Broad category	Subcategory	number of	Assessor	Age, years (range)*	Disease	Author, Year, Country		
		articles						
BMI	BMI	9	none	61.3 (IQR: 58.4-64.2)	Parkinson's Disease, Alzheimer's Disease, Amyotrophic Lateral	da Silva AF, 2020, Brazil [35]		
					Sclerosis, Stroke, Machado-Joseph Disease, Meige Syndrome			
					Rubinstein-Taybi Syndrome, Traumatic brain injury, Injury by			
					Firearm, Cervical Trauma, head and neck cancer, systemic			
					arterial hypertension, pneumonia, diabetes mellitus, dyslipidemia,			
					cardiovascular disease and chronicobstructive pulmonary disease			
			trained	60.1±15.3	Parkinson's, Alzheimer's, Huntington's, Amyotrophic lateral	Barni GC, 2020, Brazil [41]		
			professionals		sclerosis, Machado-Joseph, progressive supranuclear palsy,			
					Meyge's syndrome, stroke, trigeminal neuropathy, Rubinstein-			
					Taybi syndrome, myelitis, firearm injury, cervical trauma,			
					presbyphagia, diabetes mellitus, hypertension, dyslipidemia and			
					cardiovascular disease			
			multidisciplinary	COI: 72.9±11.4,	stroke	Ikenaga Y, 2017, Japan [36]		
			team	ICOI: 78.9±8.3				
			none	84.3±7.5	none	Maeda K,2017, Japan [42]		
			none	76.6±10.5	none	Toh Yoon EW, 2016, Japan [43]		
			none	72.1±11.0	Subacute Stroke	Nakadate A, 2016, Japan [44]		
			multidisciplinary	Group1: 82, Group2: 80,	none	Ortega O, 2015, Spain [45]		

Supplementary Materials Table S1. Nutritional assessment used for adult patients with dysphagia.

			none	68	esophageal cancer	Lecleire S,2006, France [46]
			none	range 42–79	acute stroke, brain tumor	Jacobsson C, 1997, Sweden [47]
Nutritional	MNA-SF	4	none	men, 79.12±6.73	none	Nakazawa Y, 2020, Japan [48]
screening tool				women, 79.88±7.82		
			none	76.7±9.3	stroke	Vilardell N, 2017, Spain [39]
			none	84.3±7.5	none	Maeda K, 2017, Japan [42]
			multidisciplinary	Group1: 82, Group2: 80,	none	Ortega O, 2015, Spain [45]
			team	Group3: 81, Group4: 76		
Anthropometric	Weight	5	none	SEMS group:62.4,	lung cancer	Kim J, 2018, Korea [37]
measurements				PEG group: 58.5		
			none	59.1	esophageal cancer	Smith ZL, 2017, USA [49]
			none	54	nasopharyngeal carcinoma	Wang YJ, 2014, China [38]
			none	68	esophageal cancer	Lecleire S, 2006, France [46]
			none	74.8±8.4 (53-89)	stroke	Elmståhl S, 1999, Sweden [50]
	TSF	1	none	range 42–79	acute stroke, brain tumor	Jacobsson C, 1997, Sweden [47]
	MAMC	1	none	range 42–79	acute stroke, brain tumor	Jacobsson C, 1997, Sweden [47]
Body composition	SMM (BIA)	1	none	men, 79.12±6.73	none	Nakazawa Y, 2020, Japan [48]
				women, 79.88±7.82		
	Percentage body	1	none	74.8±8.4 (53–89)	stroke	Elmståhl S, 1999, Sweden [50]
	fat					
	Lean body mass	1	none	74.8±8.4 (53-89)	stroke	Elmståhl S, 1999, Sweden [50]

Group3: 81, Group4: 76

team

Dietary assessment	Food	intake	2	none	Intervention: 70,	stroke	Bülow M, 2008, Sweden,	
	level				control: 71		Netherlands and France [51]	
				none	61 (26–81)	Stroke, neoplasm, brain trauma, Encephalitis, central pontine	Bartolome G, 1997, Germany	
						myelinolysis	[52]	
	Food Free	quency	1	none	60.1±15.3	Parkinson's, Alzheimer's, Huntington's, Amyotrophic lateral	Barni GC, 2020, Brazil [41]	
	Questionr	naire				sclerosis, Machado-Joseph, progressive supranuclear palsy,		
						Meyge's syndrome, stroke, trigeminal neuropathy, Rubinstein-		
						Taybi syndrome, myelitis, firearm injury, cervical trauma,		
						presbyphagia, diabetes mellitus, hypertension, dyslipidemia and		
						cardiovascular disease		
	Energy in	take	1	none	84.3±7.5	none	Maeda K,2017, Japan [42]	
	Period to	meal	1	none	72.7±8.6	none	Kishimoto N, 2016, Japan [53]	
	resumptio	n and						
	dietary for	rm						
	Daily foo	d	1	none	72.9	stroke	Masiero, S, et al, 2008, Italy [40]	
	intake							
Blood biomarkers	Albumin		9	none	84 (63–84)	none	Kimura Y, 2019, Japan [56]	
				none	59.1	esophageal cancer	Smith ZL, 2017, USA [49]	
				none	intervention: 72.5±2.5,	Alzheimer's Disease	Tang Y, 2017, China [54]	
					control: 76.2±2.3			
				none	76.6±10.5	none	Toh Yoon EW, 2016, Japan [43]	
				none	72.1±11.0	Subacute Stroke	Nakadate A, 2016, Japan [44]	

				control: 76.2±2.3			
Others	MNA	1	A trained dietitian	intervention:	72.5±2.5,	Alzheimer's Disease	Tang Y, 2017, China [54]
	Orosomucoid	1					
	TIBC	1					
	protein						
	Retinol-binding	1					
	Transthyretin	1					
	Ceruloplasmin	1					
	protein						
	C-reactive	1	none	74.8±8.4 (53–89))	stroke	Elmståhl S, 1999, Sweden [50]
	Pre-albumin	1	none	range 42–79		acute stroke, brain tumor	Jacobsson C, 1997, Sweden [47]
	Lymphocytes	1	none	84 (63–84)		none	Kimura Y, 2019, Japan [56]
	Transferrin	1	none	range 42–79		acute stroke, brain tumor	Jacobsson C, 1997, Sweden [47]
						injury, Oropharyngeal cancer	
	Total protein	1	none	65.6 (15–91)		Gaucher disease, Niemann–Pick disease, High cervical spinal cord	Miyake N, 2013, Japan [55]
				control: 76.2±2.3			
	Hemoglobin	1	none	intervention:	72.5±2.5,	Alzheimer's Disease	Tang Y, 2017, China [54]
			none	range 42–79		acute stroke, brain tumor	Jacobsson C, 1997, Sweden [47]
			none	74.8±8.4 (53-89))	stroke	Elmståhl S, 1999, Sweden [50]
			none	68		esophageal cancer	Lecleire S, 2006, France [46]
						injury, Oropharyngeal cancer	
			none	65.6 (15–91)		Gaucher disease, Niemann-Pick disease, High cervical spinal cord	Miyake N, 2013, Japan [55]

Abbreviations: BMI, body mass index; IQR, interquartile range; COI, complete oral intake; ICOI, incomplete oral intake; MNA-SF, Mini Nutritional Assessment-Short Form; TSF, triceps skinfolds thickness; USA, United State of America; PEG, percutaneous endoscopic gastrostomy; MAMC, mid-arm muscle circumference (MAMC=MUAC- π ×TSF); SMM, skeletal muscle mass; BIA, bioelectric impedance analysis; SEMS, self-expandable metallic stent; TIBC, total iron binding capacity; MNA, Mini Nutritional Assessment; O-PNI, Onodera's Prognostic Nutritional Index. *: Age is the average of the participants' age without any comments.

Supplementary Materials Table S2. Sources excluded following full-text review.

Reasons	Title	Author, Year, Country
The diagnosis of dysphagia is made clinically	Long-Term Nasogastric Versus Percutaneous Endoscopic Gastrostomy Tube Feeding in	Jaafar MH, 2019, Malaysia [73]
using methods other than videofluoroscopy and	Older Asians With Dysphagia: A Pragmatic Study	
fiberoptic endoscopy.	Comparison of enteral nutrition with total parenteral nutrition for patients with locally	Furuta M,.2019, Japan [74]
	advanced unresectable esophageal cancer harboring dysphagia in definitive	
	chemoradiotherapy	
	The Prevalence and Prognosis of Sarcopenic Dysphagia in Patients Who Require	Wakabayashi H, 2019, Japan [75]
	Dysphagia Rehabilitation	
	Effect of an oral health programme on oral health, oral intake, and nutrition in patients	Chen HJ, 2019, Taiwan [76]
	with stroke and dysphagia in Taiwan: A randomised controlled trial	
	Design and implementation of modified-texture diet in older adults with oropharyngeal	Reyes-Torres CA, 2019, Mexico [77]
	dysphagia: a randomized controlled trial	
	Comparison of long-term outcomes between enteral nutrition via gastrostomy and total	Masaki S, 2019, Japan [78]
	parenteral nutrition in older persons with dysphagia: A propensity-matched cohort study	
	The effects of resistance training of swallowing muscles on dysphagia in older people:	Wakabayashi H, 2018, Japan [79]
	a cluster, randomized, controlled trial	

Effect of a Minimal-Massive Intervention in Hospitalized Older Patients with Martín, A, et al. 2018, Spain [80] Oropharyngeal Dysphagia: A Proof-of-Concept Study Cognitive impairment has no impact on hospital-associated dysphagia in aspiration Maeda K, 2018, Japan [81] pneumonia patients Malnutrition risk predicts recovery of full oral intake among older adult stroke patients Nishioka S, 2017, Japan [82] undergoing enteral nutrition: Secondary analysis of a multicentre survey (the APPLE study) Nutritional status of older patients with oropharyngeal dysphagia in a chronic versus an Carrión S,2017, Spain [57] acute clinical situation LOW SERUM CHROMIUM IS RARE IN PATIENTS THAT UNDERWENT Santos CA, 2017, Portugal [83] ENDOSCOPIC GASTROSTOMY FOR LONG TERM ENTERAL FEEDING A Dedicated Nutritional Care Program (NUTRICARE) to reduce malnutrition in Zanini M, 2017, Italy [84] institutionalised dysphagic older people: A quasi-experimental study. Factors associated with the level of oral intake in hospitalized older adults with Kuroda Y, 2016, Japan [85] dysphagia: The importance of mental activity Normalcy of food intake in patients with head and neck cancer supported by combined Van Den Berg MGA, 2016, Netherlands dietary counseling and swallowing therapy: A randomized clinical trial [86] Malnutrition and Clinical Outcome of 234 Head and Neck Cancer Patients who Fonseca J, 2016, Portugal [87] Underwent Percutaneous Endoscopic Gastrostomy Effects of a feeding intervention in patients with Alzheimer's disease and dysphagia Chen LL,2016, China [88] Clinical Variables Associated with Hydration Status in Acute Ischemic Stroke Patients Crary MA, 2016, USA [89] with Dysphagia Serum trace elements in dysphagic gastrostomy candidates before Santos CA, 2016, Portugal [90]

	endoscopicgastrostomy for long term enteral feeding	
	Swallowing rehabilitation with nutrition therapy improves clinical outcome in patients	Iwamoto M, 2014, Japan [91]
	with dysphagia at an acute care hospital	
	Nutritional factors associated with survival following enteral tube feeding in patients	Rio A, 2010, United Kingdom [92]
	with motor neuron disease	
	Serum trace elements in tube-fed neurological dysphagia patients correlate with	Obara H, 2008, Japan [93]
	nutritional indices but do not correlate with trace element intakes: Case of patients	
	receiving enough trace elements intake	
	The effectiveness of targeted feeding assistance to improve the nutritional intake of	Wright L, 2008, United Kingdom [94]
	elderly dysphagic patients in hospital	
	A prospective comparison of percutaneous endoscopic gastrostomy and nasogastric tube	Hamidon, BB, 2006, Malaysia [95]
	feeding in patients with acute dysphagic stroke	
	Nutritional Status and Quality of Life in Patients with Percutaneous Endoscopic	Klose J, 2003, Germany [96]
	Gastrostomy (PEG) in Practice: Prospective One-Year Follow-Up	
	Eating difficulties, need for assisted eating, nutritional status and pressure ulcers in	Westergren A, 2001, Sweden [97]
	patients admitted for stroke rehabilitation	
	Dysphagia and nutritional status in multiple sclerosis	
	A randomised prospective comparison of percutaneous endoscopic gastrostomy and	Thomas FJ, 1999, United Kingdom [98]
	nasogastric tube feeding after acute dysphagic stroke	
	Complications and outcome after acute stroke: Does dysphagia matter?	Norton B, 1996, United Kingdom [99]
Not all participants are dysphagic patients.	Low level of phosphate in male patients reporting swallowing disturbances in early	Smithard DG, 1996, United Kingdom [100]
	Parkinson's disease	
	Relationship Between Body Mass Index and Rehabilitation Outcomes in Subacute	Håglin L, 2020, Sweden [101]

Stroke with Dysphagia.

	Dysphagia is associated with oral, physical, cognitive and psychological frailty in	Morone G, 2020, Italy [102]
	Japanese community-dwelling elderly persons.	
	Dysphagia is more strongly associated with increased intramuscular adipose tissue of	Nishida N, 2020, Japan [103]
	the quadriceps than with loss of muscle mass in older inpatients	
	A Significant Association of Malnutrition with Dysphagia in Acute Patients	Akazawa N, 2019, Japan [104]
	Survival in older adults with dementia and eating problems: to PEG or not to PEG?	Saito T, 2018, Japan [105]
	Neck circumference is not associated with dysphagia but with undernutrition in elderly	Ticinesi A, 2016, Italy [106]
	individuals requiring long-term care	
	Head lifting strength is associated with dysphagia and malnutrition in frail older adults	Wakabayashi H, 2016, Japan [107]
	Oral cancer malnutrition impacts weight and quality of life	Wakabayashi H, 2015, Japan [108]
	Effect of induction chemotherapy on swallow physiology and saliva production in	Gellrich NC, 2015, Germany, Austria,
	patients with head and neck cancer: A pilot study	Switzerland [109]
	Impact of early enteral nutrition on short term prognosis after acute stroke	Mittal BB, 2015, USA [110]
	Eating difficulties among patients 3months after stroke in relation to the acute phase	Zheng T, 2015, China [111]
	Prospective evaluation of oro-pharyngeal dysphagia after severe traumatic brain injury.	Medin J, 2012, Sweden [112]
	Evaluation of nutritional status in children with refractory epilepsy	Terré R, 2007, Spain [113]
	Pre-and postoperative nutritional evaluation in patients with chagasic megaesophagus	Bertoli S, Italy [114]
	Gastrooesophageal reflux in children with cerebral palsy.	Penhavel FA, 2004, Brazil [115]
No nutritional assessment	Safety and efficacy of functional laryngectomy for end-stage dysphagia	Reyes A. L, 1993, United Kingdom [116]
	Effects of device-facilitated isometric progressive resistance oropharyngeal therapy on	Topf M. C, 2018, USA [117]
	swallowing and health-related outcomes in older adults with dysphagia	
	Dysphagia assessed by the 10-item Eating Assessment Tool is associated with nutritional	Rogus-Pulia N, 2016, USA [118]

	status and activities of daily living in elderly individuals requiring long-term care					
	Efficacy of concurrent chemoradiotherapy as a palliative treatment in stage IVB	Wakabayashi H, 2016, Japan [17]				
	esophageal cancer patients with dysphagia					
	Using different perspectives to generate items for a new scale measuring medical	Ikeda E, 2011, Japan [119]				
	outcomes of dysphagia (MOD)					
Participants are not adults	Parent-reported indicators for detecting feeding and swallowing difficulties and	Martino R, 2009, Canada [120]				
	undernutrition in preschool-aged children with cerebral palsy.					
	Diagnosis and treatment of feeding disorders in children with developmental disabilities	Benfer KA, 2017 [121]				
	Oropharyngeal dysfunction and gastroesophageal dysmotility are present in girls and	Schwarz SM, 2001 [122]				
	women with Rett syndrome					
Non-English language	Factors associated with mortality in patients with dysphagia help in making dietary and	Motil KJ, 1999 [123]				
	nutritional choices					
	Percutaneous endoscopic gastrostomy in patients with ENT tumors	Ferrero L, 2015, Spain [124]				
Review articles	Nutritional management in home care: Including eating disorder and dysphagia	Motsch C, 1998, Germany [125]				
	assessments					