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Abstract: Polyunsaturated fatty acids of the n-3 series (n-3 PUFA) exhibit a number of favorable
effects on the human organism and it is desirable to increase their intake in the diet. For this purpose,
flaxseed oil was added to a chicken-feed mixture for the production of meat and eggs. The content
of n-3 PUFA in the obtained meat was increased from 250 mg (reference value) to 900 mg in 100 g
of meat and from 110 mg (reference value) to 190 mg in 100 g of whole egg; the enriched products
are designated as omega-3 meat and omega-3 eggs. Omega-3 meat and eggs were subsequently fed
for a period of eight weeks in an amount of 480 g of meat and four eggs (228 g netto) a week to a
group of 14 healthy volunteers, whose body composition parameters were measured and blood was
analyzed biochemically to determine blood lipids, coagulation parameters, plasma, and erythrocyte
fatty acid spectrum composition. A control group of 14 volunteers was fed normal chicken and eggs
in the same regime. The performed dietary intervention increases the intake of long-chain PUFA
(LC-PUFA) by 37 mg per day, which represents 7–15% of the recommended daily dose. The performed
tests demonstrated that the consumption of omega-3 enriched meat and eggs significantly increases
the content of n-3 PUFA in the erythrocytes, which are a long-term indicator of fatty acid intake.
This intervention has no demonstrable effect on the basic body parameters, such as body weight,
fat content, Body Mass Index (BMI), and also on the plasma cholesterol level, high-density lipoprotein
(HDL), low-density lipoprotein (LDL), blood clotting and inflammation markers, and omega-3 index.

Keywords: n-3 polyunsaturated fatty acids; omega-3 diet; body composition; blood coagulation;
blood lipids; erythrocytes; fatty acids spectrum

1. Introduction

It is known that polyunsaturated fatty acids of the n-3 series (n-3 PUFA) demonstrably reduce the
plasma levels of total cholesterol and triacylglycerols (TAG) in humans [1,2]. Both n-3 and n-6 PUFA play
an important role in the formation, development, modulation, and stopping of inflammatory processes.

N-3 PUFA include α-linolenic acid (ALA), which is essential for humans; however, ALA received
in the diet can be desaturated and elongated to long-chain PUFAs (LC-PUFA), such as eicosapentaenoic
acid (EPA) and docosahexaenoic (DHA). The effectiveness of converting 18-carbon ALA to 20-carbon
EPA in healthy young men is approximately 8% [3,4]. This conversion is higher in women and
corresponds to 21% [4]. Most studies summarized in the article of Domenichiello et al. [5] demonstrate
that less than 1% of ALA is converted to DHA. It thus follows that direct consumption of EPA and
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DHA is the most effective means for increasing the content of health-giving n-3 LC-PUFA in the lipids
of the blood plasma and phospholipids of the cell membranes.

Metabolic syndrome is associated with obesity, dyslipidemia, hypertension, and impaired glucose
tolerance, and is thus closely connected with type 2 diabetes (T2D). Replacing saturated fatty acids
(SFA) by mono-unsaturated FA (MUFA) can demonstrably reduce the risk of development of metabolic
syndrome [6]. Especially n-3 PUFA have the greatest ability to reduce the TAG level and total serum
cholesterol (S-chol), increase the level of serum high-density lipoprotein cholesterol (S-HDLC) and
activate the lipid metabolism [6,7]. Impaired glucose tolerance, as a risk factor of insulin resistance, is one
of the connecting links and simultaneously the first stage of T2D. According to the meta-analysis of Qian
et al. [8], PUFAs lead to a reduction of fasting glycemia by 0.87 mmol/l. Also, the effects of n-3 PUFAs
on platelet function have been studied intensively [9,10]. Platelet aggregation assays are performed
with agents that physiologically activate platelets in vivo, for example, adenosine diphosphate (ADP),
arachidonic acid, collagen, and epinephrine. The results of clinical studies of the effect of n-3 PUFA
on platelet aggregation are ambiguous. Meta-analysis of nine studies [10] demonstrated that daily
supplementation with n-3 PUFAs significantly reduces ADP-induced platelet aggregation compared
with a placebo with a trend towards a decrease in collagen-induced aggregation, but not in arachidonic
acid-induced aggregation.

ALA occurs primarily in flaxseed oil with about 40% content of ALA and, to a lesser degree, in canola
oil with a 10% content, as well as in soya oil and walnuts. The main sources of EPA and DHA are saltwater
fish [11–14], krill [15], and microalgae [16–18]. Cardoso et al. give the amount of DHA present in Western
food as approximately 100 mg/day [11]. At the same time, the recommended value for consumption
of EPA and DHA for the European adult population is in the range 250–500 mg/day [11,12,19,20].
Consequently, in addition to food supplements containing fish oil, other means are sought to supplement
the n-3 LC-PUFA content in our diets. The smell of fish oil containing approximately 18% EPA and 12%
DHA, or its concentrate [21], makes it quite unacceptable for many individuals.

Another possibility represents stearidonic acid (SDA; C18:4n3), from which EPA is synthesized
more effectively than from ALA. Prasad et al. mentions 14–16% conversion of SDA to EPA [22] and
Bowen et al. even 33% [23]. A high amount of SDA is reported in hemp oil, blackcurrant oil, and echium
oil, however its conversion to DHA is low [22]. Another option lies in the breeding of farm animals
fed a mixture containing ALA derived from natural plant sources, such as flaxseed and flaxseed oil,
where it is assumed that ALA is converted to higher n-3 LC-PUFA in these animals. Cortinas et al.
showed a 16-fold increase in ALA in chicken breast meat to a level of 4.1 g/kg and an almost 30-fold
increase in ALA in thigh meat with skin to 31.4 g/kg, when applied approximately 7% flaxseed oil and
2% fish oil into feed mixture [24]. The increase in EPA and DHA, derived from the fish oil or from the
ALA conversion, reached 2.39 g/kg (340% increase) for EPA and 1.13 g/kg (66% increase) for DHA;
0.3 g/kg EPA (130% increase) and 0.4 g/kg EPA (40% increase) were measured in the chicken breast.
The greater part of the FA received is thus stored in the skin and subcutaneous fat. Zuidhof et al.
documented triple levels of ALA and EPA in the meat of broilers using a feed mixture containing 10%
flaxseed, while DHA level was unchanged [25]. The enrichment of eggs with n-3 PUFAs using various
oilseeds and fish oil is summarized in a review by Fraeye et al. [26]. The 2% addition of flaxseed oil
in the feed mixture reached 15 times the original level of ALA (14.88 mg/g of yolk), EPA increased
from zero level to 0.37 mg/g of egg yolk, and DHA is more than doubled to 6.49 mg/g of yolk [27].
In another study, Benavides reported an 11.8-fold increase in ALA in eggs using 10% flaxseed in
the feed mixture [28]. Some algae that directly produce LC-PUFA can also be used to prepare feed
mixtures [16–18,29,30]. In this way products such as chicken and eggs enhanced in n-3 FA can be
obtained directly from these animals. Disadvantages lie in the lower organoleptic quality and stability
of the obtained products against spontaneous oxidation [20], which is suppressed by the addition
of antioxidants, such as vitamin E to the feed mixture. Pork [31], beef [32], and carp meat [33] with
elevated contents of n-3 FA can be obtained similarly.
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The increased demand for enriched products led to the idea of developing basic commonly
consumed foods that would contain naturally higher contents of PUFA and LC-PUFA, i.e., chicken and
eggs, hereafter designated in this article as “omega-3 meat” and “omega-3 eggs”. In the Czech Republic,
eggs are considered a basic food with an annual consumption of 14.6 kg brutto (263 eggs) per person
in 2018; the annual consumption of chicken in the Czech Republic is 28.4 kg per person according to
the Czech Statistical Office [34]. RABBIT Trhový Štěpánov Inc. (Trhový Štěpánov, Czech Republic)
produces omega meat and eggs by adding flaxseed with high ALA content directly to the feed
mixtures of chickens and laying hens. The submitted study is part of an extensive project concerned
with the development of feed mixtures, the production of omega-3 chickens and eggs, and their
wide distribution to the retail network in the Czech Republic. Because of their great nutrient value,
the successful production of omega-3 meat and eggs would represent a major potential that would
find its place on the market even if the retail prices of food were to increase. Here we deal with the
aspect of the effect of eight-week consumption of omega-3 eggs and meat on selected biochemical and
hematological blood parameters, body composition measured by the bio-impedance method, and the
complete spectrum of fatty acids (FA) in the blood plasma and in the phospholipids of the erythrocyte
membrane. The blood plasma lipids provide information on the actual lipid metabolism, while the
membrane phospholipids provide long-term information on lipid consumption and metabolism.

2. Materials and Methods

2.1. Production of Omega-3 Meat and Eggs

RABBIT Trhový Štěpánov Inc. provided for the production of omega-3 chicken and eggs.
Enrichment of foodstuffs in n-3 PUFA is based on the addition of flaxseed oil, as a natural source of
n-3 PUFA, to the feed mixtures. The addition of flaxseed oil was optimized and finally an amount
of 2% wt. flaxseed oil was added to the mixture for feeding chickens to produce omega-3 meat and
1% wt. flaxseed oil was added to the mixture for feeding laying hens for production of omega-3
eggs. The control groups were fed the standard feed mixture, in which soya is the source of lipids,
once again in an amount of 2% wt. for the production of meat and 1% wt. for the production of eggs.
Further addition of flaxseed oil to the feed mixture causes diarrhea in chickens and laying hens and
is unfeasible from a feed point of view. The meat and eggs were analyzed for their contents of n-3
and n-6 PUFA at the Department of Food Analysis and Nutrition of the University of Chemistry and
Technology in Prague using gas chromatography (GC) technique (Table 1).

Table 1. PUFA composition of omega-3 chicken and eggs.

PUFA
Chicken Thigh Muscle (mg FA/100 g of Meat) Egg (mg FA/100 g of Whole Egg)

Control Chicken Omega-3 Chicken Control Egg Omega-3 Egg

ALA (C18:3n3) 210 810 40 80
EPA (C20:5n3) 7.3 22.3 0.0 10
DHA (C22:6n3) 12.6 31.5 70 100

LC-PUFA 19.9 53.8 70 110
Σ n-3 PUFA 250 900 110 190
Σ n-6 PUFA 2040 2280 860 1070

Polyunsaturated fatty acids (PUFA), fatty acids (FA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and
docosahexaenoic (DHA).

The addition of flaxseed oil to the feed mixture was manifested in an increase in LC-PUFA from
19.9 mg to 53.8 mg per 100 g of meat (170% increase), and from 70 mg to 110 mg per 100 g of egg
(57% increase). The overall amount of n-3 PUFA in the meat was changed from 250 mg to 900 mg
in 100 g of meat (260% increase) and from 110 mg to 190 mg per 100 g of whole egg (73% increase).



Nutrients 2020, 12, 2207 4 of 12

The increase in n-6 PUFA in the meat and eggs is substantially less and the thus-produced foodstuffs
can be designated as omega-3 meat and eggs.

2.2. Dietary Study

This was a randomized study and subjects were blinded to the n-3 FA intervention. A total of 28
healthy 18–25-year-old men, students of Charles University, Third Faculty of Medicine, were recruited
into the study. The volunteers were divided into two groups of 14 individuals each, and further
designated as the control group (n = 14) and the omega-3 group (n = 14). Participants did not suffer from
any chronic condition or take any medication, didn’t undergo any restrictive diet and did not engage
in any extremely intense physical activity (defined as more than 12 h per week). Basic anamnestic
data, nutritional habits, and lifestyle behaviour were self-recorded by participants in a questionnaire.
All the participants were informed in detail about the study and signed a written consent. The study
was approved by the Ethical Committee of the Third Faculty of Medicine (Charles University, Prague,
Czech Republic), head of review board Dr. Marek Vácha, PhD. All participants were informed about
the study and planned examinations and signed informed consent.

The set of volunteers was randomly divided into two groups; one received an experimental diet
containing the enriched eggs and chicken and the other received a control diet. The experimental
and control diets were administered four times a week in the regime of one egg (57 g netto) and
120 g of meat per serving. The control diet was prepared and administered in the same way as the
experimental diet, with the difference that ordinary unenriched products (chicken and eggs) were
used. According to the plan, the nutrition intervention lasted eight weeks. The meals were planned
by a registered dietitian, prepared in the canteen of the Faculty Hospital Královské Vinohrady and
provided to the participants under the supervision of a responsible member of the experimental team.

The average daily intake of n-3 PUFA from enriched chicken meat and eggs during the intervention
is summarized in Table 2. Due to the fact that the total dietary intake of LC-PUFA was not monitored,
the obtained values are related to the recommended daily intake of LC-PUFA in the Western European
diet, which is 250–500 mg/day. The performed intervention represents a total daily increase of LC-PUFA
intake by 37 mg compare to the control group, which is 7-15% of the recommended daily dose.
The design of the food intervention was deliberately set to correspond to the usual eating habits in
the population and a further increase in the consumption of eggs and meat over four eggs and four
servings of meat per week) seems unrealistic in long-term practice.

Table 2. Average daily intake of n-3 PUFA in mg/day from chicken meat and eggs during the intervention
above the baseline diet.

N-3 PUFA
(mg/day)

Control Group Omega-3 Group

Meat Egg Total Meat Egg Total

ALA 144 13 157 555 26.1 581
EPA 5.0 0.0 5.0 15.3 3.3 19

DHA 8.6 22.8 31 21.6 32.6 54
LC-PUFA 13.6 22.8 36 37 36 73

The baseline diets of participants were not determined, but all the participants were instructed not
to change their lifestyle, especially their dietary habits and physical activity throughout the duration of
the study and not to undertake any restrictive dietary regime.

2.3. Anthropometric and Body Composition Data

The basic anthropometric data (weight, height, Body Mass Index (BMI)) were determined at the
beginning and end of the intervention, the body composition (by the bio-impedance method) and
the blood pressure were measured. Body composition values were measured by Body composition
analyzer (Tanita MC 180 MA, Amsterdam, The Netherlands). All the participants were instructed not
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to change their lifestyle, especially their dietary habits and physical activity throughout the duration of
the study and not to undertake any restrictive dietary regime. In case of acute illness, the participants
were eliminated from the study.

2.4. Biochemical and Hematological Parameters

Blood samples were taken at the beginning and end of the intervention to determine
selected biochemical and hematological parameters: blood lipids (total cholesterol, S-HDLC, serum
low-density lipoprotein cholesterol (S-LDLC), triacylglycerols), hemocoagulation (aPTT, Quick test,
INR, thrombocyte aggregation) and inflammatory parameters (TNF-α and IL-6). Analysis of all these
parameters was performed using certified methods in the Department of Laboratory Diagnostics
of Faculty Hospital Královské Vinohrady and Third Faculty of Medicine. Simultaneously, control
measurements were performed of the blood pressure and heart rate.

2.5. Determining the Overall FA Profile in the Blood Plasma and in the Erythrocytes

Before analysis on a gas chromatograph (GC), fatty acid methyl ester (FAME) derivatives of all the
samples were prepared. The FA profile in the plasma was determined using 200 µL of blood plasma,
100 µL of inert standard solution (IS) C13:0 (43 µg) and C17:0 (41 µg), and 4.2 mL of the derivatized
mixture containing methanol/toluene/acetylchloride (3.2/0.8/0.2; v/v/v). Esterification was performed in
a closed test tube for 1 h at 100 ◦C. Cooling was followed by neutralization with a 12% wt/v solution
of K2CO3; the mixture was shaken for 10 min and centrifuged. The upper organic phase was then
pipetted into a vial with an insert and 1 µL of sample was used for the analysis.

The FA composition of the erythrocyte membranes was determined by a slightly modified
procedure according to Rose and Oklander [35]. Approximately 8 mL of full blood taken with
ethylenediaminetetraacetic acid (EDTA) was centrifuged at 1780 g for 5 min and, after removing the
plasma, the obtained erythrocytes were rinsed with 3 mL of physiological solution. The test tube
was then shaken for 2–3 min, centrifuged at 1780× g for 4 min and the physiological solution was
subsequently drawn off; this procedure was repeated four times. Subsequently, 1 mL of the rinsed
erythrocytes was transferred to a closable test tube, 100 µL of methanol containing IS C13:0 (46 µg) and
C17:0 (47 µg) were added and the solution was again shaken with 5 mL of isopropanol on a vortex
shaker. The test tube was then shaken for 1 h; then 3.5 mL of chloroform was added and the mixture
was again shaken for 1 h. This was followed by short centrifugation and the final extract was filtered
and evaporated to dryness under a nitrogen stream at a temperature of 35 ◦C. The obtained lipids were
stored in a freezer at −25 ◦C until esterification, which was performed by the same derivatization of
the mixture as for the blood plasma.

All the FA determinations were performed on a GC-17A Version 3 gas chromatograph
(Shimadzu, Kyoto, Japan) fitted with an AOC-20i autosampler modified for 15 samples with a standard
flame ionization detector (FID). The temperatures of the injection port and FID were 250 ◦C and
260 ◦C, respectively. The basic FA profile was determined using a Stabilwax 15 m × 0.25 mm × 0.1 µm
column (Restek, Bellefonte, PA, USA) and the carrier gas was helium with a flow rate of 1.2 mL/min.
The temperature program began at 120 ◦C, followed by a gradient of 10 ◦C/min to 190 ◦C and a final
gradient of 40 ◦C/min to 250 ◦C, which was maintained for 15.4 min. The splitting ratio for analysis of
total FA and phospholipids from the erythrocytes was 1:60 and 1:30. The limit of quantification (LOQ)
for the individual FA of the employed GC-FID technology varies in the range 1.7–8.3 µg/mL of blood
plasma or erythrocytes.

The t-test was used for statistical processing of the set of data and the Excel program was employed
to calculate parameter p. A value of p < 0.05 was taken as a statistically significant difference.
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3. Results and Discussions

3.1. Physical Parameters and Basic Biochemical, Hematological, and Immunological Blood Analysis

The performed eight-week intervention with n-3 PUFA among healthy volunteers did not affect
any of the measured anthropometric and body composition parameters, such as body height and
weight, amount of body fat, non-fat (fat free) and muscle mass, total body water (%), or BMI, see Table 3.
No statistically significant difference was found between the control and intervention group and
similarly no longitudinal effect was found for eight-week regular consumption of chicken and eggs
within the two groups. The energy values of the control and intervention diets were identical and the
actual elevated intake of n-3 PUFA was not manifested.

Table 3. Anthropometric and body composition measurements.

Parameter
Start Final Start/Final

Controls Intervention Controls Intervention Controls Intervention

Mean SD Mean SD p Mean SD Mean SD p p p

Height, cm 182 6.14 181 4.96 0.79 182 6.17 181 4.96 0.82 0.98 1.0
Weight, kg 74.6 5.60 71.3 6.81 0.15 74.9 6.18 71.8 6.27 0.18 0.89 0.82

Fat, % 12.5 3.87 11.2 4.06 0.38 12.8 2.91 12.0 2.74 0.46 0.80 0.50
Fat, kg 9.39 3.13 8.15 3.33 0.30 9.62 2.36 8.71 2.34 0.29 0.82 0.59

Non-fat, kg 65.3 5.19 63.2 4.84 0.25 65.3 5.62 63.1 5.23 0.27 0.98 0.99
Muscle, kg 62.0 4.96 60.0 4.62 0.25 62.1 5.37 60.0 4.99 0.27 0.98 1.0

Water, % 63.4 2.98 65.2 4.83 0.24 63.2 2.33 63.8 2.45 0.55 0.83 0.29
BMI, kg/m2 22.6 1.42 21.7 1.57 0.10 22.7 1.29 21.9 1.25 0.08 0.85 0.74

Standard deviation (SD), body mass index (BMI)

Similarly, the performed intervention with elevated intake of n-3 PUFA did not demonstrate a
statistically significant effect on the levels of total serum cholesterol (S-chol) and its fractions S-HDLC
and LDLC, or on the serum triacylglycerol (S-TAG) level, whose values varied within the physiological
limits (Table 3). For S-chol and its fractions, similar to S-TAG, no statistically significant difference
was found between the control group and the omega-3 group following eight-week intervention with
an elevated intake of n-3 PUFA; similarly, no longitudinal shift was observed within the individual
groups. Cholesterol is ingested with the food and is simultaneously synthesized endogenously from
acetyl-coenzyme-A; one of its main sources is β-oxidation of fatty acids. However, it follows from this
study that elevated intake of n-3 PUFA does not affect the serum level of cholesterol and its fractions.

In the subgroup analyses, no significant effects of n-3 PUFAs on platelet function were seen in
healthy participants when the participants were treated with higher doses of n-3 PUFAs ≥ 1.83 g/day
or when the treatment lasted longer than eight weeks. In a study by McEwen et al., [36] four-week n-3
PUFA supplementation reduced the thrombotic potential in healthy subjects. Our study, similar to that
of Cottin in 2016 [37] and a great many other studies [38,39], did not demonstrate any effect of nutrition
intervention on the blood clotting parameters [37] amongst healthy individuals. The differences found
were mostly caused by a zero standard deviation (SD) value.

The anti-inflammatory effect of n-3 PUFA is connected with inhibition of the NF-κB factor
and reducing the levels of the interleukins IL-1, IL-6, and TNF-α. This study monitored only two
immunological factors, IL-6 and TNF-α, for which no statistically significant difference cause by elevated
intake of n-3 PUFA was found (Table 4). This could be caused by the fact that the anti-inflammatory
properties of n-3 PUFA were demonstrated most in studies on older, hypertriglyceridemic or diabetic
patients with elevated inflammatory markers, while the cytokine level amongst healthy individuals
seem to relatively insensitive to n-3 LC-PUFA [40].
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Table 4. Basic biochemical, hematological, and immunological laboratory test of blood serum.

Test Start Final Start/Final

Controls Intervention Controls Intervention Controls Intervention

Mean SD Mean SD p Mean SD Mean SD p p p

Biochemical

S-chol 3.92 0.64 4.14 0.57 0.33 3.99 0.72 4.09 0.67 0.7 0.78 0.83
S-HDLC 1.39 0.16 1.36 0.22 0.76 1.79 1.57 1.33 0.27 0.25 0.32 0.67
S-LDLC 2.11 0.55 2.36 0.56 0.22 2.19 0.48 2.27 0.72 0.72 0.67 0.69
S-TAG 0.95 0.33 0.92 0.25 0.77 0.9 0.29 1.1 0.55 0.24 0.71 0.24

Hematological

AgRisto 85.4 3.51 85.4 3.1 1.0 81.3 8.93 83.1 4.66 0.48 0.1 0.1
AgADP 80.1 7.48 79.2 3.98 0.68 77.7 4.9 78.5 6.92 0.71 0.3 0.71

AgCollag 82.6 2.56 81.5 3.47 0.32 78.3 5.76 80.5 4.96 0.27 0.01 0.51
AgEpi 80.2 3.74 77 13.7 0.39 78.3 4.86 78.2 11.3 0.98 0.25 0.78
AgAra 83.4 2.72 82.9 3.89 0.66 80.3 2.88 82 4.67 0.21 0.0 0.59

QuickTest 14.2 0.71 14.1 0.81 0.75 14.3 0.57 14.2 0.82 0.71 0.65 0.73
Quickcontr 12.9 0.0 12.9 0.0 1.0 13.2 0.0 13.2 0.0 1.0 0.0 0.0

INR 1.14 0.08 1.13 0.09 0.75 1.11 0.06 1.1 0.08 0.71 0.27 0.36
APTTtest 37.4 2.33 36.9 2.87 0.61 36.3 2.36 35.8 3.15 0.63 0.21 0.31

APTTcontr 33.1 0.17 33.1 0.19 0.49 32.5 0.0 32.5 0.0 1.0 0.0 0.0
APTT/R 1.13 0.07 1.12 0.09 0.7 1.12 0.07 1.1 0.1 0.64 0.66 0.65

Immunological

IL6 2.97 3.87 0.99 0.79 0.06 1.97 3.92 2.31 3.07 0.79 0.49 0.11
TNF-α 1.47 0.95 1.26 1.06 0.55 1.24 0.77 1.12 0.55 0.64 0.46 0.66

Abbreviations and units: S-chol: Serum Total Cholesterol (mmol/L); S-HDLC: Serum High-Density
Lipoprotein Cholesterol (mmol/L); S-LDLC: Serum Low-Density Lipoprotein Cholesterol (mmol/L); S-TAG: Serum
Triacylglycerols (mmol/L); AgRisto: Ristocetine-induced platelet aggregation (%); AgADP: ADP-Induced Platelet
Aggregation (%); AgCollag: Collagen-Induced Platelet Aggregation (%); AgEpi: Epinephrine-Induced Platelet
Aggregation (%); AgAra: Arachidonic acid-Induced Aggregation (%); QuickTest: Quick Test (s); INR: International
Normalized Ratio; APTT: Activated Parcial Thromboplastin Time (s); APTT/R: Activated Partial Thromboplastin
Time Ratio; IL6: Interleukin 6 (pg/mL); TNF-α: Tumour Necrosis Factor α (pg/mL).

3.2. Detailed Profile of Fatty Acids in Blood Plasma and Membrane Erythrocytes

The FA profile can be monitored in the blood plasma, in the erythrocytes, and in the fat tissue.
The FA content in the blood plasma is bound to the current intake and reflects the FA intake over the last
few days [41]. The FA content in the erythrocyte membranes is a suitable long-term marker providing
information for a period of approximately 120 days [42,43], which reflects well the FA content in other
tissues, such as the liver, heart, and kidneys [21]. Nonetheless, based on the results for rats, the level in
the erythrocytes need not reflect the DHA concentration in the brain [5]. The fat tissue is then a matrix
in which the intake of the given FA can be followed over the longest time [43].

Monitoring FA in the blood plasma revealed an elevated ALA level in the control group before
commencing the intervention (p = 0.01), while this difference was not observed after the intervention
(Table 5). Demonstrably, the ALA level increased in the omega-3 group from the original values of
14.2 to 22.1 µg/mL (p = 0.00), which could be caused by the increased intake in the food, where the
tested group had a three-times higher intake of n-3 PUFA consisting of 86% ALA. The plasma level of
EPA and DHA did not increase during the intervention. An increase in the plasma level of oleic acid
was also observed during the intervention, where its content in the omega-3 group increased from the
initial level of 517 to 625 µg/mL (p = 0.03), which also caused a demonstrable increase in the total MUFA
level (p = 0.04). Marginally, mention can also be made of the elevated level of C20:1n9c in the control
group at the start of the intervention, which was not observed at the end of the experiment; however;
similarly as for ALA, the C20:1n9c level increased during the intervention in the tested omega-3 group.
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Table 5. Plasma FA profile during intervention in µg/mL.

FA-Profile Start Final Start/Final

Controls Intervention Controls Intervention Controls Intervention

Mean SD Mean SD p Mean SD Mean SD p p p

C14:0 27 9.95 28.5 9.9 0.67 27.5 13.2 32.5 17.3 0.38 0.91 0.43
C16:0 566 135 569 74 0.94 559 115 637 182 0.17 0.88 0.18

C16:1n7 45.4 17.4 49.2 18 0.55 43.5 19.8 59.6 29.5 0.09 0.78 0.24
C18:0 165 36.2 169 26 0.75 167 34.8 175 29 0.53 0.87 0.56

C18:1n9c 554 141 517 75 0.36 555 142 625 180 0.24 0.98 0.03
C18:1n7c 44.3 12.7 44.2 8.9 0.97 46.1 12.7 48.7 9.56 0.52 0.7 0.17
C18:2n6cc 810 102 866 202 0.34 835 168 863 107 0.58 0.62 0.96
C18:3n6 11.6 5.78 10.2 4.8 0.47 10.9 4.08 10.7 4.06 0.87 0.69 0.79
C18:3n3 18.9 6.09 14.2 3.5 0.01 17.2 7.29 22.1 6.53 0.06 0.48 0.00

C20:0 7.29 1.51 8.0 1.5 0.2 7.08 1.3 7.48 1.78 0.49 0.69 0.38
C20:1n9c 7.23 0.93 6.52 0.8 0.03 7.21 1.28 7.49 1.36 0.55 0.96 0.02
C20:2n6 12.5 4.03 12 2.6 0.64 10.8 3.03 10.9 3.12 0.96 0.2 0.3
C20:3n3 45.4 12.5 43.1 13 0.63 36.4 12.1 38.5 9.02 0.6 0.06 0.26
C20:4n6 208 56.5 195 38 0.44 209 59.9 197 40.6 0.53 0.99 0.87
C20:5n3 19.6 8.83 16.3 5.8 0.22 21.7 10.5 19.3 7.58 0.47 0.56 0.21

C22:0 17.4 2.54 17.2 2.9 0.85 17.8 2.86 16.8 4.14 0.45 0.68 0.76
C24:0 18.6 2.13 18.5 2.8 0.99 21.7 20.8 17.2 2.86 0.4 0.57 0.18

C22:6n3 40.9 11.7 40.6 12 0.93 42.7 12.6 44.1 11.7 0.75 0.69 0.4
C24:1n9 34.2 7.37 32.0 4.6 0.33 31.6 10.2 31.2 9.4 0.91 0.43 0.76

Σ FA 2654 486 2656 377 0.99 2668 517 2863 496 0.29 0.94 0.19
Σ SFA 801 176 810 104 0.87 800 155 885 229 0.24 0.98 0.24

Σ MUFA 685 174 649 94.0 0.47 684 175 772 213 0.22 0.98 0.04
Σ PUFA 1167 162 1197 218 0.67 1184 230 1206 141 0.75 0.82 0.9

Σ n-3 PUFA 125 22.2 114 19.0 0.16 118 25.4 124 21 0.48 0.44 0.18
Σ n-6 PUFA 1043 148 1083 214 0.55 1066 215 1082 126 0.8 0.73 0.98

Fatty acids (FA), saturated fatty acids (SFA), monounsaturated fatty acids (MUFA).

Analysis of the FA profile in the erythrocytes yielded more interesting results (Table 6).
Before commencing the intervention, no statistically significant difference was observed between the
two groups for any FA. At the end of the intervention, the omega-3 group had a demonstrably higher
value for ALA, and also for linoleic acid, C20:0, C20:1n9c and total SFA content. When we compare the
effect of regular eight-week consumption of chicken and eggs on the FA composition in the erythrocyte
phospholipids within the individual groups, a statistically significant difference is found for a number
of FAs. The decrease in the SFA and MUFA values in both groups should be emphasized, along with
the increase in the n-3 PUFA values in the omega-3 group caused by the increase in DHA and EPA
(see Figure 1). The greater intake of ALA by the test group thus did not lead to greater incorporation
into the membrane erythrocytes; however, in spite of the above-mentioned low conversion level, it was
reflected in the LC-PUFA that were formed by elongation and desaturation of ALA.

The sum of the percentage contents of these FA and DHA in the erythrocytes is called the omega-3
index [44]. As a result of correlation of the contents of these FA in the erythrocytes and the heart
muscles, this is frequently employed to evaluate the risk of heart disease [44,45]. Its level increased in
both of the monitored groups, from 4.14% to 5.41% in the control group and from 4.01% to 5.40% in the
omega-3 group. From this point of view, both types of food led to an improvement in the lipid profile
of the subjects and reduced the danger of cardiac arterial disease, where the initial value was slightly
higher for the control group.

An increase in the omega-3 index, as well as a decrease in SFA and MUFA over the eight-week
period was observed in both groups with no statistically significant difference between them. This is
likely a consequence of a control diet as the eight-week intervention improved eating habits in both
groups which was reflected in a lower intake of SFA, thereby increasing omega-3 index. In order to
achieve a more significant effect on the monitored parameters, a higher intake of these fortified foods
would probably be necessary; the question is how it is realistic in practice, as well as their long-term
regular intake in the diet. Further research is needed to verify this assumption.
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Table 6. FA profile in the erythrocytes during the intervention in µg/mL.

FA-profile Start Final Start/Final

Controls Intervention Controls Intervention Controls Intervention

Mean SD Mean SD p Mean SD Mean SD p p p

C14:0 7.54 1.06 7.6 1.27 0.89 6.88 1.26 6.95 1.31 0.89 0.13 0.16
C16:0 405 24.5 418 28.1 0.2 329 91.3 374 20.8 0.06 0.00 0.00

C16:1n7 4.71 0.65 5.65 1.81 0.07 4.71 0.73 5.41 1.21 0.06 0.97 0.67
C18:0 273 18.4 271 16 0.73 238 11.4 242 14.6 0.49 0.00 0.00

C18:1n9c 230 20.2 238 21 0.28 206 17.2 204 52 0.89 0.00 0.02
C18:1n7c 23.4 2.69 24.1 2.29 0.46 21.8 1.36 21.3 5.27 0.71 0.05 0.06
C18:2n6cc 184 35.7 197 26.9 0.27 173 16.8 187 17.5 0.04 0.3 0.23
C18:3n3 2.71 0.81 2.45 0.92 0.42 2.25 0.42 2.66 0.6 0.04 0.06 0.46

C20:0 8.34 1.14 8.22 1.09 0.76 7.28 0.64 7.99 1.07 0.03 0.00 0.56
C20:1n9c 4.95 0.93 4.88 0.65 0.81 3.7 1.94 5.36 1.39 0.01 0.03 0.22
C20:2n6 6.48 1.22 7.18 1.06 0.1 5.78 0.45 6.11 0.58 0.08 0.04 0.00
C20:3n3 27.4 4.99 29.7 6.28 0.27 27 4.09 28.3 4.53 0.38 0.78 0.47
C20:4n6 240 64.3 253 54.7 0.53 274 34.6 272 33.9 0.83 0.08 0.26
C20:5n3 9.18 4.45 8.48 3.35 0.63 11.4 3.52 11.1 3.48 0.79 0.13 0.04

C22:0 29.5 2.56 30.1 2.98 0.59 24.9 1.95 26.3 2 0.06 0.00 0.00
C24:0 75.5 12 75.4 8.56 0.98 69.1 4.4 69.5 7.41 0.83 0.06 0.05

C22:6n3 60 22.9 60.6 19.3 0.94 72.9 16.2 76.7 16.3 0.52 0.09 0.02
C24:1n9 78.4 9.35 81.1 11.5 0.49 77.3 5.14 79.7 8.9 0.36 0.68 0.71

Σ FA 1670 164 1722 144 0.35 1556 92.7 1626 107 0.06 0.03 0.04
Σ SFA 799 42.7 810 49.7 0.52 675 88.2 727 39.6 0.04 0.00 0.00

Σ MUFA 341 22.5 353 29.8 0.21 313 18.9 316 59.8 0.89 0.00 0.03
Σ PUFA 529 124 558 94.8 0.47 567 56 584 53.3 0.41 0.3 0.36

Σ n-3 PUFA 99.3 29.1 101 26.6 0.85 114 18.7 119 20.5 0.46 0.12 0.05
Σ n-6 PUFA 430 97 457 70.3 0.38 453 41.5 465 41.3 0.46 0.4 0.71Nutrients 2020, 12, x FOR PEER REVIEW 13 of 16 
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Figure 1. Comparison of the difference in the contents of ALA, EPA, DHA, Σ SFA and Σ MUFA during
the intervention. Statistically significant differences between the individual groups with p < 0.05 are
designated by a bracket. α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic (DHA),
saturated fatty acids (SFA), monounsaturated fatty acids (MUFA)
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4. Conclusions

The addition of n-3 PUFA-rich flaxseed oil to the feed mixture demonstrably increases the content of
especially ALA, and also of EPA and DHA in chicken and eggs, and is an effective technology for general
production of n-3 FA foodstuffs. Regular eight-week consumption of omega-3 eggs and meat causes
demonstrable changes in the erythrocyte phospholipid membranes, which are a long-term indicator of
FA intake in foodstuffs. Amongst short-term indicators, such as the plasma FA level, an elevated ALA
level caused by the ingestion of the enriched food was found. While eight-week intake of omega-3
foods was manifested in an increase in the levels of some n-3 PUFA in the blood and erythrocyte
membranes, no effect was found on the basic body parameters, such as body weight, fat content, BMI,
and also on the plasma cholesterol level, HDL, LDL, blood clotting, and inflammation markers.

Replacing standard soy with flaxseed oil as a source of lipids in feed mixture for fatty chickens and
laying hens will ensure an enrichment of n-3 PUFAs from 250 mg to 900 mg/100 g of meat, and from
110 mg to 190 mg/100 g of eggs. With normal consumption of four servings of fortified meat and
four whole eggs per week, this intervention increase the total LC-PUFA intake by 37 mg per day,
which represents 7-15% of the recommended daily dose. This intervention has no demonstrable effect
on the basic body parameters, such as body weight, fat content, BMI, and also on the plasma cholesterol
level, HDL, LDL, blood clotting, inflammation markers, and omega-3 index.

Author Contributions: Conceptualization, D.H., J.R., and P.D.; methodology, M.J., D.H., and J.R.; validation, M.J.
and P.T.; formal analysis, M.J., D.H., and J.R.; investigation, D.H. and J.R.; resources, D.H., J.R., and P.D.; data
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All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Technology Agency of the Czech Republic, grant number TA03011027.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zibaeenezhad, M.J.; Ghavipisheh, M.; Attar, A.; Aslani, A. Comparison of the effect of omega-3 supplements and
fresh fish on lipid profile: A randomized, open-labeled trial. Nutr. Diabetes 2017, 7, 1–8. [CrossRef] [PubMed]

2. Mensink, R.P. Effects of Saturated Fatty Acids on Serum Lipids and Lipoproteins: A Systematic
Review and Regression Analysis. Available online: https://apps.who.int/iris/bitstream/handle/10665/246104/

9789241565349-eng.pdf (accessed on 20 June 2020).
3. Burdge, G.C.; Jones, A.E.; Wootton, S.A. Eicosapentaenoic and docosapentaenoic acids are the principal products

of alpha-linolenic acid metabolism in young men. Br. J. Nutr. 2002, 88, 355–363. [CrossRef] [PubMed]
4. Burdge, G.C.; Wootton, S.A. Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and

docosahexaenoic acids in young women. Br. J. Nutr. 2002, 88, 411–420. [CrossRef] [PubMed]
5. Domenichiello, A.F.; Kitson, A.P.; Bazinet, R.P. Is docosahexaenoic acid synthesis from alpha-linolenic acid

sufficient to supply the adult brain? Prog. Lipid Res. 2015, 59, 54–66. [CrossRef] [PubMed]
6. Julibert, A.; Bibiloni, M.D.; Tur, J.A. Dietary fat intake and metabolic syndrome in adults: A systematic

review. Nutr. Metab. Carbiovasc. Dis. 2019, 29, 887–905. [CrossRef] [PubMed]
7. Silva Figueiredo, P.; Inada, A.C.; Marcelino, G.; Cardozo, C.M.L.; Freitas, K.D.; Guimaraes, R.D.A.;

de Castro, A.P.; do Nascimento, V.A.; Hiane, P.A. Fatty acids consumption: The role metabolic aspects
involved in obesity and its associated disorders. Nutrients 2017, 9, 32. [CrossRef]

8. Qian, F.; Korat, A.A.; Malik, V.; Hu, F.B. Metabolic effects of monounsaturated fatty acid-enriched diets compared
with carbohydrate or polyunsaturated fatty acid-enriched diets in patients with type 2 diabetes: A systematic
review and meta-analysis of randomized controlled trials. Diabetes Care 2016, 39, 1448–1457. [CrossRef]

9. Marangoni, F.; Poli, A. Clinical pharmacology of n-3 polyunsaturated fatty acids: Non-lipidic metabolic and
hemodynamic effects in human patients. Atheroscler. Suppl. 2013, 14, 230–236. [CrossRef]

10. Gao, L.G.; Cao, J.; Mao, Q.X.; Lu, X.C.; Zhou, X.L.; Fan, L. Influence of omega-3 polyunsaturated fatty
acid-supplementation on platelet aggregation in humans: A meta-analysis of randomized controlled trials.
Atherosclerosis 2013, 226, 328–334. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/s41387-017-0007-8
http://www.ncbi.nlm.nih.gov/pubmed/29259181
https://apps.who.int/iris/bitstream/handle/10665/246104/9789241565349-eng.pdf
https://apps.who.int/iris/bitstream/handle/10665/246104/9789241565349-eng.pdf
http://dx.doi.org/10.1079/BJN2002662
http://www.ncbi.nlm.nih.gov/pubmed/12323085
http://dx.doi.org/10.1079/BJN2002689
http://www.ncbi.nlm.nih.gov/pubmed/12323090
http://dx.doi.org/10.1016/j.plipres.2015.04.002
http://www.ncbi.nlm.nih.gov/pubmed/25920364
http://dx.doi.org/10.1016/j.numecd.2019.05.055
http://www.ncbi.nlm.nih.gov/pubmed/31377181
http://dx.doi.org/10.3390/nu9101158
http://dx.doi.org/10.2337/dc16-0513
http://dx.doi.org/10.1016/S1567-5688(13)70003-5
http://dx.doi.org/10.1016/j.atherosclerosis.2012.10.056
http://www.ncbi.nlm.nih.gov/pubmed/23153623


Nutrients 2020, 12, 2207 11 of 12

11. Cardoso, C.; Afonso, C.; Bandarra, N.M. Dietary dha and health: Cognitive function ageing. Nutr. Res. Rev.
2016, 29, 281–294. [CrossRef]

12. Statement on the Benefits of Fish/Seafood Consumption Compared to the Risks of Methylmercury
in Fish/Seafood. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2015.3982
(accessed on 20 June 2020).

13. Mozaffarian, D.; Wu, J.H. (n-3) fatty acids and cardiovascular health: Are effects of epa and dha shared or
complementary? J. Nutr. Biochem. 2012, 142, 614S–625S. [CrossRef] [PubMed]

14. Wall, R.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Fatty acids from fish: The anti-inflammatory potential of
long-chain omega-3 fatty acids. Nutr. Rev. 2010, 68, 280–289. [CrossRef] [PubMed]

15. Sati, A.; Bhatt, P. Krill oil: The most powerful omega 3 known on earth. Int. J. Pharm. Sci. Res.
2018, 9, 2693–2699. [CrossRef]

16. Rezanka, T.; Petrankova, M.; Cepak, V.; Pribyl, P.; Sigler, K.; Cajthaml, T. Trachydiscus minutus, a new
biotechnological source of eicosapentaenoic acid. Folia Microbiol. 2010, 55, 265–269. [CrossRef] [PubMed]

17. Xue, Z.; Wan, F.; Yu, W.; Liu, J.; Zhang, Z.; Kou, X. Edible oil production from microalgae: A review. Eur. J.
Lipid Sci. Technol. 2018, 120, 1700428. [CrossRef]

18. Jonasdottir, S.H. Fatty acid profiles and production in marine phytoplankton. Mar. Drugs 2019, 17. [CrossRef]
19. Avallone, R.; Vitale, G.; Bertolotti, M. Omega-3 fatty acids and neurodegenerative diseases: New evidence in

clinical trials. Int. J. Mol. Sci. 2019, 20, 4256. [CrossRef]
20. Givens, D.I. Manipulation of lipids in animal-derived foods: Can it contribute to public health nutrition?

Eur. J. Lipid Sci. Technol. 2015, 117, 1306–1316. [CrossRef]
21. Schuchardt, J.P.; Hahn, A. Bioavailability of long-chain omega-3 fatty acids. Prostag. Leukotr. Ess. 2013, 89, 1–8.

[CrossRef]
22. Prasad, P.; Anjali, P.; Sreedhar, R.V. Plant-based stearidonic acid as sustainable source of omega-3 fatty acid

with functional outcomes on human health. Crit. Rev. Food Sci. Nutr. 2020, 1–13. [CrossRef]
23. Bowen, K.J.; Richter, C.K.; Skulas-Ray, A.C.; Mozaffarian, D.; Kris-Etherton, P.M. Projected long-chain n-3

fatty acid intake post-replacement of vegetables oils with stearidonic acid-modified varieties: Results from a
national health and nutrition examination survey 2003–2008 analysis. Lipids 2018, 53, 961–970. [CrossRef]
[PubMed]

24. Cortinas, L.; Villaverde, C.; Galobart, J.; Baucells, M.D.; Codony, R.; Barroeta, A.C. Fatty acid content in
chicken thigh and breast as affected by dietary polyunsaturation level. Poult. Sci. 2004, 83, 1155–1164.
[CrossRef] [PubMed]

25. Zuidhof, M.J.; Betti, M.; Korver, D.R.; Hernandez, F.I.L.; Schneider, B.L.; Carney, V.L.; Renema, R.A.
Omega-3-enriched broiler meat: 1. Optimization of a production system. Poult. Sci. 2009, 88, 1108–1120.
[CrossRef] [PubMed]

26. Fraeye, I.; Bruneel, C.; Lemahieu, C.; Buyse, J.; Muylaert, K.; Foubert, I. Dietary enrichment of eggs with
omega-3 fatty acids: A review. Food Res. Int. 2012, 48, 961–969. [CrossRef]

27. Meluzzi, A.; Sirri, F.; Tallarico, N.; Franchini, A. Effect of different vegetable lipid sources on the fatty acid
composition of egg yolk and on hen performance. Arch. Geflugelkd. 2001, 65, 207–213.

28. Benavides, A.H.J. Evaluation of the type housing and inclusion of flaxseed supplement “linum usitatisium l.”
For the production egg enrichment with omega-3 fatty acids. Rev. Colomb. Investig. Agroind. 2018, 5, 52–73.
[CrossRef]

29. Keegan, J.D.; Fusconi, G.; Morlacchini, M.; Moran, C.A. Whole-life or fattening period only broiler feeding
strategies achieve similar levels of omega-3 fatty acid enrichment using the dha-rich protist, aurantiochytrium
limacinum. Animals 2019, 9, 14. [CrossRef]

30. Moran, C.A.; Morlacchini, M.; Keegan, J.D.; Rutz, F.; Fusconi, G. Docosahexaenoic acid enrichment of layer
hen tissues and eggs through dietary supplementation with heterotrophically grown aurantiochytrium
limacinum. J. Appl. Poult. Res. 2020, 29, 152–161. [CrossRef]

31. Turner, T.D.; Mapiye, C.; Aalhus, J.L.; Beaulieu, A.D.; Patience, J.F.; Zijlstra, R.T.; Dugan, M.E.R. Flaxseed fed
pork: N-3 fatty acid enrichment and contribution to dietary recommendations. Meat Sci. 2014, 96, 541–547.
[CrossRef]

32. Vahmani, P.; Mapiye, C.; Prieto, N.; Rolland, D.C.; McAllister, T.A.; Aalhus, J.L.; Dugan, M.E.R. The scope for
manipulating the polyunsaturated fatty acid content of beef: A review. J. Anim. Sci. Biotechnol. 2015, 6, 29.
[CrossRef]

http://dx.doi.org/10.1017/S0954422416000184
https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2015.3982
http://dx.doi.org/10.3945/jn.111.149633
http://www.ncbi.nlm.nih.gov/pubmed/22279134
http://dx.doi.org/10.1111/j.1753-4887.2010.00287.x
http://www.ncbi.nlm.nih.gov/pubmed/20500789
http://dx.doi.org/10.13040/ijpsr.0975-8232.9(7).2693-99
http://dx.doi.org/10.1007/s12223-010-0039-0
http://www.ncbi.nlm.nih.gov/pubmed/20526840
http://dx.doi.org/10.1002/ejlt.201700428
http://dx.doi.org/10.3390/md17030151
http://dx.doi.org/10.3390/ijms20174256
http://dx.doi.org/10.1002/ejlt.201400427
http://dx.doi.org/10.1016/j.plefa.2013.03.010
http://dx.doi.org/10.1080/10408398.2020.1765137
http://dx.doi.org/10.1002/lipd.12105
http://www.ncbi.nlm.nih.gov/pubmed/30536415
http://dx.doi.org/10.1093/ps/83.7.1155
http://www.ncbi.nlm.nih.gov/pubmed/15285507
http://dx.doi.org/10.3382/ps.2008-00171
http://www.ncbi.nlm.nih.gov/pubmed/19359702
http://dx.doi.org/10.1016/j.foodres.2012.03.014
http://dx.doi.org/10.23850/24220582.1509
http://dx.doi.org/10.3390/ani9060327
http://dx.doi.org/10.1016/j.japr.2019.10.002
http://dx.doi.org/10.1016/j.meatsci.2013.08.021
http://dx.doi.org/10.1186/s40104-015-0026-z


Nutrients 2020, 12, 2207 12 of 12

33. Zajic, T.; Mraz, J.; Kozák, P.; Adámková, V.; Pickova, J. Meat of common carp with increased omega 3 fatty
acids content as a tool for prevention and rehabilitation of cardiovascular diseases. Interni Med. Pro Praxi
2012, 14, 437–440.

34. Czech Statistical Office. Food Cousumption. Available online: https://www.czso.cz/csu/czso/spotreba-
potravin-2018 (accessed on 20 June 2020).

35. Rose, H.G.; Oklander, M. Improved procedure for the extraction of lipids from human erythrocytes. J. Lipid Res.
1965, 6, 428–431. [PubMed]

36. McEwen, B.J.; Morel-Kopp, M.C.; Chen, W.; Tofler, G.H.; Ward, C.M. Effects of omega-3 polyunsaturated
fatty acids on platelet function in healthy subjects and subjects with cardiovascular disease. Semin. Thromb.
Hemost. 2013, 39, 25–32. [CrossRef] [PubMed]

37. Cottin, S.C.; Alsaleh, A.; Sanders, T.A.B.; Hall, W.L. Lack of effect of supplementation with epa or dha
on plateletmonocyte aggregates and vascular function in healthy men. Nutr. Metab. Carbiovasc. Dis.
2016, 26, 743–751. [CrossRef]

38. Austria, J.A.; Richard, M.N.; Chahine, M.N.; Edel, A.L.; Malcolmson, L.J.; Dupasquier, C.M.C.; Pierce, G.N.
Bioavailability of alpha-linolenic acid in subjects after ingestion of three different forms of flaxseed. J. Am.
Coll. Nutr. 2008, 27, 214–221. [CrossRef]

39. Finnegan, Y.E.; Howarth, D.; Minihane, A.M.; Kew, S.; Miller, G.J.; Calder, P.C.; Williams, C.M. Plant and
marine derived (n-3) polyunsaturated fatty acids do not affect blood coagulation and fibrinolytic factors in
moderately hyperlipidemic humans. J. Nutr. 2003, 133, 2210–2213. [CrossRef]

40. Sijben, J.W.C.; Calder, P.C. Differential immunomodulation with long-chain n-3 pufa in health and chronic
disease. Proc. Nutr. Soc. 2007, 66, 237–259. [CrossRef]

41. Risé, P.; Eligini, S.; Ghezzi, S.; Colli, S.; Galli, C. Fatty acid composition of plasma, blood cells and whole
blood: Relevance for the assessment of the fatty acid status in humans. Prostag. Leukotr. Ess. 2007, 76, 363–369.
[CrossRef]

42. Poppitt, S.D.; Kilmartin, P.; Butler, P.; Keogh, G.F. Assessment of erythrocyte phospholipid fatty acid
composition as a biomarker for dietary mufa, pufa or saturated fatty acid intake in a controlled cross-over
intervention trial. Lipids Health Dis. 2005, 4, 30. [CrossRef]

43. Serra-Majem, L.; Nissensohn, M.; Overby, N.C.; Fekete, K. Dietary methods and biomarkers of omega 3 fatty
acids: A systematic review. Br. J. Nutr. 2012, 107, S64–S76. [CrossRef]

44. Harris, W.S. The omega-6:Omega-3 ratio: A critical appraisal and possible successor. Prostag. Leukotr. Ess.
2018, 132, 34–40. [CrossRef] [PubMed]

45. Alfaddagh, A.; Elajami, T.K.; Saleh, M.; Mohebali, D.; Bistrian, B.R.; Welty, F.K. An omega-3 fatty acid plasma
index ≥ 4% prevents progression of coronary artery plaque in patients with coronary artery disease on statin
treatment. Atherosclerosis 2019, 285, 153–162. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.czso.cz/csu/czso/spotreba-potravin-2018
https://www.czso.cz/csu/czso/spotreba-potravin-2018
http://www.ncbi.nlm.nih.gov/pubmed/14336214
http://dx.doi.org/10.1055/s-0032-1333309
http://www.ncbi.nlm.nih.gov/pubmed/23329646
http://dx.doi.org/10.1016/j.numecd.2016.03.004
http://dx.doi.org/10.1080/07315724.2008.10719693
http://dx.doi.org/10.1093/jn/133.7.2210
http://dx.doi.org/10.1017/S0029665107005472
http://dx.doi.org/10.1016/j.plefa.2007.05.003
http://dx.doi.org/10.1186/1476-511X-4-30
http://dx.doi.org/10.1017/S000711451200147X
http://dx.doi.org/10.1016/j.plefa.2018.03.003
http://www.ncbi.nlm.nih.gov/pubmed/29599053
http://dx.doi.org/10.1016/j.atherosclerosis.2019.04.213
http://www.ncbi.nlm.nih.gov/pubmed/31055222
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Production of Omega-3 Meat and Eggs 
	Dietary Study 
	Anthropometric and Body Composition Data 
	Biochemical and Hematological Parameters 
	Determining the Overall FA Profile in the Blood Plasma and in the Erythrocytes 

	Results and Discussions 
	Physical Parameters and Basic Biochemical, Hematological, and Immunological Blood Analysis 
	Detailed Profile of Fatty Acids in Blood Plasma and Membrane Erythrocytes 

	Conclusions 
	References

