demonstrating that lycopene
significantly modulated and reduced apoptotic process. Then, these results confirm the potentially
beneficial therapeutic effects of lycopene/lycopenoids, including the inhibition of carcinogenic
activation, proliferation, angiogenesis, invasion and metastasis, and the blocking of tumor cell-cycle
progression [49].

Hormonal dysfunction was observed in varicocele, and is involved in the pathophysiology of the
disease, being closely linked to oxidative stress and apoptosis [1,2,41,45]. Indeed, spermatogenesis
is a testosterone-dependent process, and hormonal imbalance can be a cause of impairment of
spermatogenesis. In this regard, many authors have demonstrated reduced serum testosterone levels
in men with varicocele [50], probably also as a consequence of oxidative stress production, and have
provided findings supporting the repair of varicocele as resulting in the expected improvement of
Leydig cell functions [45,46]. The model used in this experimental setting, based on a surgically
induced varicocele, caused the reduction of circulating testosterone, probably also as a consequence of
oxidative stress production, thus confirming the results obtained in previous studies that described the
decrease of testosterone levels as being associated with an impaired function of the Leydig cells [51].

Testosterone is fundamental for spermatogenesis, and the weight of the testes is related to the
quantity of spermatogenic cells and spermatozoa [52,53]. In fact, in the present study the decrease of
the weight of testes observed in varicocele rats let us hypothesize that it was a consequence of the
reduction of testosterone levels.

Lycopene administration significantly increased testosterone levels in varicocele-treated rats, thus
indicating the positive role of lycopene in restoring the hormonal dysfunction and consequent infertility
by experimentally induced varicocele. As a matter of fact, our experimental observations confirm
the crucial role of steroid hormones and molecular signaling systems (i.e., insulin-like growth factor),
giving new insight into the biological action of carotenoids, particularly lycopene [54–57]. Of course,
in light of previous reports indicating that lycopenoids influence androgen metabolism in rodent
models [14], additional experiments are required to better define the role of lycopene metabolites and
their nutraceutical bioactivity.

5. Conclusions

In conclusion, taken together, our data suggest that lycopene use might be considered a novel
strategy for the treatment of varicocele. However, additional and translational studies are required
to study a new possible mechanism of action of this bioactive compound, typically present in the
traditional MD, and the amount of dietary intake needed to carry out its curative effects in the
management of varicocele and male infertility.
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