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Abstract: Research shows that higher dietary protein of up to 1.2 g/kgbodyweight/day may help
prevent sarcopenia and maintain musculoskeletal health in older individuals. Achieving higher
daily dietary protein levels is challenging, particularly for older adults with declining appetites and
underlying health conditions. The negative impact of these limitations on aging muscle may be
circumvented through the consumption of high-quality sources of protein and/or supplementation.
Currently, there is a debate regarding whether source of protein differentially affects musculoskeletal
health in older adults. Whey and soy protein have been used as the most common high-quality
proteins in recent literature. However, there is growing consumer demand for additional plant-
sourced dietary protein options. For example, pea protein is rapidly gaining popularity among
consumers, despite little to no research regarding its long-term impact on muscle health. Therefore,
the objectives of this review are to: (1) review current literature from the past decade evaluating
whether specific source(s) of dietary protein provide maximum benefit to muscle health in older
adults; and (2) highlight the need for future research specific to underrepresented plant protein
sources, such as pea protein, to then provide clearer messaging surrounding plant-sourced versus
animal-sourced protein and their effects on the aging musculoskeletal system.
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1. Introduction

Protein is a critical macronutrient for maintenance of normal bodily functions. Re-
quired daily protein intake varies by age, sex, and degree of daily activity, but is critical to
maintain muscle mass and strength throughout an individual’s lifespan [1]. Muscle mass
and muscle strength are positively correlated, independent of age and gender [2]. Generally,
greater lean mass is associated with better overall health [3] and prevention of functional
declines associated with aging [4]. However, after the age of 30 year, muscle mass declines
at a rate of 0.3 to 0.8% per year [5]. The reduction in lean mass is attributed to the reduction
in number, and to some extent area size, of myofibers [6]. Factors affecting muscle mass
include age-related muscle atrophy, decreased mitochondrial function, increased oxidative
stress, impaired satellite cell function, and inflammation [7]. In addition, muscle strength
is a major predictor of disability and all-cause mortality in older adults [8,9] with some
research suggests muscle strength is a more meaningful predictor of health outcomes
compared to muscle mass [9]. Concomitant with muscle atrophy, muscle strength also
declines with age, especially after 50–60 year [10,11] at a rate of 2 to 4% [12] or greater in
the lower limbs every year [13]. Therefore, it is imperative to prevent age-associated losses
in muscle mass and strength to enhance overall performance throughout the lifespan.
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Sarcopenia, or age-related musculoskeletal decline, is characterized by: (1) low muscle
strength (tested via grip strength and chair stand test); (2) low muscle quantity or quality
(confirmed via dual-energy x-ray absorptiometry (DXA), computed tomography (CT),
or magnetic resonance imaging (MRI), etc.); and (3) low physical performance (assessed
via gait speed, 400 m walk test, etc.) [14]. The potential etiology of sarcopenia is a com-
bination of declines in physical function, loss of muscle mass, increased inflammation,
altered hormone balance, inadequate nutrition intake, and anabolic resistance [15]. Sar-
copenia currently affects 6–19% of individuals worldwide over the age of 60 year [16].
Individuals with sarcopenia are at an increased risk of falls, fractures, decreased quality
of life, cardiovascular disease, respiratory disease and cognitive impairment [14]. Risk of
sarcopenia is dependent upon age, ethnicity, living conditions, and pre-existing medical
conditions [14]. The condition was estimated to cost $18.5 billion of direct health care
costs in the year 2000 [17] and individuals with sarcopenia will endure double the cost of
hospitalization compared to those without sarcopenia [18]. Due to the increasing number
of older adults living longer it is imperative to identify solutions to prevent and treat this
debilitating disease.

Currently, there are no approved medications for the treatment of sarcopenia. The
standard of care for hospitalized or institutionalized older adults with frailty or sarcopenia
includes participation in resistance-training and weight-bearing exercises [19–21]. However,
the transition from a hospital bed to rehabilitation is challenging, as many patients are
unable to engage in physical activity due to lack of exercise equipment, social support, and
self-motivation to exercise [22]. Diet is a modifiable lifestyle factor that may serve a strong
role in preventing and treating sarcopenia [21]. For example, greater protein intake is linked
to improvements in muscle mass and strength [23,24]. However, the current recommended
daily allowance (RDA) from the World Health Organization (WHO) [1] and National
Academies of Sciences [25] of 0.8 g/kgbodyweight/day for adults may not be sufficient to
combat sarcopenia in older adults. Recent evidence suggests that protein intake closer to
1.2–1.5 g/kgbodyweight/day, in combination with adequate exercise, is more beneficial in
preventing age-related declines in muscle mass and strength, improving health status, and
reducing the risk of early mortality [3,26–28]. Despite growing evidence that a higher RDA
for dietary protein is beneficial to older adults, there are numerous barriers to reaching
this dietary goal. Older adults face an increased risk of protein-energy malnutrition due to
social isolation [29], lack of appetite, and potential issues with mastication [30]. In addition,
protein increases satiety, and therefore, older adults are less likely to meet their protein
requirements due to feelings of fullness and meal skipping. Therefore, it is critical to
provide sustainable, nutrient-dense protein sources that will maximally enhance muscle
mass and strength to reduce the risk of developing sarcopenia in this at-risk group.

A consensus on whether protein sources differentially affect the progression of sar-
copenia has yet to be determined. Animal and plant protein-containing foods differ in their
amino acid content [31], absorption kinetics, and nutrient to food matrix interaction [32].
Protein quality and digestibility are distinguishing features between animal and plant
proteins. Traditionally, whey protein, has been commonly used for dietary protein supple-
mentation because of its high digestibility and complete amino acid profile [33]. Meanwhile,
there is growing clinical and consumer market interest in vegetarian and vegan diets due to
their potential health benefits, environmental sustainability, and ethical issues surrounding
raising animals for the sole purpose of consumption [34]. Historically, soy protein has
been the go-to plant-based protein due to its near complete essential amino acid (albeit
low methionine) profile; however, pea protein is gaining popularity among consumers
due to recent advances in industry produced meat alternative products. Despite their
growing consumer popularity, there is little scientific research on whether plant protein
alternatives are effective in preventing age-associated muscle losses compared to animal
protein counterparts. Therefore, the primary objectives of this review are to:

(1) Review current literature from the past 10 years evaluating whether specific source(s)
of dietary protein provide maximum benefit to muscle health in older adults; and
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(2) to provide messaging surrounding plant-sourced versus animal-sourced protein and
their effects on musculoskeletal aging, while highlighting the need for future research
specific to underrepresented plant protein sources, such as pea protein.

2. Discussion of the Current Status of Knowledge
2.1. Protein Quality and Digestibility Differs by Protein Source

Skeletal muscle mass is regulated by the balance between the rate of muscle protein
synthesis (MPS) and the rate of muscle protein breakdown (MPB), which are both regulated
by a variety of factors. During muscle accrual, the rate of MPS is greater than MPB.
It is generally accepted that dietary protein and physical activity stimulate MPS either
independently [35–38] or interdependently [39,40]. Muscle protein synthesis is a process
dependent on postprandial availability of essential amino acids (EAAs) [31]. The amount
and diversity of EAAs to meet human nutritional needs is defined as protein quality [41].
The most widely adopted indexes of protein quality are the Protein Digestibility Corrected
Amino Acid Score (PDCAAS) and the Digestible Indispensable Amino Acid Score (DIAAS).
Protein food sources vary widely in their PDCAAS and DIAAS scores. For example,
milk, whey, egg, casein, and soy protein isolate scored 1.00 (highest possible score) on the
PDCAAS. In comparison, cooked yellow pea or Pisum sativum, pea protein concentrate
(NUTRALYS®), and pea protein isolate (NUTRALYS®, manufactured by Roquette, Lesterm,
France ) have a PDCAAS of 0.67 [42,43], 0.893 [44] and 0.93 [45], respectively. When
compared using DIAAS, whey protein isolate, whey protein concentrate, soy protein
isolate, and pea protein concentrate have a DIAAS of 100, 107, 84, and 62, respectively [46].
Therefore, animal and soy-based protein foods, generally have a higher protein digestibility
score compared to pea-sourced protein, regardless of the scoring method used.

In addition, protein digestibility and absorption kinetics will dictate the amount of
immediate EAA available to stimulate MPS response [47]. Faster protein digestion and
absorption typically lead to a more acute MPS response and a higher peak compared to
slower absorbing proteins [48]. Depending on the processing method and the presence
of “antinutritional factors”, it is generally shown that plant-based proteins have lower
digestibility compared to animal-based proteins [43]. Antinutritional factors are food
components or compounds such as tannins, phytate, oxalate, saponins, lectins, alkaloids,
protease inhibitors, cyanogenic glycosides [49] inside the food matrix that interfere with the
absorption of certain nutrients. An example of an antinutritional factor that interferes with
protein absorption is Bowman-Birk trypsin inhibitor, which can be found in foods such
as soybean grits, soymilk, soy isolate, and soy protein concentrate [50], which inhibits the
enzymatic action of pepsin and trypsin in the gut [51]. Certain antinutritional factors can
be inactivated through cooking to improve protein digestibility [52]. Also, it is important
to note that ingested plant protein (e.g., soy protein) increases protein oxidation [53],
which suggests amino acids from plant protein is used for the production of urea and
therefore, less amino acids are available to stimulate MPS [43,54,55]. Due to the differences
in digestibility and quality among protein sources, it is important to take these factors
into consideration when developing nutrition interventions to prevent age-associated
muscle losses.

2.2. Muscle Response to Animal Versus Plant Protein Sources May Not Differ at Higher
Protein Intakes

Research comparing the anabolic properties of the various plant- and animal-based
protein sources is important to determine whether specific nutrition regimens can be
formulated to maximize the muscle health of older adults. Differences between milk
protein, particularly whey, versus soy protein have been well studied in adults and young
adults. Table 1 illustrates selected clinical trials from the past 10 years and some notable
older studies that examined the effect of differing sources of dietary protein on muscle
outcomes. It has been shown that soy protein ingestion results in a lower MPS compared to
whey [53,56] during both rested and post-exercise conditions. Volek, et al. [57] conducted
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an experiment on 63 randomized healthy adults that performed whole body resistance
training program and consume isocaloric supplements containing carbohydrate, whey
(24 g), or soy protein (24 g) for 9 months. The authors show that whey supplementation
significantly increased fasting plasma leucine concentration and lean body mass gains
compared to carbohydrate and soy protein supplementation regimens. However, other
studies suggest when higher protein supplementation doses are consumed (>30 g) in
combination with an exercise regimen, muscle outcomes are similar across protein subtypes.
For example, a study where omnivorous participants followed an 8-week progressive, non-
linear resistance training protocol in addition to supplementation with 48 g of either rice or
whey protein isolate showed that there was no difference in body composition and exercise
performance [58]. Similarly, other studies with isonitrogenous supplementation of 33 g
soy or whey protein resulted in similar increases in muscle mass after exercise training
in omnivorous participants [59,60]. A meta-analysis conducted by Messina, et al. [61]
concluded that soy protein supplementation did not yield any differences in lean body
mass and strength in response to resistance exercise training in healthy omnivorous adults
between the age of 18 to 70 years compared to whey protein. However, the authors
noted that the independent influence of age or sex could not be identified, and, thus, they
recommend more research, specifically among older individuals. In a diet study of whole
foods without an exercise intervention, Campbell, et al. [62] show that older women who
consumed an omnivorous diet (1.0 ± 0.08 g/kgbodyweight/day of protein) gained more
lean body mass over 12-weeks compared to those consuming a lacto-ovo-vegetarian diet
(0.78 ± 0.1 g/kgbodyweight/day of protein). In subsequent research [63], they found that
the observed difference was attenuated by increasing the amount of protein consumed
by the lacto-ovo-vegetarian diet to 1.15 g/kgbodyweight/day. Although these findings
do not directly compare animal versus strictly plant protein diets, the results suggest that
ingestion of higher amounts of total dietary protein may overcome the different properties
of animal versus plant proteins and their influence on muscle outcomes.

It is important to note that high protein intake in older populations may not be
suitable for individuals with reduced renal function due to increased filtration burden
from greater protein intake. Higher protein consumption has been shown to exacerbate a
declining renal function under conditions of modestly impaired renal function [73]. Older
adults with severe kidney disease (estimated Glomerular Filtration Rate < 30 mL/min)
and who are not on dialysis, are recommended to limit their protein intake until they
receive dialysis [27]. More importantly, initial onset of chronic kidney disease is often
asymptomatic. Precautionary measures (e.g., routine serum creatinine or blood urea
nitrogen test) may be needed in individuals with comorbidities before engaging in a high
protein diet regimen [74].

Although literature suggests that in older adults, consuming adequate protein may be
the strongest determinant of healthy muscle outcomes [75–77], and type of protein may
be less important, meeting higher dietary protein requirements can be challenging. Older
adults have been shown to eat less protein due to social isolation [29], lack of appetite, and
problems with dentition [30]. In addition, protein increases satiety [78] and may reduce
overall energy intake among older adults. Therefore, supplementation with high-quality
protein may help to circumvent these issues. However, the logical question remains, is
there an optimal source of supplemental protein for older adults? A study by Gorissen,
et al. [79] demonstrates the stark differences between types of supplemental proteins, where
whey, casein, soy, and pea protein isolates have 43%, 34%, 27%, and 30% of varying EAAs
of the total protein, respectively. The authors conclude that for an adult to consume 2.7 g of
leucine, a strong determinant of MPS, or 10.9 g essential amino acids, they would have to
ingest ~32 g of whey protein, ~47 g of casein protein, ~55 g of soy protein, and ~48 g of
pea protein. Due to the differences in EAA profile among protein subtypes, testing muscle
response to these supplemental proteins is imperative among older adults to determine
if an optimal source exists and can overcome barriers to meeting recommended total
protein intakes.
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Table 1. The effect of dietary protein supplementation by source and essential amino acid content on muscle outcomes in clinical trials.

Duration Population, n Exposure or Intervention Amount of Protein Outcome Measure Results References

3 h
Men

Mean age 23
n = 18

Unilateral resistance training
Whey vs. casein vs. soy

21.4 g, 21.9 g, or 22.2 g of
protein, respectively MPS

Relationship between protein intake
and MPS are dose and protein

source-dependent under rested and
post-exercise conditions

[56]

4 h
Men

Mean age 71 years
n = 30

Unilateral resistance training
No protein, soy protein isolate

vs. whey protein isolate

0 g, 20 g, or 40 g of
protein MPS

Relationship between protein intake
and MPS are dose and protein

source-dependent under rested and
post-exercise conditions

[53]

9 months
Men and women

Mean age 23
n = 147

Resistance training
Carbohydrate vs. whey vs. soy

protein supplementation

Carbohydrate 1.1 g/kg;
Whey 1.4 g/kg;

Soy 1.4 g/kg

Body composition;
Plasma amino acid

Whey gained more lean mass than
soy and carbohydrate [57]

8 weeks
Men

Mean age 21
n = 24

Resistance training
Rice vs. whey protein isolate 48 g Body composition,

strength and power No difference observed [58]

9 weeks
Men

Mean age 20
n = 18

Resistance training
Whey vs. soy protein 33 g protein/day Lean body mass Whey gained more lean mass

than soy [59]

6 weeks

Trained men and
women
18–35y
n = 27

Resistance training
Whey vs. soy protein vs.

maltodextrin
1.2 g/kg body weight Lean body mass,

strength No difference observed [60]

12 weeks
Men

Mean age 58
n = 19

Resistance training Mixed diet vs.
lacto-ovo-vegetarian

Lean body mass; skeletal
muscle mass

Mixed diet gained more lean mass
than lacto-ovo-vegetarian [62]

2 weeks
Men

Mean age 65
n = 21

Resistance training Lacto-ovo-vegetarian vs.
beef containing diet

Muscle size and muscle
strength No difference observed [63]

5 h
Men

Mean age 22 years
n = 24

EAAs supplementation
6.25 g of protein

supplemented with
various dose of EAAs

MPS
MPS response of 6.25 g of protein

with additional leucine is similar of
that 25 g of whey protein

[64]
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Table 1. Cont.

Duration Population, n Exposure or Intervention Amount of Protein Outcome Measure Results References

2 weeks
Men and women

Mean age 68
n = 8

Leucine supplementation 4 g of leucine/meal; 3
meals/day MPS Leucine supplementation

increased MPS [65]

4 h
Men

Mean age 66
n = 16

Soy protein vs. Soy
protein + BCAA

26.5 g of whey and Soy
protein meal; equalized
BCAA content to casein

Whole body protein
synthesis

Spiked soy protein significantly
favored whole body protein synthesis [66]

3 months
Men

Mean age 71
n = 30

Leucine supplementation 7.5 g/day

Body composition,
strength, whole body

insulin sensitivity, lipid
profile

Supplemental leucine did not
improve skeletal muscle mass or
strength and does not improve

glycemic control or blood lipid profile

[67]

6 months
Diabetic men
Mean age 71

n = 60
Leucine supplementation 7.5 g/day

Body composition,
strength, whole body

insulin sensitivity, lipid
profile

Supplemental leucine did not
improve skeletal muscle mass or
strength and does not improve

glycemic control or blood lipid profile

[68]

10 days
Men and women

Mean age 70
n = 25

Bed rest
Placebo vs. EAA
supplementation

15 g of EAA
supplementation

Lean body mass, MPS,
muscle function

EAA supplementation improved
muscle preservation under bed rest [69]

3 months
Women

Mean age 80
n = 75

Exercise vs. exercise + EAA
supplementation vs. EAA

supplementation vs. health
education

3 g of EAA supplement
Body composition,

muscle strength and
walking ability

Combination of exercise and amino
acid supplementation improves

muscle strength, mass, and
walking ability

[70]

12 weeks

Resistance trained
men

Mean age 22
n = 161

Carbohydrate vs. Pea protein
(Nutralys®) vs. whey protein

concentrate
25 g protein Body composition;

strength
Pea protein and whey protein

significantly better than placebo [71]

8 weeks

High intensity
functional trained
men Mean age 38

n = 8

Whey vs. Pea protein (True
Nutrition, Vista, CA, USA) 25 g protein Body composition,

strength

Pea protein and whey protein result
in similar body composition

and strength
[72]

MPS, Muscle Protein Synthesis; LOV, Lacto-ovo-vegetarian; EAA, essential amino acids.
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2.3. Supplementation with Leucine and Essential Amino Acids May Benefit Older Adults with
Low Protein Intake

Various amino acids, such as β-alanine, L-glutamine, L-arginine, L-leucine and its
bioactive form (hydroxymethyl butyrate) have been studied for nutritional management
of sarcopenia because they are anti-catabolic and anabolic in nature [80]. For example,
studies have shown that supplementation of β-alanine [81–84] may prevent and delay the
progression of sarcopenia by addressing the systemic depletion of carnosine (β-alanyl-
l-histidine), a dipeptide that acts as a pH buffer and is predominantly found in skeletal
muscle. However, of these substrates, leucine is the most well studied, and requires greater
understanding regarding adequate dosing and short-term versus long-term effects on
muscle health [80]. Therefore, this review will discuss research surrounding the effects of
leucine supplementation in older adults with low protein intake.

Certain EAAs elicit more MPS, notably leucine, compared to others by activating the
mammalian target of rapamycin (mTOR) signaling pathway [85]. It is important to note
that mTOR activation is the key regulator of human MPS in response to increased EAA
availability [86]. Leucine not only activates MPS through mTOR complex 1 (mTORC1) [85],
but also activates MPS through a mTORC1-independent processes [87,88]. But, it is impor-
tant to note that leucine alone does not stimulate MPS; and actually require other amino
acid to sustain anabolism [89]. For comparison, whey, casein, egg, soy, and pea protein
isolate have 8.6 g, 5.8 g, 3.6 g, 5.0 g, 5.7 g of leucine per 100 g of food, respectively [79].
Research has shown that MPS response to suboptimal doses of protein (6.25 g of whey
protein), but with supplementation of leucine (to reach a total of 3.0 g of leucine in dose)
is similar to ingestion of 25 g of whey protein in healthy young men [64]. Thus, food or
supplements that are highest in leucine, like whey protein, could be used to maximize the
potential MPS response. It may also be possible to spike plant protein supplementation
with adequate leucine content to match anabolic responses seen with whey protein alone.
For example, supplementation of wheat protein with leucine to match the amount of
leucine content in whey protein resulted in an equalized rate of MPS in adult rats [90]. A
study in older adults consuming lower protein meals (0.81 ± 0.04 g protein/kg/day) sup-
plemented with 4 g of leucine per meal 3 times a day for 2 weeks demonstrated improved
muscle protein synthesis, acutely [65]. Similarly, Engelen et al. [66] demonstrated that con-
sumption of branched chain amino acid (BCAA) spiked soy protein significantly increased
whole-body protein synthesis in patients suffering from a chronic wasting disease (e.g.,
chronic obstructive pulmonary disease (COPD)) when compared with soy protein alone.
Moreover, a recent clinical trial reported that leucine requirements that was determined by
indicator amino acid oxidation method (IAAO) with L-1[1-13C] phenylalanine as the indi-
cator in healthy older adult males and females >60 y, reported that their requirement was
77.8 mg/kgbodyweight/day for male and 78.2 mg/kgbodyweight/day for female which is
double that of the current international RDA for leucine (39 mg/kgbodyweight/day) [91].
Overall, as older adults typically consume below the optimal EAA dosage at each meal (due
to overall low protein consumption and/or lack of high-quality protein intakes [21,92]),
supplementation with a protein high in leucine may be needed to assist in forestalling
age-related muscle loss.

Although supplemental leucine doses of 3.0 g have been shown to increase MPS, there
are observed limits to how efficacious leucine can be towards MPS. Moore et al. [93] tested
the leucine dose-response relationship and threshold theory through a dose-response study
using 0 g, 5 g, 10 g, 20 g, and 40 g of albumin in exercised young men on MPS outcomes
where the blood amino acid level after exercise peaked around 1-h post-ingestion. The
authors showed that MPS increased in a dose-dependent manner in response to dietary
protein ingestion and reached the maximum MPS response at 20 g of albumin (which
contains approximately 1.7 g of leucine, 0.25 g protein/kgbodyweight); and these results
are supported by two other studies [94,95]. Further, Moore et al. [93] observed no significant
additional increase in MPS at higher doses (40 g of albumin, 3.4 g of leucine). They noted
that leucine oxidation significantly increased above the level of maximum MPS, which



Nutrients 2021, 13, 743 8 of 17

suggests that the additional leucine was unable to be utilized [93,95]. Overall, the maximal
MPS response in older adults was observed at ~35–40 g of protein post-exercise [96] and
20 g at rest [93]. At the same time, the benefit of increased leucine content diminishes as
the amount of total protein increases [97,98] and supplying excess leucine, or any essential
amino acids for that matter, will result in plateauing of the MPS response [93,95,99,100]. In
addition, the long-term effect of leucine supplementation on muscle health remains unclear.
Supplementation of leucine in exercised older adults [101] could increase MPS response up
to 24-h after supplementation; however, the acute increase in MPS was not associated with
increases in lean body mass [102]. A 3-month study in healthy older men (71 ± 4 year) [67]
and a 6-month study in diabetic older men (71 ± 1 year) [68] showed supplementation
with 7.5 g leucine per day did not increase skeletal muscle mass or strength. Similarly, in
a separate study of 21 adults ≥ 65 year, supplementation with 15 g of EAAs twice a day
during bed rest resulted in improvements in MPS to a similar level observed pre-bedrest;
however, the augmentation of MPS did not prevent muscle loss as measured by DXA [69].
Another exercise and leucine-rich-EAA supplementation (3 g twice a day) study among 155
sarcopenic older women (≥75 year) showed significantly improved walking speed after
a comprehensive training program twice a week for 3 months, but neither lean mass nor
strength improvements were observed [70]. Therefore, the long-term benefits of leucine
supplementation on muscle health and functionality remains to be determined. Even
though higher total protein intakes may compensate for varying leucine intake in adults
meeting the dietary guidelines for protein, older adults with chronically low protein intakes
may be a subgroup that would additionally benefit from leucine supplementation.

2.4. Associations between Whole Food Sources of Protein and Muscle Outcomes in Humans

With studies demonstrating short-term MPS response differs by protein quality, di-
gestibility, and leucine content, there is a need to examine the relation of usual protein
intake with muscle health among older adults [43]. In addition, it is important to examine
the effects of plant protein sources on muscle within the context of usual dietary patterns
as there is increasing interest in plant-based diets due to their known healthful effects on
metabolic health [103]. Consuming greater amounts of protein, regardless of source, could
compensate for the lower EAA content of plant-sourced proteins. In addition, incomplete
proteins can be combined in the diet to form complete EAA profiles. For example, grain pro-
teins are typically lower in lysine and higher in methionine. In contrast, beans are typically
lower in methionine, but higher in lysine. When these plant-protein foods are combined
together, grain and bean proteins form an EAA profile that resembles animal protein [43].
However, postprandial blood EAA concentration following ingestion of high quality plant
protein blends was not the same as whey protein when matched to its leucine content [104].
Therefore, protein quality and digestibility indexes such as PDCAAS and DIAAS do not
provide information regarding the true anabolic effect of specific plant protein sources
on body tissues compared to animal source counterparts. A systematic literature review
by van Vliet, Burd and van Loon [43] highlighted that animal protein is generally, at an
isonitrogenous amount, more superior in promoting muscle protein synthesis and leads to
greater muscle mass compared to plant-sourced protein (e.g., soy and wheat). The authors
show that plant-based protein offers equal benefits compared to animal-sourced protein at
greater amounts of ingestion. However, this might not be the case in certain populations.
In the past, studies showed that vegetarians tend to consume less daily dietary protein
compared to their omnivorous counterparts and result in lower muscle mass [62,105,106].
However, it is difficult to determine whether the differences in muscle mass were due to
protein-specific dietary pattern or difference in overall protein intake.

Epidemiological studies on the associations of dietary source of protein with measures
of muscle from the past 10 years are shown in Table 2. Data from the Framingham Offspring
Cohort demonstrates that total protein intake and animal protein intake, but not plant
protein, are associated with muscle mass as measured by DXA in older adult men and
women [107]. Specifically, higher leg lean mass was observed among participants in the
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highest quartile of animal protein intake compared to the lowest quartile. In the same
cohort, higher total protein and animal protein intake, but not plant protein, were suggested
to be protective against loss of grip strength over 6 years among adults over the age of 60;
interestingly, this prospective association was not observed in adults <60 year [108]. When
using dietary pattern methodology specific to protein intake, considering all other nutrients
and foods consumed in combination with protein intake, no associations between source of
protein intake, appendicular lean mass and quadriceps strength were observed, when total
protein intake was above the RDA [109]. Chan, et al. [110] showed that quartiles of total
protein intake (Q1: 69.2 ± 28.6; Q4 83.3 ± 37.0 total protein g/day) and quartiles of animal
protein intake (Q1: 37.1 ± 21.1; Q4: 46.8 ± 29.1 animal protein g/day) were not associated
with changes in physical performance nor lean mass over 4 years. In contrast, the authors
noted that a diet low in plant-based protein (Q1: 32.1 ± 13.9; Q4: 36.5 ± 19.7 plant protein
g/day) was associated with higher muscle loss compared with those in the highest quartile
of plant-protein intakes. The different outcomes observed between this study of Chinese
adults and studies in cohorts with Western dietary patterns, may be due to differences
in type and amount of plant protein consumed, and other intakes of nutrients that may
influence muscle such as vitamin D, folic acid, and antioxidants. In addition, there is a need
to standardize the protein dosage measurement (e.g., comparing g/kgbodyweight/day of
each protein subtype) to further understand the differential impact between animal versus
plant-sourced protein on muscle health parameters. Overall, these studies suggest that
source of dietary protein may not matter as long as older adults are meeting the RDA for
protein, habitually.

2.5. Increased Market Demand for Plant-Based Protein Supplements and Foods Demands Further
Research in Humans

The U.S. protein supplement industry has a market size of $14 billion with a 67.9%
share of the overall revenue in 2018 from animal-based protein [33]. The plant-based
segment is expected to grow the fastest with projected compound annual growth rates
(CAGR) of 8.6% from 2020 to 2027 with an estimated market share of $11.05 billion in
2027; and soy protein remains the leader in this segment. For millions of health-conscious,
vegetarian and vegan adults, soy products such as tofu and soy milk are an important
source of dietary protein [111–113]. The popularity of soy protein is partially due to its
higher protein content and quality compared to other legumes, and its relatively similar
digestibility and EAA profile to animal protein [44]. Due to soy protein’s popularity, and
EAA content, its impact on health is often compared to that of animal protein. Despite
being the leader in the segment of plant protein, market demand for soy-based protein is
beginning to show a decline in popularity due to perceived consumer concerns surrounding
allergens, phytoestrogens, and genetically modified organisms (GMOs) [33]. To-date, a
search engine/Google search with the key phrase “plant protein” shows that the first 6
out of 8 protein powder supplements listed for sale contain pea protein isolates as their
primary ingredient. Unlike soy protein, pea protein is: (1) less of an allergen risk, (2) does
not contain phytoestrogens, and (3) not genetically modified [114].

In terms of EAAs profile, leucine content, its limiting amino acid, pea protein is
relatively similar of that soy protein. The essential amino acid content of pea and soy
protein are 37% and 38% of the total protein content, respectively [43]. The leucine content
of pea and soy protein contain 7.8% and 8% of leucine of the total protein respectively [43].
While methionine is the first limiting amino acid in soy protein, the first limiting amino
acid in pea protein is methionine and cystine [45].

The booming industry of meat product-alternatives is predicted to reach $140 billion
over the next decade [115] with pea protein as the fastest-growing source of protein in
that segment. The soaring popularity of Beyond Meat® (Beyond Meat, El Segundo, CA,
USA), an alternative meat product made from pea protein isolate, canola oil, various
seasonings and additives, had a market value of $13.4 billion in 2019 [116]. With increasing
demand from health-conscious consumers for pea protein-sourced products and increasing
popularity of veganism/vegetarianism, pea protein could quickly become a growing staple
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in the typical American diet. However, as described above, scientific evidence evaluating
muscle tissue response to varying protein sources is inconclusive, and studies examining
plant protein sources other than soy, such as corn protein isolate [117] and potato protein
isolate [118], especially in older populations, are limited. Therefore, research testing the
differential association and/or effects of milk protein, whey and casein, soy, and pea protein
on muscle outcomes in older adults is needed to support or dissuade use of these products
for musculoskeletal gains.

Table 2. Associations of dietary source of protein with measures of muscle in epidemiological studies.

Study Design Population,
n

Exposure or
Intervention Outcome Measures Results References

Cross-sectional

Men and
women;

mean age 59;
n = 2675

Total, animal, plant
protein intake; FFQ

Leg lean mass, isometric
quadriceps strength

Total and animal protein
positively associated with

lean mass; Higher
quadriceps strength in

higher quartiles compared
to lowest quartile of plant

protein intake

[107]

Longitudinal
(6 years)

Men and
women;

mean age 59;
n = 5124

Total, animal and
plant protein
intake; FFQ

Grip strength,
arm lean mass

Total and animal protein
intake were protective

against loss of grip strength
[108]

Longitudinal
(3 year)

Men and
women;

mean age 40;
n = 2986

Total protein
intake, cluster
analysis; FFQ

Appendicular lean mass,
quadriceps strength

Total protein intake
associated with

appendicular lean mass and
quadriceps strength

[109]

Longitudinal
(4 years)

Men and
women;

mean age 72;
n = 3122

Net Endogenous
Acid Production
from Diet; FFQ

Appendicular lean mass

Lower acid load (more plant
protein) associated with

slower decline in
muscle mass

[110]

Longitudinal
(4 years)

Men and
women;

mean age 72;
n = 2726

Total, animal, plant
protein intake; FFQ Appendicular lean mass

Plant protein intake
protective against loss of

appendicular lean mass but
not total or animal protein

[111]

Longitudinal
(2.6 ± 0.4 years)

Female;
mean age 62;

n = 740

Total protein
intake; FFQ

Appendicular lean mass,
knee extensor strength

Failing to meet the
recommended consumption
of protein associated with
significantly lower ALM,
but not muscle strength

[76]

Longitudinal
(5 year)

Men and
women;

mean age 74;
n = 1561

Total, animal, plant
protein intake; FFQ

Total lean mass,
appendicular lean mass

Total and animal protein
intake is associated with

preservation of lean
body mass

[77]

Longitudinal
(3 year)

Women;
mean age 68;

n = 552

Baseline total
protein intake;

3-day food record

Physical performance
measures

Higher consumption of
dietary protein is associated
with better physical function

and muscle strength

[75]

FFQ, Food Frequency Questionnaire; ALM, Appendicular Lean Mass.

2.6. Limited Research in Humans Assessing the Role of Pea Protein in Muscle Health

Despite the increasing market demand for pea protein, there are limited studies
examining their effect on muscle, and to our knowledge, there are no studies in the
older adult population. A study in 1970 by Bell and Youngs [119] studied the growth
of weaning male mice fed with either pea protein concentrate, defatted whole egg, fish
protein concentrates, or casein. In addition, they performed nutrient content analysis
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and found that the amino acid percentages between pea protein concentrate and fish
protein concentrate are remarkably similar except that pea protein concentrate is much
lower in methionine and higher in cystine. Following the 14 days of feeding, the authors
found that at 10% protein of the macronutrient (other macronutrient composition was
not disclosed), the pea protein concentrate protein-sourced fed mice grew sub-optimally
(measured by bodyweight) compared to the other groups (casein, defatted whole egg, and
fish protein concentrate). The pea protein group weighed on average ~6.5 g while other
groups including the pea protein group supplemented with methionine, weighed ~10 g.
In addition, they calculated the feed/weight gain ratio where the pea protein group was
7.0 while others ~5.0. Only after supplementing the 10% protein diet with methionine
or adding feed containing 15% of pea protein concentrate in their diet, the growth of the
mice was similar to mice in other protein groups. The finding by Bell and Youngs [119]
was further supported by Martínez, et al. [120] where male Swiss albino mice fed with
pea sourced protein (raw pea) showed stunted growth and low utilization of different
nutrients compared to casein fed group. The observed poor outcomes in the pea protein
fed mice were likely due to the presence of antinutritional factors (e.g., lectins) in the
feed that inhibited nutrient absorption, and related to the poor content of S-amino acids
in pea protein. In a study of untrained omnivorous human males between the ages of
18 to 35 years, participants were fed 25 g of whey (n = 54) protein twice a day or 25 g of pea
protein isolate (NUTRALYS®) (n = 53) twice a day or a maltodextrin placebo (n = 54) for
12-weeks in combination with a resistance training program. At the end of the intervention,
the authors found that biceps brachii muscle thickness increased by 20.2%, 15.6%, and 8.6%
for pea, whey, and placebo, respectively [71]. In another smaller study, omnivorous men
(n = 8) and women (n = 7) were randomized to whey (24 g) or pea (24 g) (True Nutrition,
Vista, CA, USA) protein supplementation each before and after high-intensity functional
training and between meals once a day on non-training days [72]. Overall, with 8-weeks
of high-intensity functional training, the participants gained significant improvement in
muscular strength in both groups. There were no differences in strength, body composition
(bioelectrical impedance analysis), nor muscle thickness (at the midsection of rectus femoris
measured using ultrasound imaging) between whey and pea protein supplemented groups.
The lack of difference in muscle strength and body composition may be due to the relatively
short 8-week training duration on already trained participants, again suggesting protein
supplementation may only be beneficial to untrained, and/or protein deplete adults.
It is worth noting that the whey protein and pea protein groups consumed relatively
high protein consumption at 150.7 g/d and 129.9 g/day of protein, respectively which
potentially masked the differential effect of between the two type of protein. These studies
also provide little understanding on the effect of pea protein on older adults as they were
conducted in younger groups (aged 13–35). In addition, further limitation to interpretation
of these studies is due to lack of data on participants’ total dietary protein intake at baseline.
Therefore, it is possible that lack of information on baseline protein intake may confound
the presented results and future, well-designed studies are needed in this area.

3. Future Directions and Conclusions

Older adults and clinically compromised individuals are at risk for sarcopenia and protein
malnutrition. A tailored nutrition approach to provide adequate protein (1.2 g/kgbodyweight/day),
from a mix of sources, and supplementing sufficient leucine may offset these risks. Among
older adults with chronic low protein intakes, a protein or leucine supplementation may
be warranted to augment inadequate daily protein intake. There are a wide variety of
protein beverages available in the market with varying sourcing of protein, such as whey,
soy, and pea-based protein. Unlike pea protein, whey and soy-based proteins have been
studied extensively for the past decade and have shown no differences in LBM and the
strength in response to resistance exercise training in adults. This review highlights the
limited number of studies conducted evaluating the effect of pea protein on muscle mass,
strength, and function, despite its increasing popularity in the market. Essential amino
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acids such as leucine are critical in improving muscle protein anabolism, muscle size, and
function, which is necessary in older populations. Therefore, future research is needed
to evaluate the effect of pea protein with and without additional leucine, or its limiting
amino acid, supplementation on muscle physiology and performance, primarily in the
older adult population. In addition, a long-term trial with a practical approach to providing
a high protein diet with defined health outcomes in various population groups is needed to
establish which dietary protein source would be more beneficial; especially in the context
of barriers older adult populations commonly face in meeting their protein needs.

It is important to review total protein intakes and protein sources within the context
of the whole diet. The effect of dietary protein on muscle health in the context of other
dietary factors should be examined as other nutrients have been shown to influence muscle,
such as vitamin D, omega-3 fatty acids, antioxidants, acid-base diets, magnesium, and
probiotics [21]. For example, studies have identified the pathway in which vitamin D
supports skeletal muscle health [121]. Yet supplementation with vitamin D in states of
deficiency yield conflicting results related to prevention of sarcopenia [121]. However,
these nutrients are outside the scope of the current review paper. Therefore, we recommend
a multi-arm randomized controlled clinical trial of protein supplementation in omnivores,
vegetarians, and vegans while controlling for amount of baseline total protein intake
could better explain the muscle effect of protein supplementation on each dietary pattern.
Further, a large epidemiological study is needed to examine the association between animal
versus plant protein on muscle outcomes among protein insufficient consumers to assess
if the importance of protein source is magnified at lower total dietary protein compared
to populations with higher total dietary protein. In addition, research that examines the
influence of different protein sources on the development of sarcopenia across the lifecycle
would contribute greatly to the advancement in prevention and treatment of sarcopenia
and musculoskeletal aging. Lastly, future research is needed to better understand the role
protein sources on the intersection of muscle and metabolic health.

In conclusion, providing tailored protein recommendations to older adults at nutri-
tional risk may help slow the development of sarcopenia and, subsequently, provide a
better quality of life. Current literature suggests recommendations should be targeted
towards consuming enough total protein daily, especially in populations prone to malnu-
trition, through dietary protein or leucine supplementation. Further research evaluating
the impact of various protein sources on muscle health is needed, with particular emphasis
on lesser-studied plant proteins, such as pea, corn, potato, hemp or rice protein.
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