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Abstract: Vitamin D deficiency has become a widespread public health problem owing to its potential
adverse health effects. Generally, the nutritional status of vitamin D depends on sunlight exposure
and dietary or supplementary intake. However, recent studies have found that exercise can influence
circulating 25(OH)D levels; although, the results have been inconclusive. In this review, we focused on
the effect of exercise on circulating vitamin D metabolites and their possible mechanisms. We found
that endurance exercise can significantly increase serum 25(OH)D levels in vitamin D-deficient
people but has no significant effect on vitamin D-sufficient people. This benefit has not been observed
with resistance training. Only chronic endurance exercise training can significantly increase serum
1,25(OH)2D, and the effect may be sex-dependent. Exercise may influence 25(OH)D levels in the
circulation by regulating either the vitamin D metabolites stored in tissues or the utilization by target
tissues. The effects of exercise on 25(OH)D levels in the circulation may be dependent on many
factors, such as the vitamin D nutritional status, exercise type and intensity, and sex. Therefore,
further research on the effects and mechanisms of exercise on vitamin D metabolites is required.

Keywords: vitamin D; endurance exercise; resistance exercise; adipose tissue; skeletal muscle

1. Introduction

The recent increase in vitamin D-related research has led to the discovery of the vi-
tamin D receptor (VDR) in many tissues. A growing body of literature has shown that
the biological role of vitamin D goes beyond the traditionally understood duties deal-
ing with muscles and bones and is important for energy metabolism, oxidative stress,
maintenance, and improvement of physical fitness [1–4]. A study found that vitamin D3
supplementation increased serum 25(OH)D levels; additionally, the expression of 291 genes,
involving as many as 160 metabolic pathways, was significantly upregulated or downregu-
lated [5]. This finding suggests that vitamin D plays an important role in health. Alarmingly,
a survey found that vitamin D deficiency has become a global public health problem [6,7].
Vitamin D deficiency is closely associated with various chronic non-communicable diseases
and functional disorders [1,8–10]. Therefore, maintaining adequate vitamin D levels is
significant for promoting health.

Vitamin D is mainly synthesized by the skin, and its sources in food are scarce [11,12].
In the epidermis, 7-dehydrocholesterol can be transformed into vitamin D3 upon exposure
to sunlight, while vitamin D2/3 in foods/supplements is absorbed into the circulation
through the intestines. Both skin-synthesized vitamin D3 and food/supplement-derived
D2/3 are catalyzed by 25-hydroxylase [mainly cytochrome P450 family 27 subfamily A
member 1 (CYP27A1) and cytochrome P450 family 2 subfamily R member 1 (CYP2R1)] to
25(OH)D in the liver. Due to its long half-life [13] and strong vitamin D binding protein
(VDBP) binding ability [14], serum 25(OH)D is the most abundant and stable vitamin
D metabolite in the circulation; hence, its serum concentration is used to evaluate the
nutritional status of vitamin D [15]. Subsequently, 25(OH)D is catalyzed by 25(OH)D-1α
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hydroxylase, cytochrome P450 family 27 subfamily B member 1 (CYP27B1), to 1,25(OH)2D
in the kidney, which can bind to the VDR in the target tissue and regulate physiological
processes. Vitamin D 24-hydroxylase, cytochrome P450 family 24 subfamily A member 1
(CYP24A1), an important degrading enzyme, can degrade 25(OH)D and 1,25(OH)2D in the
kidney, which is then excreted through bile. Therefore, it is generally believed that skin
synthesis and dietary intake/supplement are the main factors determining the nutritional
status of vitamin D. Although scholars have suggested that vitamin D nutritional status
can be improved by increasing the duration of sun exposure, the proportion of participants
in one study with sufficient sunlight exposure was only 56.12% [16]. Moreover, prolonged
UV exposure leads to hyperpigmentation and possible skin cancer [17]. Additionally,
vitamin D is a photolabile; thus, prolonged UV exposure does not significantly increase
vitamin D levels [18,19]. Therefore, support for prolonged sun exposure has lessened [20].
Vitamin D supplementation is a generally accepted method for improving its nutritional
status; however, the recommended standards vary widely among the WHO, IOM, UK, EU,
and China [21–23]. Moreover, while low doses are considered ineffective, high doses may
lead to adverse effects, such as severe hypercalcemia and hyperphosphatemia [24].

Recent studies have found that physical inactivity is an important risk factor for
morbidity and mortality from chronic non-communicable diseases [25] and for vitamin D
deficiency [26]. Many observational studies have shown that the maintenance of vitamin
D nutritional status is related to physical activity/exercise habits [27,28], and physical
activity levels are significantly positively correlated with 25(OH)D levels [29,30]. Our
meta-analysis of these studies revealed that physical activity was significantly positively
correlated with circulating 25(OH)D levels [31]. However, results from experimental studies
are inconsistent and may depend on the exercise type [31]. In this review, we focus on
endurance exercise and resistance exercise to examine the effect of exercise on 25(OH)D
and 1,25(OH)2D and its possible mechanisms.

2. Endurance Exercise and Vitamin D
2.1. The Effect of Acute Endurance Exercise
2.1.1. Human Studies

Five human studies have investigated the effects of acute endurance exercise on
25(OH)D and 1,25(OH)2D, with three focusing on professional athletes and two on non-
athletes (Table 1). Mieszkowski et al. found that serum 25(OH)D levels in male runners
[baseline serum 25(OH)D level >20 ng/mL] with and without vitamin D supplementation
were significantly increased immediately and 24 h after an ultra-marathon race compared
with those before the race [32]. Dzik also reported that serum 25(OH)D3 levels in male
soccer players (10–14 years old) significantly increased at 15 min and 1 h after a VO2max
test [25(OH)D >70 nmol/L]. In an analysis of both pre-pubertal and pubertal boys, the con-
centration of 25(OH)D3 increased 15 min after the VO2max test and dropped one hour
after exercise, but these changes were not significantly different at specific time points [33].
However, Maimoun found that intensity exercise [47% Wmax, baseline serum 25(OH)D
level: 79.4 ± 13.7 nmol/L; 64% Wmax, baseline serum 25(OH)D level: 83.4 ± 16 nmol/L]
did not alter the concentration of 25(OH)D in male competitive road cyclists during cycling
exercise or after 15 min of recovery [34]. Conversely, two studies involving non-athletes
demonstrated that acute endurance exercise may increase circulating 25(OH)D levels.
Maimoun et al. found that maximal incremental exercise can significantly increase the level
of 25(OH)D in physically highly active elderly participants but not in moderately active
elderly and young physically active adults [35]. Sun et al. found that serum 25(OH)D
concentration significantly increased immediately and 1, 3, and 24 h after 30 min of cycling
exercise at 70% VO2peak [36]. However, in the subgroup analysis, the 25(OH)D level
increase of women [baseline serum 25(OH)D level:55.1 ± 15.6 nmol/L] was significant
only at 24 h after exercise. The acute effect of exercise on 25(OH)D levels may be affected
by intensity [33], sex [36], and age [33,35]. As for serum 1,25(OH)2D levels, no significant
variation was observed in response to acute endurance exercise [34–36].
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Table 1. Summary of the effect of acute endurance exercise intervention.

Study Participants/Animal, n Endurance Exercise
Intervention Sunlight Exposure Main Findings

Acute endurance exercise intervention-human studies

Mieszkowski (2020) [32]

Experimental, n = 13,
42.00 ± 8.44 years old,
Ultra-Marathon Race,
150,000 vitamin D3;
Control, n = 14,
40.00 ± 8.11 years old,
Ultra-Marathon Race,
placebo solution

Ultra-Marathon Race
18:00 h, 19 July; most
of the time, the sky
was overcast

25(OH)D3: significantly
increased immediately
and 24 h after the
ultra-marathon vs. 24 h
before the
ultra-marathon in both
groups

Dzik (2022) [33]
Male soccer players,
n = 12 (pre-pubertal,
n = 5; pubertal, n = 7)

VO2max test -

25(OH)D3: significantly
increased at 15 min and
1 h after exercise vs.
before; increased 15 min
after the VO2max test
and dropped one hour
after exercise, but not
significantly different.

Maimoun (2006) [34]
Male competitive road
cyclists, n = 7,
20–30 years old

47% Wmax;
64% Wmax - 25(OH)D: no change

1,25(OH)2D: no change

Maimoun (2009) [35]

Elderly moderately
active (ModEl, n = 18),
71.9 ± 7.3 years old;
Elderly active (HAcEl;
n = 18),
71.7 ± 8.6 years old;
Young active (AcYo;
n = 9),
25.8 ± 2.3 years old

maximal incremental
exercise -

25(OH)D: significantly
increased in HAcEl, but
not in ModEl and AcYo
1,25(OH)2D: no change

Sun (2017) [36]

Healthy young men,
n = 10, 18–22 years old;
Healthy young women,
n = 10, 19–22 years old

cycling exercise for
30 min at 70%
VO2max

at the laboratory

25(OH)D: significantly
greater at 0 h, 1 h, 3 h and
24 h after exercise vs.
before exercise; subgroup
analysis: significantly
increased at 24 h after
exercise in women only
1,25(OH)2D: no change

Acute endurance exercise intervention: animal studies

Makanae (2015) [37]
Adult male
Sprague–Dawley rats,
10 weeks age

60 min, 25 m/min at the laboratory 25(OH)D3: no change

Puangthong (2021) [38]
Healthy ponies, n = 6
(5 geldings, 1 mare),
6.3 ± 2.2 years age

77–93% of HRmax,
16.5 ± 1 min,
5.2 ± 0.3 km

at the laboratory

25(OH)D2: significantly
reduced at 30 min,
1 week, and 3 weeks after
high-intensity exercise
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Table 1. Cont.

Study Participants/Animal, n Endurance Exercise
Intervention Sunlight Exposure Main Findings

Chronic endurance exercise intervention-human studies

Farag (2019) [39]

Vitamin D plus PA
group: n = 21,
40.42 ± 5.89 years old,
2000IU/day,
endurance PA

Endurance PA:
12 weeks, daily
endurance PA,
30 min/day

Either at morning,
7:30 a.m. or afternoon
after 3:00 p.m.

25(OH)D: significantly
increased

Mieszkowski (2018) [40]

High-intensity interval
training group
(HI-NW): LD (n = 8,
67.37 ± 6.30 years old,
800 IU/day vitamin
D3), and HD (n = 8,
67.63 ± 7.29 years old,
4000 IU/day
vitamin D3);
Moderate-inteensity
continuous training
group (MI-NW): LD
(n = 13,
69.08 ± 4.87 years old,
800 IU/day vitamin D3)
and HD (n = 13,
70.85 ± 4.61 years old,
4000 IU/day
vitamin D3)

Nordic walking
training: 12 weeks,
two hours, three
times a week.
HI-NW: 30 s
acceleration going
uphill,60 s release
going downhill for
eight time; 70%
HRmax for 28 min.
MI-NW: 60–70 HRmax
for 40 min

morning hours

25(OH)D3: significantly
increased in HI-NW with
LD and HD group and
MI-NW with HD group;
no change in MI-NW
with LD group.

Prusik (2018) [41]
Experimental group
(EG), n = 35,
68.4 ± 5.0 years old

EG: Nordic walking
training, 12 weeks,
three times a week,
60–70% HRmax for
45–55 min;
4000 IU/day vitamin
D supplement

1 h after breakfast

25(OH)D3: significantly
increased after 12 weeks
of Nordic walking
training with vitamin D
supplementation; no
change after 6 months
without training and
vitamin D
supplementation

Malandish (2020) [42]

Postmenopausal
women
Exercise group (EX),
n = 13,
53.36 ± 3.98 years old;
Control group (C),
n = 13,
53.00 ± 3.26 years old

EX: 12 weeks training,
3 sessions per week,
55–60 min per session,
40 min of walking or
jogging aerobic
exercise on treadmill
C: no intervention

-

25(OH)D: significantly
increased after exercise
vs. before exercise in EX
group and compared to
C group; no change in
C group

Li (2019) [43]

elderly chronic
obstructive pulmonary
disease patients with
osteoporosis,
65–82 years old
Experimental group,
n = 31;
Control group, n = 31

Experimental group:
12 weeks,
4 times/week,
5 set/session,
5 min/set, 5 min
between sets, 75%
CPET, 25 min/session.
Control group:
12 weeks,
4 times/week,
5 set/session,
5 min/set, 5 min
between sets, 50%
CPET, 25 min/session.

-

25(OH)D: significantly
increased after exercise in
experimental group and
control group;
significantly increased
after exercise in
experimental group vs.
control group after
exercise intervention
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Table 1. Cont.

Study Participants/Animal, n Endurance Exercise
Intervention Sunlight Exposure Main Findings

Song (2014) [44]

postmenopausal
women with type II
diabetes and
osteoporosis
Experimental group:
n = 278,
52.82 ± 5.12 years old;
Control group: n = 284,
53.26 ± 5.12 years old

Experimental group:
48 weeks, moderate
intensity,
20–30 min/time,
two times/day,
0.25 ug/day
Calcitriol and 600 mg
vitamin D
supplementation
Control group:
0.25 ug/day
Calcitriol and 600 mg
vitamin D
supplementation

-

25(OH)D: significantly
increased 24 weeks and
48 weeks after exercise vs.
before exercise in
experimental group and
higher than control group
at same time points

Shi (2013) [45]

Patients with
osteoporosis,
50–89 years old, n = 82
exercise group (n = 40);
control group (n = 42)

exercise group:
Wu xing Bone
gymnastics, 90 days,
30–45 min/time,
two times/day
control group:
calcium and Calcitriol
supplementation

-

25(OH)D: significantly
increased after exercise
intervention vs. before
exercise intervention in
exercise group; no
change in control group

Klausen (1993) [46]
Male marathon
runners, n = 9,
41–50 years old

Endurance training:
median running
distance was 61 km
per week, 4 weeks

the months of
December and
January

25(OH)D3: no change at
2 week and 4 week
retraining.
1,25(OH)2D3:
significantly reduced at
4 week retraining vs.
before retraining

Pilch (2017) [47] Women, n = 17,
57 ± 4.20 years old

Nordic walking
training, 6 weeks,
three times a week,
90 min/time, 60–70%
HRmax.

morning hours
25(OH)D: significantly
reduced after exercise
intervention

Lithgow (2018) [48]

Overweight and
obese adults
Placebo group: n = 10,
34 ± 10 years old;
Vitamin D group:
n = 10, 34 ± 9 years old

Placebo group: HIIT
intervention, 6 weeks,
3 sessions/week,
10 repetitions of
1 min intervals
interspersed with
1 min active recovery
at a power output of
50 W. placebo tablets
Vitamin D group:
HIIT with
4000 IU/day
vitamin D3

-

25(OH)D3: significantly
increased in vitamin D
group than placebo
group; no change
between before and after
exercise in placebo group

Hossain (2018) [49]

Intervention group:
n = 7, 14–18 years old;
Control group: n = 7,
14–18 years old

Intervention group:
brisk walking,
12 weeks,
45 min/time, three
times a week
Control group: no
change routine
lifestyle

- 25(OH)D: no change in
both groups
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Table 1. Cont.

Study Participants/Animal, n Endurance Exercise
Intervention Sunlight Exposure Main Findings

Sun (2018) [50]

The 5-week endurance
exercise training group
(ET group), n = 10,
66.5–75.3 years old;
Sedentary control
group (SC group),
n = 10,
63.8–73.0 years old

ET group: aerobic
exercise, 5 weeks,
three times per week,
60% VO2max during
week 1, 70% during
weeks 2 and 3,
and 75% during
weeks 4 and 5, 30 min
for weeks 1 and 2,
and 45 min for
weeks 3–5
SC group: no
intervention

From October to
November

25(OH)D: significantly
reduced after exercise in
SC group;
no change in ET group

Chronic endurance exercise intervention: animal studies

Aly (2016) [51]

Adult male albino,
Group I(a): control
sedentary, n = 15;
Group I(b): control
exercised, n = 15;
Group II(a): diabetic
sedentary, n = 15;
Group II(b): diabetic
exercised, n = 15

Group I(b) and Group
II(b): swimming
moderate exercise,
4 weeks, 60 min/time,
5 time per week
Group I(a) and Group
II(a): no intervention

at the laboratory

25(OH)D: significantly
increased in Group II(b)
vs. Group II(a); no
change between Group
I(a) and Group I(b)

Buskermolen (2019) [52]

Female wistar rat,
13 weeks old
Control group, n = 8;
Endurance training
group (ET), n = 10

ET: treadmill running,
6 weeks, 10 min at a
speed of 16 m/min
without a slope,
increased up to
45 min with a speed
of 26 m/min on a 10%
slope
Control group: no
intervention

at the laboratory
25(OH)D: no change
between ET and control
group

Yeh (1989) [53]

Female
Sprague-Dawley rats,
75 ± 5 g
Exercise group;
Pair-fed exercise group;
control group;

Exercise group and
Pair-fed exercise
group: flat-bed
treadmill running,
13 weeks,
60 min/time, 5 times
per week,
18–25 m/min
Control group: no
intervention

at the laboratory

25(OH)D: no change in
the three groups
1,25(OH)2D3:
significantly increased in
Exercise group and
Pair-fed exercise group
vs. control

Iwamoto (2004) [54]

Female Wistar rats,
6 weeks old, n = 20
7 weeks of exercise
(7EX), n = 5;
7 weeks of sedentary
control (7CON), n = 5;
11 weeks of exercise
(11EX), n = 5;
11 weeks of sedentary
control (11CON), n = 5

7EX and 11EX:
running on flat-bed
treadmill, 7 weeks or
11 weeks,
60 min/time,
5 time a week
7CON and11CON: no
intervention

at the laboratory

1,25(OH)2D3:
significantly increased in
7EX vs. 7CON;
significantly increased in
11EX than 11CON
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Table 1. Cont.

Study Participants/Animal, n Endurance Exercise
Intervention Sunlight Exposure Main Findings

Wang (2018) [55]

Male F344 rats
Sedentary young rats
(Young), n = 9;
Sedentary aged rats
(Aged), n = 9;
Aged rats with aerobic
exercise training
(Aged + EX), n = 9

Aged + EX: running
treadmill, 12 weeks,
7 times per week,
1 h/time, 10% slope,
8–20 m/min
Young and Aged
group: no
intervention

at the laboratory 1,25(OH)2D3: slightly
increased, not significant

Xu (2019) [56]

C57BL/6 male mice,
5 weeks old
Swimming group
(group S), n = 7;
Downhill running
group (group R), n = 7;
Control (group C), n = 7

group S: swimming
training, 8 weeks,
6 times per week,
50 min/time,
65–70%VO2max
group R: downhill
running, 8 weeks,
6 times per week,
50 min/time, −9%
slope, 0.8 km/h
group C: no
intervention

at the laboratory

1,25(OH)2D3:
significantly reduced in
group S and group R vs.
group C

- Indicates no relevant information. Wmax indicates maximal workload; VO2max indicates maximal oxygen
uptake. HRmax indicates maximal heart rate. Abbreviations: PA indicates physical activity; HR indicates heart
rate; NW indicates Nordic walking training; CPET indicates cardiopulmonary exercise test; and HIIT indicates
high-intensity intermittent training.

2.1.2. Animal Studies

Results from animal studies investigating the effect of acute endurance exercise on
serum 25(OH)D have been inconsistent compared to those from human studies (Table 1).
Makanae et al. found that acute endurance exercise (anaerobic threshold intensity) did
not alter serum 25(OH)D levels in adult male Sprague-Dawley rats [37]. Moreover, serum
25(OH)D levels in horses were significantly reduced at 30 min, 1 week, and 3 weeks after
high-intensity exercise [38]. However, only two experimental animal studies have been
conducted to investigate the effect of acute endurance exercise on serum 25(OH)D levels.

2.2. The Effect of Chronic Endurance Exercise Training
2.2.1. Human Studies

Twelve human studies investigated the effect of endurance exercise training on serum
25(OH)D levels and did not yield consistent results (Table 1). Some studies found that
chronic endurance exercise training can significantly increase serum 25(OH)D levels [39–45],
but other studies have reported contradicting results [46–50]. However, when we sorted these stud-
ies, we found that in people with vitamin D deficiency {25(OH)D < 20 ng/mL or 50 nmol/L [57]},
endurance training can significantly improve serum 25(OH)D levels [39,40,42,43,45], and even
severe vitamin D deficiency status (<10 ng/mL) improved to vitamin D deficiency status
(10–20 ng/mL) in postmenopausal women [42]. However, endurance exercises had no
significant effects on serum 25(OH)D levels in overweight and obese subjects, regardless of
vitamin D nutritional status [48]. For participants with sufficient vitamin D levels {25(OH)D
≥ 20 ng/mL or 50 nmol/L [57]}, endurance training combined with vitamin D supple-
mentation significantly increased serum 25(OH)D levels [40,44], while endurance training
alone did not [40,46,49,50]. While Pilch et al. found that serum 25(OH)D levels were
significantly reduced in postmenopausal obese women with sufficient vitamin D levels
after endurance exercise intervention, the study was conducted in late autumn and had
no control group; hence, it was impossible to determine whether the decrease in 25(OH)D
was due to endurance exercise training or a seasonal decline [47]. When considering sun
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exposure, we found that studies providing relevant sun exposure information were all
conducted in the morning [39–41,47] or evening [39] or autumn and winter [46,50]. During
this time, sun exposure is weaker and has less effect on vitamin D. Taken together, the effect
of chronic endurance exercise training on 25(OH)D levels in the circulation may be affected
by the vitamin D status.

2.2.2. Animal Studies

Six animal studies investigated the effect of chronic endurance exercise training on
25(OH)D and 1,25(OH)2D (Table 1). Aly et al. found that a 4-week swimming regimen
significantly increased serum 25(OH)D levels in diabetic mice. No significant change
in serum 25(OH)D levels was observed in healthy mice; however, their serum 25(OH)D
levels were significantly higher [51]. Buskermolen et al. found that although 6 weeks
of endurance training increased serum 25(OH)D levels in female Wistar rats, the change
was not significant [52]. The female Wistar rats in Buskermolen’s study were fed 1.5 IU/g
(>1000 IU/kg [58–60]) vitamin D3, which is sufficient to maintain an adequate vitamin
D status. Some animal studies have shown that chronic endurance exercise training can
significantly increase serum 1,25(OH)2D levels in healthy female rats [53,54]. However,
while Wang et al. found that 12 weeks of treadmill endurance exercise training slightly
increased serum 1,25(OH)2D3 levels in aged male rats, the results were not significant [55].
Conversely, Xu et al. found that 8 weeks of swimming and downhill running significantly
reduced serum 1,25(OH)2D3 level in 5-week old male mice [56]. In all animal studies
which reported increased 1,25(OH)2D levels [53,54], the mice were all female, while those
that were unchanged or decreased were male [55,56]. The effect of exercise training on
1,25(OH)2D may therefore depend on sex.

2.3. Mechanism

Endurance exercise induces greater improvements in aerobic capacity and its associ-
ated cardiopulmonary and metabolic variables [61]. In terms of energy metabolism, en-
durance exercise can activate several secondary signal molecules, such as AMPK, CaMKII,
and p38, which promote an increase in PGC-1α. Subsequently, PGC-1α promotes mito-
chondrial biogenesis, exercise-induced fast-to-slow fiber-type transformation, and exercise-
induced expression of important muscle antioxidant enzymes. Therefore, endurance exer-
cise, especially submaximal endurance exercise, effectively increases fat metabolism [62].
Adipose tissue is one main storage depot for vitamin D [63]. Hengist et al. suggested that
release of vitamin D stored in adipose tissue is a byproduct of lipolysis [64]. In other words,
in the process of releasing triglycerides from adipocytes through the action of lipolytic
enzymes, the stored vitamin D metabolites were also released. Lipolysis is regulated by
various factors, such as atrial natriuretic peptides (ANPs), brain natriuretic peptides (BNPs),
insulin, and beta adrenergic hormones [65]. Endurance exercise can promote the release of
these hormones [66], promoting lipolytic processes and releasing vitamin D metabolites
from the adipose tissue. Moreover, a systematic review showed that all exercise protocols
(high-intensity interval exercise, moderate-intensity continuous exercise, and sprint inter-
val exercise) can generate elevated energy expenditure through excessive post-exercise
oxygen consumption (EPOC) [67]. Exercise-induced energy deficit has the most potent
effect on endogenous lipid metabolism, elevating plasma triacylglycerol concentration
and increasing plasma fatty acid mobilization and oxidation the day after performing
endurance exercises [68]. The reason that endurance training can increase serum 25(OH)D
levels may be attributed to lipolytic processes during exercise and EPOC.

Abboud et al. found that serum 25(OH)D levels in pasture sheep at the end of win-
ter were significantly lower than those during the summer, but intramuscular 25(OH)D
content at the end of winter was significantly higher [69]. After 25(OH)D3 supplementa-
tion, intramuscular 25(OH)D3 levels decreased as serum 25(OH)D3 levels rose, returning
serum and skeletal muscle 25(OH)D concentrations to the more adequate summer levels
[25(OH)D > 50 nmol/L] [69]. Abboud et al. found that when the vitamin D nutritional
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status improves, skeletal muscle cells may lose their ability to accumulate large amounts
of 25(OH)D [69]. In addition, vitamin D nutritional status is regulated by a variety of
factors such as serum Ca2+, Pi, parathyroid hormone (PTH), and FGF23 (fibroblast growth
factor-23 (FGF23)) [70,71]. PTH stimulates the expression of CYP27B1 in the kidney, while
FGF23, high Ca2+ or Pi levels, and 1,25(OH)2D downregulate it. In contrast, 1,25(OH)2D
and FGF23 strongly induce the expression of CYP24A1, while PTH reduces its expression
by stimulating its mRNA [72]. Moreover, PTH enhances the production of 1,25(OH)2D,
which in turn activates an inhibitory loop regulating PTH production. Similarly, FGF23 reg-
ulates the production of 1,25(OH)2D, an inducer of FGF23 synthesis in the bones [70,73].
These factors work together to maintain vitamin D nutritional homeostasis, explaining
why exercise cannot adequately elevate the level of 25(OH)D. Interestingly, serum calcium
and PTH levels were significantly increased in the three groups [35]. Changes in PTH and
calcium levels may therefore be responsible for the transient changes in 25(OH)D levels
when there is no deficiency.

Endurance exercise can increase VDR mRNA levels [38,51,55]. In the target tissue,
1,25(OH)2D can bind to VDR and exert physiological functions, which may explain why ex-
ercise promotes health. Because 1,25(OH)2D utilization in the target tissue increases, so does
conversion of 25(OH)D to 1,25(OH)2D3, resulting in reduced serum 25(OH)D levels [38].

A summary of how endurance training may exert its effects on 25(OH)D in several
ways can be seen in Figure 1.
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3. Resistance Exercise
3.1. The Effect of Acute Resistance Exercise
Human and Animal Studies

One human study and one animal study have investigated the effect of acute re-
sistance exercise intervention on 25(OH)D (Table 2). Barker et al. found that serum
25(OH)D concentrations significantly increased immediately after acute resistance exercise
in 14 recreationally active adults; however, the levels subsequently decreased after 24, 48,
72, and 168 h [74]. Conversely, Makanae et al. reported no significant change in serum
25(OH)D concentrations in adult male Sprague-Dawley rats in response to acute resistance
exercise [37]. In the human study, subjects performed an intense-stretch shortening con-
traction (10 sets of 10 repetitive jumps), whereas rats were put through isometric exercise
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(5 sets of 10 contractions). The inconsistency in outcome between the two studies may
partially be explained by the differences in resistance exercise intensity and volume.

Table 2. Summary of the effect of resistance exercise intervention (human study and animal study).

Study Participants/Animal, n Resistance Exercise
Intervention Sunlight Exposure Main Findings

Acute resistance exercise intervention: human study

Barker (2013) [74]

Recreationally active
subjects
Intense-stretch
shortening contraction
leg (SSC);
Control leg (CON)

SSC: 10 sets of 10 jumps
with a 20-s rest between
each set at 75% of body
mass on one leg only
CON: no intervention

December to March;
at the laboratory

25(OH)D: significantly
increased immediately
after acute resistance
exercise; decreased
after 24, 48, 72,
and 168 h

Acute resistance exercise intervention: animal study

Makanae (2015) [37] Male Sprague-Dawley,
10 weeks old

Isometrically exercise,
five sets of ten 3 s
contractions, with a 7 s
interval between
contractions and 3 min
rest intervals
between sets

at the laboratory 25(OH)D3: no change

Chronic resistance exercise intervention: human study

Zhang (2017) [75]

patients with
post-stroke hemiplegia,
59.58 ± 4.39 years old
Experimental group,
n = 25;
Control group, n = 25

Experimental group:
weight-bearing exercise
training, one year,
40 min/time, two
times/day. Routine
rehabilitation. Calcium
and calciferol
supplement
Control group: Routine
rehabilitation. Calcium
and calciferol
supplement

-

25(OH)D: significantly
increased at 3 months
and 1 year of
intervention in
Experimental group vs.
before intervention and
vs. control group at
same time points.

Bass (2020) [76]

Male and female
healthy participants,
n = 37,
48.4 ± 2.6 years old

20 weeks, three times a
week, 70% 1 repetition
max, single sets of
12 repetitions with
2-min rests between
sets of seated chest
press, lat pull down,
seated lever row, leg
extension, seated leg
curl, seated leg press,
back extension and
abdominal curls

-
25(OH)D: significantly
increased after exercise
intervention

Sun (2020) [77]

healthy men, n = 18,
19–39 years old
resistance training
group (RT), n = 9,
24.2 ± 3.1 years old;
non-exercise control
group (CON), n = 9,
26.7 ± 6.2 years old

RT: progressive
resistance training,
12 weeks, 2–3 times per
week, resistance
workload gradually
changed from light to
heavy
CON: no intervention

From March to July,
Between 16:30 h and
20:00 h in a gymnasium

25(OH)D: significantly
increased after
12 weeks of exercise
intervention vs.
baseline in both groups;
significantly higher at
6 weeks compared with
the values at baseline in
the CON group,
whereas no notable
differences were found
in the RT group
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Table 2. Cont.

Study Participants/Animal, n Resistance Exercise
Intervention Sunlight Exposure Main Findings

Aschauer (2021) [78]

Older adults, n = 85,
65–85 years old
Control group (CON),
Placebo, 400 mg
calcium/day;
Vitamin D3 daily group
(VDD), 800 IU vitamin
D3/day, 400 mg
calcium/day;
Vitamin D3 monthly
group (VDM),
50,000 IU vitamin
D3/month, 400 mg
calcium/day

Three groups have
conducted Resistance
training: 10 weeks,
twice a week,
60–90 min/session

From mid-February to
mid-July

25(OH)D: no change in
CON; significantly
increased in both VDD
and VDM

Agergaard (2015) [79]

Healthy sedentary
young and elderly men
Young vitamin D
group, n = 7,
23.3 ± 2.0 years old;
Young placebo group,
n = 10,
22.4 ± 1.8 years old;
elderly vitamin D
group, n = 7,
67.1 ± 2.9 years old ;
elderly placebo group,
n = 10,
66.6 ± 4.2 years old

Four groups have
conducted resistance
training exercise:
12 weeks,
3 sessions/week,
Progressive loading
levels

From November to
April

25(OH)D: significantly
reduced at 0, 2, 6,
and 12 weeks in young
placebo group vs. at
−4 weeks; significantly
reduced at 0, 6,
and 12 weeks in young
placebo group vs. at
−4 weeks; significantly
increased at 0, 2, 6,
and 12 weeks in young
vitamin D group and
elderly vitamin D
group vs. at −4 weeks

Acute resistance exercise intervention: animal studies

Buskermolen
(2019) [52]

Female wistar rat,
13 weeks old
peak power training
(PT), n = 10;
Control group, n = 8

PT: peak power
training, 10 sprints of
15 s in gallop at a
maximal attainable
velocity on a
progressively
increasing slope
starting at 10%
reaching up to 40% by
the end
Control group: no
intervention

at the laboratory 25(OH)D: no change

Xu (2019) [56]

C57BL/6 male mice,
5 weeks old
Jumping group
(group J), n = 7;
Control group
(group C), n = 7

Group J: jumping
training, 8 weeks,
6 times per week,
6–7 sets/min,
50 min/time
Group C: no
intervention

at the laboratory
1,25(OH)2D3:
significantly reduced in
group J vs. group C

- Indicates no relevant information.

3.2. The Effect of Chronic Resistance Exercise Training
3.2.1. Human Studies

Five human studies have investigated the effects of resistance exercise training on
25(OH)D levels (Table 2). Resistance exercise training significantly increased circulating
25(OH)D levels in vitamin D-deficient post-stroke hemiplegia patients [75] and healthy
participants [76]. Conversely, resistance exercise training had no effect on 25(OH)D lev-
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els in healthy vitamin D-deficient young men [77] and older adults without vitamin D
supplementation [78]. However, Agergaard et al. found that resistance exercise training
significantly reduced serum 25(OH)D levels in young and elderly participants without
vitamin D supplementation [79]. Factors such as vitamin D supplementation, season,
and experimental design should be considered when interpreting these findings. We found
that all groups received vitamin D supplementation in Zhang’s study [75]; however, serum
25(OH)D levels were higher at 3 months and 1 year following resistance exercise train-
ing combined with vitamin D, compared to only vitamin D supplementation. In Bass’s
study, there was a lack of control groups and seasonal information; hence, it is unclear
whether the increase in serum 25(OH)D levels is due to resistance training or seasonal
factors [76]. Detailed seasonal information was provided in Aschauer’s study (from mid-
February to mid-July) [78], Sun’s study (from March to July) [77], and Agergaard’s study
(from November to December) [79]. We found a clear seasonal trend in mean serum
25(OH)D concentrations, suggesting that the change in 25(OH)D concentrations induced
by resistance training may have been caused by large seasonal fluctuations [77,78].

3.2.2. Animal Studies

Two animal studies have investigated the effect of resistance exercise training on
25(OH)D and 1,25(OH)2D3 (Table 2). Buskermolen et al. found that 6 weeks of peak
power training did not alter serum 25(OH)D levels in rats [52]. Conversely, Xu et al.
found that 8 weeks of jumping training significantly reduced serum 1,25(OH)2D3 levels in
male mice [56].

3.3. Mechanisms

The predominant adaptation of resistance exercises is in the musculoskeletal system,
including increases in muscle mass, muscle strength, and bone density [61]. Muscle mass is
increased when resistance exercise triggers muscle signaling events that activate mTOR,
leading to increased protein synthesis [62]. Therefore, resistance exercise can be effective
in increasing muscle weight and hypertrophy. Mason et al. reported that circulating
VDBP can be internalized into skeletal muscle cells to provide high-affinity intracellular
binding sites for 25(OH)D [80]. The authors postulate that this intracellular VDBP enables
25(OH)D to diffuse into muscle cells where it is bound and retained until VDBP undergoes
proteolysis [80]. The released 25(OH)D then diffuses from the skeletal muscle cells into
the circulation and is immediately bound by VDBP in the circulation [80]. Thus, muscle
tissue may be an important target tissue and extravascular storage pool for vitamin D.
In Sun’s study, fat-free mass and muscle mass were significantly increased [77]. Similarly,
in Agergaard’s study, the cross-sectional area of the quadriceps muscle had significant
gains in the group who did not receive vitamin D supplements [79]. This result suggests
that increased muscle mass from resistance training provides a reservoir of vitamin D,
leading to reduced or unchanged serum 25(OH)D levels.

Moreover, 25(OH)D can be released from skeletal muscle [69,81–84]. This release
is regulated by the VDR, PTH, VDBP, and vitamin D nutritional status [69,83,84]. PTH
reduces the net uptake of 25(OH)D3 in C2 myotubes and mouse muscle fibers and reduces
its retention in myotubes [69]. In Barker’s study, PTH levels significantly increased after
acute resistance exercise [74]. In Zhang’s study, there was a significant increase in PTH
levels at 3 months and 1 year following chronic resistance exercise combined with vitamin
D supplements, compared to only receiving vitamin D supplements [75]. The increase in
circulating 25(OH)D levels may be due to the effect of PTH on its uptake and retention in
skeletal muscle cells [74,75]. However, chronic resistance training alone did not significantly
alter the PTH levels [52,77]. This may also be the reason why vitamin D supplementation
combined with resistance training, and not resistance exercise training alone, increases
25(OH)D levels.

Resistance training can increase the level of CYP27B1 [37], which can catalyze the
conversion of 25(OH)D to 1,25(OH)2D3. Moreover, resistance training can increase target
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tissue VDR levels [37], increasing 1,25(OH)2D3 utilization, which may explain why serum
25(OH)D levels are not altered in response to resistance training [37]. In addition, resistance
training increases CYP24A1 levels [56], which can degrade 25(OH)D and 1,25(OH)2D;
hence, the decrease in 1,25(OH)2D may be caused by increased degradation, while its
synthesis remains unchanged [56]. These factors may individually or together contribute to
reduction/unchanged 25(OH)D levels in the circulation in response to resistance training.

How resistance training may exert its effect on 25(OH)D in various ways is briefly
illustrated in Figure 2.
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Figure 2. Possible mechanisms of the effect of resistance training on serum 25(OH)D. Vitamin D indi-
cates serum vitamin D metabolites;− indicates no significant change; ↑ indicates significant increase;
and ↓ indicates significantly reduction. Regulation factors include VDR, PTH, DBP, and vitamin D
nutritional status. 25(OH)D-1α hydroxylase, CYP27B1, can convert 25(OH)D to 1,25(OH)2D. Vitamin
D 24-hydroxylase, CYP24A1, is an important degrading enzyme of vitamin D. Abbreviations: VDR,
vitamin D receptor.

4. Others

The effect of endurance combined with resistance exercise training intervention on
25(OH)D was investigated in three human studies and one animal study, which did
not yield consistent results (Table 3). In the human studies, chronic endurance com-
bined with resistance exercise training intervention significantly increased serum 25(OH)D
levels [85,86]. Evans et al. found that 4 months of recruit training significantly reduced
serum 25(OH)D levels in healthy men with adequate vitamin D {25(OH)D ≥ 20 ng/mL
or 50 nmol/L [57]}, while no significant change was observed in healthy women with
adequate vitamin D levels [87]. Conversely, Buskermolen et al. reported that 6 weeks
of peak power combined with endurance training did not alter serum 25(OH)D levels in
Wistar rats [52].
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Table 3. Summary of the effect of endurance combined with resistance exercise intervention (human
studies and animal study).

Study Participants/Animal, n Endurance Exercise Intervention Sunlight
Exposure Main Findings

Endurance combined with resistance exercise intervention: human studies

Gustafsson
(2019) [85]

healthy, pregnant
Norwegian women
Intervention group:
n = 429,
30.5 ± 4.4 years old;
Control group: n = 426,
30.4 ± 4.3 years old

Intervention group: aerobic and
strength training, 12 weeks,
3 times per week, 60 min/time

-

25(OH)D: no significant effect
of the exercise program on
levels of total, free, or
bioavailable 25(OH)D in only
baseline level adjust model;
additionally adjusted for study
site and sampling month,
revealed a significant
between-group difference in
levels of total, free,
and bioavailable 25(OH)D.

Li (2019) [86]

Patients with
postmenopausal
osteoporosis
Training group: n = 26,
55.46 ± 4.12 years old;
Control group: n = 26,
56.25 ± 3.75 years old

Training group: 12 weeks,
(a) endurance exercise training,
brisk walk outdoors, 4 times per
week, 30 min/ time, 50%VO2max;
(b) progressive resistance training.
calcium and Calcitriol
supplementation
Control group: calcium and
Calcitriol supplementation

brisk walk
outdoors

25(OH)D: significantly
increased after intervention in
both groups; significantly
increased in Training group vs.
control group

Evans [87]

Healthy men, n = 41,
19.3 ± 1.2 years old;
Healthy women,
n = 153,
19.0 ± 1,0 years old

Marching under load, running and
jumping, battle drills, and walking
and standing for prolonged
periods of time

-

25(OH)D: significantly
reduced at 4 months in male
participants; no change in
female participants

Endurance combined with resistance exercise intervention-animal study

Buskermolen [52]

Female wistar rat,
13 weeks old
peak power training
and endurance training
group, n = 10;
Control group, n = 8

Peak power training: 10 sprints of
15 s in gallop at a maximal
attainable velocity on a
progressively increasing slope
starting at 10% reaching up to 40%
by the end
endurance training: treadmill
running, 6 weeks, 10 min at a
speed of 16 m/min without a
slope, increased up to 45 min with
a speed of 26 m/min on a 10% slope
Control group: no intervention

- 25(OH)D: no change

- Indicates no relevant information.

5. Limitations and Perspectives

Aside from the small number of relevant studies, there are many limitations. First,
while mass spectrometry, enzyme-linked immunosorbent assays, and other methods can
detect 25(OH)D levels, their accuracies vary greatly. Moreover, 25(OH)D2 levels are dif-
ficult to detect [24]. Second, the vitamin D nutritional status is affected by exposure to
season/sunlight. Except for the Sun study and the Li study, which clearly stated that
chronic exercise intervention was conducted indoors [77] or outdoors [86], the vast majority
of studies did not provide relevant information. Some studies did not provide seasonal
information or information on sunlight exposure. Third, some studies did not include
a blank control group. These limitations should be addressed in future research. In this
paper, there are also some strengths. First, we relatively comprehensively summarize the
relevant research in recent years. Second, due to the different effects of different exercise
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types on health, we focus on the analysis of the effects of endurance training and resistance
training exercise. Third, from the perspective of the two major extra-circulating depots and
the regulatory factors of vitamin D, this review comprehensively explained the possible
mechanism of exercise on vitamin D.

Because the nutritional status of vitamin D is influenced by various factors, we recom-
mend incorporating the following considerations in future studies. First, due to their lipid
solubility, vitamin D metabolites are sequestered in adipose tissue, leading to decreased
bioavailability in obese subjects [88]. Moreover, Drincic believed that because of volumetric
dilution, obese individuals have lower 25(OH)D concentrations [89]. Therefore, body fat is
significantly negatively correlated with serum 25(OH)D levels [90] and obese individuals
have a higher risk of vitamin D deficiency [91,92]. In addition, lipolysis may be impaired
in obese individuals [93], and obesity affects the regulation of vitamin D metabolism en-
zymes [94], which may explain why 25(OH)D levels in overweight and obese adults were
not altered in the Lithgow study [48]. Second, exercise in the fed and fasted states differed in
terms of energy metabolism substrates. A study found that exercise performed in the fasted
state induces higher fat oxidation than exercise performed in the fed state [95]. Moreover,
fasting increases post-exercise circulating FFAs [96]. Therefore, the effects of exercise on
serum 25(OH)D or 1,25(OH)2D levels may be influenced by whether it is performed under
fed or fasted states. Third, vitamin D metabolites are primarily found in circulation, adipose
tissue, and skeletal muscle [63]. Thus, adipose and muscle tissues are two major extra
circulatory depots for vitamin D metabolites, which are not reflected in serum 25(OH)D
levels. Therefore, when studying the effect of exercise on vitamin D, extravascular storage
tissues should be included in the analysis.

6. Conclusions

In conclusion, endurance exercise can significantly increase serum 25(OH)D levels in
vitamin D-deficient subjects but has no significant effect on vitamin D-sufficient subjects.
Moreover, resistance training did not significantly increase 25(OH)D concentrations. Only
chronic endurance exercise intervention significantly increased serum 1,25(OH)2D levels,
and this effect may be sex-dependent. Exercise may influence 25(OH)D levels in circulation
by regulating either the release of vitamin D metabolites from storage tissues or the utiliza-
tion of target tissue (Figure 3). The effects of exercise on 25(OH)D levels may depend on
the vitamin D nutritional status, exercise type, exercise intensity, and sex. The organism
is a complex entity, and vitamin D is tightly regulated by a variety of factors. Exercise
elicits various bodily responses, and the effects of exercise on vitamin D nutritional levels
may be the result of a combination of these. Therefore, further research on the effects and
mechanisms of exercise on 25(OH)D levels is needed.
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