
����������
�������

Citation: Ren, M.; Li, H.; Fu, Z.; Li, Q.

Centenarian-Sourced Lactobacillus

casei Combined with Dietary Fiber

Complex Ameliorates Brain and Gut

Function in Aged Mice. Nutrients

2022, 14, 324. https://doi.org/

10.3390/nu14020324

Academic Editor: Alba

Rodriguez-Nogales

Received: 7 December 2021

Accepted: 10 January 2022

Published: 13 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Article

Centenarian-Sourced Lactobacillus casei Combined with
Dietary Fiber Complex Ameliorates Brain and Gut Function in
Aged Mice
Minhong Ren , He Li , Zhen Fu and Quanyang Li *

College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
1716402006@st.gxu.edu.cn (M.R.); 1816401001@st.gxu.edu.cn (H.L.); fuzhen13@gxu.edu.cn (Z.F.)
* Correspondence: liquanyang@gxu.edu.cn; Tel.: +86-136-6788-3719

Abstract: Dietary intervention could modulate age-related neurological disorders via the gut–brain
axis. The potential roles of a probiotic and the dietary fiber complex (DFC) on brain and gut function
in aged mice were investigated in this study. Lactobacillus casei LTL1361 and DFC were orally
administrated for 12 weeks, and the learning and memory ability, as well as the oxidative parameters,
inflammatory markers, gut barrier function and microbial metabolite short-chain fatty acids (SCFAs),
were investigated. LTL1361 and DFC supplementation ameliorated cognitive ability, attenuated
oxidative stress in brain and inflammation in serum and colon, ameliorated gut barrier function, and
increased the SCFA concentrations and gene expression of SCFA receptors. The protective effect was
more significantly enhanced in aged mice treated with the combination of LTL1361 and DFC than
treated with LTL1361 or DFC alone. These results could be associated with the protected morphology
of pyramidal nerve cells in hippocampus of mice brain and the downregulation of apoptosis marker
caspase-3 in brain and upregulation of tight junction proteins in small intestine and colon. The results
indicated that Lactobacillus casei LTL1361 and DFC alleviated age-related cognitive impairment, as
well as protected brain and gut function. Lactobacillus casei LTL1361 and DFC might be used as novel
and promising antiaging agents in human.

Keywords: probiotic; antiaging; cognitive function; antioxidant; inflammatory

1. Introduction

The proportion of the population aged over 60 years was predicted to exceed 30%
in China by 2050, as China is facing the severe challenge of population aging [1]. Aging
has been a known major risk factor in many chronic human diseases, such as Alzheimer’s,
diabetes, cardiovascular disease, and cancer [2–4]. Aging is an inevitable and ubiquitous
progress that affects all living organisms, and age-related cognitive decline commonly
affects the life of the elderly. Previous studies have reported that the accumulation of free
radicals and reactive oxygen species in organism cells cause oxidative stress, resulting in
the destruction of tissue and cell structure, dysfunction of the organism, and acceleration
of aging [5–8]. In addition, there is a bidirectional connection between aging and inflam-
mation [9,10]. In the process of aging, the intestinal mucosal barrier function is damaged,
and its permeability is increased with the apoptosis of the intestinal epithelium and the
thinning of the intestinal mucosa [11]. Harmful microorganisms and toxins generated by
metabolism in the intestinal tract reach the circulatory system of the host, causing chronic
inflammation and accelerating aging [12].

As aging is inevitable and its relative negative symptoms are complicated, humans
pursue antiaging treatments, ranging from diet therapies to drug treatments [13–15]. Accu-
mulating evidence has indicated that dietary nutrients (especially dietary fiber) could affect
host health by regulating the gut microbiota [16–19]. Dietary fibers are resistant to digestion
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and absorption during passage through the stomach and small intestine, but could be fer-
mented in the large intestine by the gut bacteria and could produce beneficial metabolites,
such as SCFAs, which are beneficial for host health [20]. SCFA concentrations are likely less
than optimal in the elderly, as data indicate that daily dietary fiber intake for the elderly is
roughly 40% below the recommended adequate intake [21]. There is also a lower capacity
to produce butyrate in the gut microbiota of elderly and lower amounts of bacterial groups
which are known as butyrate producers, compared with younger adults [22]. On the other
hand, our previous studies revealed that SCFA producers Roseburia, Ruminococcaceae, and
Clostridiaceae are increased in centenarians living in Bama, Guangxi, with a high-fiber
diet (fiber mainly sourced from whole grains and vegetables), and that higher detection
frequencies of Lactobacillus are significantly correlated with dietary fiber intake [23,24].

Probiotics, as beneficial bacteria, are defined as “live microorganisms that, when
administered in adequate amounts, exert health benefits to the host” [25]. Lactobacillus
is the largest probiotic group that has shown a high possibility of developing functional
food. However, individual bacterial strains always exhibit unique bioactivities that re-
quire experimental confirmation. Several Lactobacillus strains have been reported to have
antiaging effects that might be due to their radical-scavenging activity and oxidation stress-
attenuating ability [26–29]. It is reported that probiotic strains derived from the elderly
exhibited excellent antioxidant [26], cholesterol-lowering [30,31], and immune-regulating
activities [32].

Most previous studies focused on the antiaging effects within a specific disease of
treatment with either dietary fiber or probiotics, whereas the evidence is limited with
respect to the antiaging effects of centenarian-sourced probiotics combined with the dietary
fiber complex. Our previous research indicated that high dietary fiber intake (mainly
sourced from coarse cereals, legumes, and dark vegetables) is associated with longevity in
Bama [33]. Meanwhile, we successfully isolated Lactobacillus casei LTL1361 from the feces
of centenarians and demonstrated its potential probiotic properties in vitro in preliminary
research. In this study, the antiaging effects of the LTL1361 strain and dietary fiber, as a
function of learning and memory ability, antioxidant capacity, inflammation markers, and
SCFAs in natural aging mice, were evaluated, which could be useful for the development
of synbiotics for the elderly.

2. Materials and Methods
2.1. Bacteria Strain and Culture

The patented Lactobacillus casei LTL1361 strain was isolated from the feces of healthy
centenarians living in Bama, China, and preserved at the China Center for Type Culture
Collection (CCTCC), with storage number CCTCC M 2,019,018 [34]. The LTL1361 strain
was activated on de Man–Rogosa–Sharpe medium (MRS) agar plates. A single colony was
inoculated in MRS broth medium and cultured at 37 ◦C for 14 h in a 50 mL test tube. The
strain seed culture (1% inoculation) was scaled up in a 5 L fermenter with MRS broth for
12 h. Then, the LTL1361 cells were harvested by centrifugation at 4000× g for 10 min at
4 ◦C, before washing twice with phosphate-buffered saline. After washing, the LTL1361
cells were resuspended in 0.9% saline and adjusted to a concentration of 1 × 109 cfu/mL
for animal experiments.

2.2. Preparation of DFC

The ingredients used to extract dietary fiber were purchased from the Bama farmers’
market, including corn, hemp seed, black soybean, Sonchus oleraceus (bitter vegetable)
Pachyrhizus leaf, and pumpkin leaf. The method of extracting dietary fiber from corn,
hemp seed, and black soybean is described below. The air-dried sample was ground
and sieved to obtain a 60 mesh fraction. Petroleum ether was used to get rid of the fat
of the sample, and the ratio of the sample to solvent was 1:20 g/mL. The sample was
degreased two times to ensure the maximum removal of lipids. The defatted sample was
dispersed in water (1:30 g/mL), and then α-amylase and protease were successively added
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for enzymatic digestion (2 h) to remove starch and protein. Then, the suspension was heated
in a water bath (90 ◦C) with continuous stirring. After 3h, the suspension was centrifuged
(8000× g, 15 min). The supernatant and sediment were obtained for further extracting.
The supernatant was concentrated with a rotary evaporator (RE-52AA, Shanghai Yarong
Biochemistry Instrument Factory, Shanghai, China). The water-soluble dietary fiber was
then recovered by precipitation of the concentrated supernatant in four volumes of 95%
ethanol and lyophilized using a vacuum freeze-dryer (Shanghai Youpu Industrial Co., Ltd.,
Shanghai, China). The sediment was washed three times with water and ethanol, and then
insoluble dietary fiber was obtained by lyophilization. The method of extracting dietary
fiber from Sonchus oleraceus (bitter vegetable), Pachyrhizus leaf, and pumpkin leaf was the
same as above without the fat removal, starch removal, and protein removal steps.

The soluble and insoluble dietary fibers were combined. The dietary fibers extracted
from the six ingredients were mixed in specific proportions based on a dietary survey of
the elderly in Bama, Guangxi [33]. The mixture was named the “dietary fiber complex”
(DFC). The compositions of the DFC were determined, and its total dietary fiber, fat, protein,
ash, and water contents were determined according to GB 5009.88–2014, GB 5009.6–2016,
GB 5009.5–2016, GB 5009.4–2016, and GB 5009.3–2016, respectively. The DFC contained
total dietary fiber (76.1%), water (5.8%), protein (1.9%), lipids (1.5%), and ash (3.9%) (on a
dry basis).

2.3. Animals and Experimental Design

The protocols and experiments were approved by the Ethics Committee of Guangxi
University (Approval No.: GXU-2020-163). Twenty-four male C57BL/6J mice (SPF, 18
months old) were purchased from the Experimental Animal Center of Guangxi Medical
University (Production License No.: L20160258SCXK Gui 2020–0003). Mice were housed in
conditions of 24 ± 2 ◦C, relative humidity of 55% ± 5%, and a 12 h light/dark cycle, with
free access to food and water. All efforts were made to minimize animal suffering and to
reduce the number of animals used. After acclimatization for 1 week, mice were randomly
divided into four groups (six mice per group): control group (basal diet, administered
saline), DFC group (basal diet with 10% (w/w) DFC, administered saline), LTL1361 group
(basal diet, administered LTL1363), and DFC + LTL1361 group (basal diet with 10% (w/w)
DFC, administered LTL1363). The mice were orally gavaged with a 0.2 mL bacterial
suspension or 0.9% saline daily for 12 weeks. The dose of probiotics was similar to other
studies conducted in mice [28,29]. A treatment overview is shown in Table 1. The basal
diet for mice (in line with Chinese standard “Feed Health Standard” (GB13078-2017)) was
purchased from Beijing Keao Xieli Feed Co., LTD. The mice in all groups had free access to
food and water. Animal experiments lasted 12 weeks. The general health and wellbeing of
the animals was checked daily, and food consumption and body weight were evaluated
weekly. At the end week of the experiment, the Morris water maze test was conducted.

Table 1. Groups of naturally aging mice according to treatment method.

Group Food Oral Gavage

Control Basal diet 0.9% saline
DFC Basal diet added 10% DFC 0.9% saline

LTL1361 Basal diet 2 × 108 cfu LTL1361/mice per day
DFC + LTL1361 Basal diet added 10% DFC 2 × 108 cfu LTL1361/mice per day

2.4. Morris Water Maze Test

The Morris water maze test was carried out as described previously [35]. The Morris
water maze consists of a large circular pool (120 cm diameter, 45 cm depth). The pool
was divided arbitrarily into four equal quadrants (I, II, III, and IV) and filled to a depth of
30 cm with water at 22 ± 2 ◦C. The water was made opaque with a nontoxic white dye. A
submerged platform was centered in one of the target quadrants of the pool and submerged
1 cm below the water surface. The position of the platform was unaltered throughout the
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training trial sessions. Basic training consisted of a hidden-platform acquisition training
session for five consecutive days and a probe trial session. The Morris water maze was
conducted on the week before the mice were sacrificed. The tests were assessed by two
investigators who were completely blinded to the mouse groups. Each mouse was subjected
to four trials per day at an intertrial interval of 120 min. For each trial, the platform was
retained at the same place, and the time spent to locate the hidden platform (escape latency)
and the path length of each mouse were recorded. On the sixth day, the platform was
removed from the water for the probe trial. The number of times that each mice crossed
the center of the quadrant (where the platform was previously located) at an interval of
1 min was recorded for the evaluation of memory performance. The swimming orbits and
times of test mice were recorded using an overhead camera during the experimental period,
and the data were analyzed using Supermaze software (Shanghai XinRuan Information
Technology Co., Ltd., Shanghai, China).

2.5. Preparation of Tissues and Blood

Mice were fasted overnight before being killed at the end of this experiment (week
12). Blood samples were collected from the orbital vein, and then the mice were sacrificed.
Serum samples were collected by centrifugation (2000× g, 4 ◦C, 15 min) and stored at
−80 ◦C until analysis. The brain tissues were excised quickly and carefully. The brain
tissues were weighted and divided into two equal parts; the left part of the brain was
immediately fixed in 10% formalin for histological analysis, while the right part was snap-
frozen in liquid nitrogen and kept at −80 ◦C until use. Small intestine and colon tissue
samples were precisely dissected, flushed, sucked dry, and then weighed as previously
described [36]. A ~1 cm section in the middle segment of the small intestine and colon
tissues was cut and fixed in 10% formalin for histological analysis. Meanwhile, small
intestine and colon tissue and colon contents were collected in sterilized Eppendorf tubes
and immediately stored at −80 ◦C for subsequent analysis. The brain, small intestine, and
colon tissue indices were calculated using the following formula: tissue index = tissue
weight/body weight × 100%.

2.6. Histopathological Analysis

The left part of the brain and the middle segment of small intestine and colon tissues
(about 1 cm) were excised and fixed with 10% formalin. The tissues were processed by
dehydration, cleaning, infiltration, and embedding for sectioning. Then, the sectioned
samples were stained with hematoxylin and eosin (H&E) and observed under a light
microscope. Images were captured at 200×magnification for the hippocampal CA1 and
CA3 regions, 100× magnification for small intestine tissue, and 40× or 100× magnification
for colon tissue.

2.7. Measurement of Oxidation-Associated Biomarkers and Inflammatory Cytokines

The whole right part of the brain and the colon tissue sample were weighed and
homogenized with cold PBS (PH7.4) at a weight-to-volume ratio of 1 g:9 mL, and then
centrifuged (8000× g, 4 ◦C, 10 min) to obtain the supernatant for further analysis. The total
antioxidant capacity (T-AOC), malondialdehyde (MDA) content, and superoxide dismutase
(SOD) activity of brain and serum were evaluated by chemical colorimetric analysis with
the T-AOC assay kit, MDA assay kit, and SOD assay kit (Nanjing Jiancheng Institute of
Biotechnology, Nanjing, China), respectively, according to the manufacturer’s protocols.
The contents of interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α) in serum and
colon tissue were measured using an enzyme-linked immunoassay with the IL-10 assay kit
and TNF-α kit (Shanghai Jianglai Biotechnology Co., Ltd., Shanghai, China), respectively,
according to the manufacturer’s instructions.
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2.8. SCFA Analysis

SCFAs including acetate, propionate, and butyrate were analyzed using an external
standard method described by Zhu et al. [37] with minor modifications. Briefly, 0.2 g
of colon contents were suspended in 2 mL of saturated NaCl solution. The mixtures
were vortexed uniformly for 30 min and then centrifuged at 12,000× g for 10 min. The
supernatant was acidified with 100 µL of 80% H3PO4 and extracted with 2 mL of ethyl
ether. The contents of SCFAs were determined using an 8890N gas chromatograph with
an FID detector (Agilent Technologies, Santa Clara, CA, USA). Separation was achieved
using an HP-innowax capillary column (30 m × 0.25 mm × 0.25 µm film thickness, Agilent
Technologies Inc.). The injector and detector temperature were both 250 ◦C. The flow rate of
nitrogen carrier gas was kept at 1.5 mL/min. Then, 1 µL of derivatized sample was injected
at a split ratio of 10:1. The initial column temperature was 100 ◦C, ramped to 150 ◦C at the
rate of 8 ◦C /min, increased to 170 ◦C at 5 ◦C /min, and then finally increased to 230 ◦C at
the rate of 30 ◦C/min, before being kept at this temperature for 2 min.

2.9. RNA Isolation and Quantitative Real-Time PCR analysis

Tissue total RNA was isolated using a total RNA Extraction Kit (Solarbio, Beijing,
China) following the manufacturer’s instructions, and the concentration was determined
using an Infinite M200 pro continuous wavelength multifunctional microporous detector
(Tecan, Männedorf, Switzerland). The cDNA was synthesized using a reverse transcriptase
kit (Beyotime, Shanghai, China) according to the manufacturer’s instructions. Real-time
quantitative PCR was performed using SYBR Green Realtime PCR Master Mix in a Roche
LightCycler 96 real-time PCR instrument (Roche Diagnostics Co., Ltd., Basel, Switzerland).
Primer sequences of the target genes are listed in Table 2.

Table 2. Gene-specific primers used for real-time PCR.

Bacteria Genbank Access
No.

Forward (F) and Reversed (R)
Primer Sequence (5′–3′)

Product Length
(bp)

Caspase-3 NM_009810.3 F: GTCATCTCGCTCTGGTACGG
R: CACACACACAAAGCTGCTCC 169

Bcl-2 NM_009741.5 F: TACGAGTGGGATGCTGGAGA
R: CGGTAGCGACGAGAGAAGTC 236

GPR41 NM_001033316.2 F: CGGCTCACTGTAGTGTGGTT
R: AGTCGTACAGGCAGGAGGAT 127

GPR43 NM_001168509.1 F: TCCTTGATCCTCACGGCCTA
R: TTGGATGCTGCTTCCACGAT 194

ZO-1 D14340.1 F: TGTGGATTTACCCGTCAGCC
R: AGGACGGCCTCTTCCCTTAT 267

Claudin-1 NM_016674.4 F: CTCCTGTCCCCGGAAAACAA
R: CAGAGGGAAGCAGCAGTTCA 311

β-actin NM_007393.5 F: TACTGCTCTGGCTCCTAGCA
R: CGGACTCATCGTACTCCTGC 146

Each reaction included 1 µL of template DNA, 7 µL of ddH2O, 10.0 µL of 2× ChamQ
Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China), and 1 µL of primer 1 and
primer 2 with a concentration of 10 µM. Real-time PCR conditions consisted of an initial
denaturation step at 95 ◦C for 60 s and an amplification step, followed by 40 cycles of
denaturation at 95 ◦C for 15 s, annealing at 60 ◦C for 15 s, elongation at 72 ◦C for 60 s. At the
end of the PCR assay, a dissociation curve analysis was performed to check for nonspecific
products. All genes were compared with the housekeeping control gene β-actin using the
2−∆∆Ct calculation method.

2.10. Statistical Analysis

All data were expressed as the mean ± standard deviation. Statistical analyses were
performed with SPSS V22.0 statistical software for Windows (SPSS Inc., Chicago, IL, USA).
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Comparisons between groups were performed using an independent-sample t-test. The
differences among more than two groups were analyzed using one-way analysis of variance
(ANOVA) followed by Duncan’s test. Significance was set at p < 0.05.

3. Results
3.1. Effects of Lactobacillus casei LTL1361 and DFC on Learning and Memory of Aged Mice

The Morris water maze is widely used to study spatial learning and memory of
mice [28,38,39]. The Morris water maze test was carried out after 11 weeks of treatment.
The performance of a hidden-platform acquisition training session for five consecutive days
in all groups was evaluated, and the results are shown in Table 3. The escape latency of mice
in all groups was shortened with the extension of training time. Compared with the first
day, the escape latency of the fifth day was significantly decreased in the three treatment
groups (DFC group, LTL1361 group, p < 0.05; DFC + LTL1361, p < 0.01), but not significant
in control group (p > 0.05). Meanwhile, compared with the control group, the latency of the
DFC + LTL1361 group was significantly reduced from the third day to the fifth day, but
the latency of the DFC group and LTL1361 group was significantly reduced only on the
fifth day. The spatial probe test was conducted on the sixth day, and the results are shown
in Figure 1. Compared with the control group, the escape latency of all treatment groups
was reduced (Figure 1A), and the number that crossed the platform significantly increased,
especially in the DFC + LTL1361 group (Figure 1B). Lactobacillus casei LTL1361 combined
with DFC significantly prolonged the swim time and distance in the platform quadrant
in the spatial probe test (Figure 1C,D). Aged mice of the control group swam centered
around the quadrant with an unclear movement direction, but the mice in treatment groups
always swam around the target quadrant to search for the platform (Figure 1E). The results
indicated that learning and memory ability were impaired in aged mice; however, the DFC
and Lactobacillus casei LTL1361 could improve the ability of aged mice.
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Table 3. Escape latency of hidden-platform acquisition training test for five consecutive days.

Group Escape Latency (s)

Day 1 Day 2 Day 3 Day 4 Day 5

Control 47.4 ± 7.3 a 44.7 ± 6.4 a 40.5 ± 5.6 b 38.9 ± 8.0 b 38.1 ± 4.7 b

DFC 46.1 ± 7.6 a 41.4 ± 7.5 a 35.2 ± 6.6 ab 31.0 ± 5.8 ab 29.4 ± 6.7 a*
LTL1361 43.2 ± 3.4 a 38.5 ± 6.4 a 35.3 ± 5.3 ab 31.7 ± 5.1 ab 27.2 ± 7.0 a*

DFC + LTL1361 42.0 ± 7.6 a 36.1 ± 10.7 a 28.0 ± 5.6 a 25.8 ± 7.0 a 22.7 ± 6.9 a**
All values are presented as the mean ± standard deviation (n = 6); * significant difference from the first day
(p < 0.05); ** significant difference from the first day (p < 0.01); different superscript letters denote a significant
difference in the same column (p < 0.05), according to one-way ANOVA.

3.2. Effects of Lactobacillus casei LTL1361 and DFC on Gene Expression of Apoptosis-Related
Protein Markers

Apoptosis, a key mechanism of programmed cell death, plays a crucial role in devel-
opment, degeneration, and regeneration in many body organs, especially the brain [40,41].
The gene expressions of apoptosis-related markers, including proapoptotic protein caspase-
3 and antiapoptotic protein B-cell leukemia/lymphoma 2 (Bcl-2), were detected in the
brains of aged mice, and the results are shown in Figure 2.
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The mRNA expressions of Caspase-3 were significantly decreased in the three treat-
ment groups (p < 0.001) (Figure 2A), while expressions of Bcl-2 were significantly increased
by the treatment of LTL1361 and DFC (p < 0.05), especially by their combination (p < 0.001)
(Figure 2B).

3.3. Effects of Lactobacillus casei LTL1361 and DFC on Hippocampus Histology in Aged Mice

Evidence has indicated that the hippocampus plays a crucial role in learning and
spatial memory abilities, especially the CA1 region [42]. The hippocampal CA1 and CA3
regions of aged mice brains were analyzed by hematoxylin and eosin staining (Figure 3).
There was hyperchromic staining with shrinking of pyramidal nerve cells presented in
the hippocampus CA1 region of the control group; cells showed abnormal morphology
including chromatic agglutination and karyopyknosis. Compared with the control group,
the morphology of pyramidal nerve cells improved notably in treatment groups, especially
in the DFC + LTL1361 group. The pyramidal cells in the hippocampal CA1 region were
arranged more orderly and tightly, the cell morphology and structure were more complete,
and chromatic agglutination and karyopyknosis ameliorated obviously. The morphology
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of pyramidal nerve cells in the CA3 region also improved in treatment groups, but not as
notably as in the CA1 region. This indicates that probiotic LTL1361 and DFC could delay
the neuron damage caused by aging in the hippocampus of mice brains.
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3.4. Effects of Lactobacillus casei LTL1361 and DFC on Oxidative Stress

Malondialdehyde (MDA) is a byproduct of lipid peroxidation which could describe
the level of oxidative stress. To demonstrate the underlying mechanism of the protective
effect of Lactobacillus casei LTL1361 and DFC in aged mice, the total antioxidant capacity (T-
AOC), superoxide dismutase (SOD) activity, and MDA production in the serum and brain
of aged mice in different groups were evaluated (Figure 4). Treatment with LTL1361 and
DFC significantly enhanced T-AOC level and SOD activity in serum and brain compared
with the control group (p < 0.05) (Figure 4A,B,D,E). On the other hand, the contents of
MDA in serum and brain were significantly decreased in the treatment group (Figure 4C,F).
Thus, treatment with Lactobacillus casei LTL1361 or DFC could ameliorate oxidative stress
in aged mice, and the effect was better in the Lactobacillus casei LTL1361 + DFC group than
the groups supplemented with Lactobacillus casei LTL1361 or DFC.

3.5. Effects of Lactobacillus casei LTL1361 and DFC on Inflammatory Markers

To evaluate the effect of LTL1361 and dietary fiber on the level of inflammation in
aged mice, concentrations of proinflammatory cytokine tumor necrosis factor-α (TNF-α)
and anti-inflammatory cytokine interleukin-10 (IL-10) in serum and colon tissue were
examined (Figure 5). After 12 weeks of probiotic and dietary fiber intervention, TNF-α
concentration in serum and colon tissue was significantly decreased in the three treatment
groups compared with the control group (p < 0.05), whereas IL-10 levels significantly
increased (p < 0.05). The results indicated that both Lactobacillus casei LTL1361 and DFC
treatments could increase the level of anti-inflammatory factors and decrease the level of
proinflammatory factors in aged mice. Furthermore, it should be noted that Lactobacillus
casei LTL1361 exhibited a better ameliorative effect with respect to inflammation in colon
tissue than DFC, and this was enhanced by combination with DFC.
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3.6. Effects of Lactobacillus casei LTL1361 and DFC on Gut Barrier Function in Aged Mice

Considering the decreased inflammatory level in colon tissue of aged mice in treatment
groups, the gut barrier function was assessed. In this study, there were no significant
differences in the food consumption between groups. The body weights of mice were
slightly reduced in treatment groups with 12 weeks of intervention compared with the
control group, albeit not significant (Figure 6A). On the other hand, the small intestine
index (Figure 6B) and colon index (Figure 6C) were significantly increased in the three
treatment groups. Small intestine and colon samples were stained with H&E to examine
morphological changes (Figure 7). Representative pictures indicated that the length of the
small intestinal villus obviously increased while inflammatory infiltration decreased in all
treatment groups. Similarly, decreased inflammatory infiltration was also observed in colon
in the three treatment groups. Tight junction proteins play an important role in maintaining
epithelial barrier function [43,44]. The mRNA expressions of genes encoding tight junction
proteins, including Claudin-1 and zonula occludens-1 (ZO-1), were investigated. Compared
with the control group, the mRNA expression of ZO-1 was significantly upregulated in
small intestine and colon tissues in the LTL1361 and DFC + LTL1361 groups (Figure 7D,F).
Meanwhile, the mRNA expression of Claudin-1 in the small intestine was upregulated ~10-
fold in the DFC group, ~5-fold in the LTL1361 group, and ~22-fold in the DFC + LTL1361
group (Figure 7E), whereas, in the colon, it was upregulated ~3.6-fold in the DFC group,
~1.9-fold in the LTL1361 group, and ~4.8-fold in the DFC + LTL1361 group (Figure 7G).
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Figure 6. Effects of Lactobacillus casei LTL1361 and DFC on body weight (A); small intestine index
(B) and colon index (C) of aged mice after 12 weeks of treatment. Gut index was calculated according
to the following formula: (tissue weight/body weight), × 100%. Different superscript letters denote
a significant difference in the same index (p < 0.05), according to one-way ANOVA.

3.7. Effects of Lactobacillus casei LTL1361 and DFC on SCFA Concentration and mRNA
Expression of SCFA Receptors in Aged Mice

SCFAs were recognized as the key microbial metabolites in the gut, which could
exert multiple beneficial effects on the host [45]. Given that the level of inflammation was
markedly decreased by LTL1361 and DFC treatments in colon tissue, the SCFA concen-
tration of colon contents in different groups was detected (Figure 8). The results showed
that concentrations of acetate and butyrate were increased in mice fed with LTL1361 and
DFC relative to those fed with a control diet, particularly butyrate (Figure 8C, p < 0.05).
The contents of propionate did not exhibit a significant difference across groups (Figure 8B,
p > 0.05).

SCFAs act as endogenous ligands for G-protein-coupled receptors (GPCRs) to exert
effects in the organ, and the best-studied SCFA receptors are GPR41 and GPR43, which
were later renamed free fatty-acid receptor 3 (FFAR3) and FFAR2, respectively [46]. The
mRNA expressions of GPR41 and GPR43 in small intestine and colon tissues were detected.
Compared with the control group, the mRNA expression of GPR41 in the small intestine
was upregulated ~6-fold in the DFC group, ~9-fold in the LTL1361 group, and ~40-fold in
the DFC + LTL1361 group, whereas the mRNA expression of GPR43 was upregulated ~20-
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fold in the DFC group, ~12-fold in the LTL1361 group, and ~32-fold in the DFC + LTL1361
group. On the other hand, there was no significant difference in the mRNA expression
of GPR41 and GPR43 in colon between the control group and treatment groups. These
findings suggest that Lactobacillus casei LTL1361 and the DFC might have a synergistic effect
on upregulating the expression of SCFA receptors in the small intestine.
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Figure 7. Effects of Lactobacillus casei LTL1361 and DFC on gut barrier function in aged mice. (A) Rep-
resentative H&E-stained small intestine section at 100×magnification; representative H&E-stained
colon section at 40× magnification (B) and 100× magnification (C); relative mRNA expression of
ZO-1 in small intestine (D) and colon (F); relative mRNA expression of Claudin-1 in small intestine
(E) and colon (G). Arrows show inflammatory cell infiltration; the black squares show the length of
the small intestinal villus; the red squares show the area exhibited in 100× magnification images;
* p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 8. Effects of Lactobacillus casei LTL1361 and DFC on SCFA concentrations in colon contents
and relative mRNA expression of SCFA receptors in aged mice. Acetate (A), propionate (B), and
butyrate (C) concentrations in colon contents. Relative mRNA expression of GPR41 in small intestine
(D) and colon (F); relative mRNA expression of GRP43 in small intestine (E) and colon (G); * p < 0.05,
** p < 0.01, *** p < 0.001.

3.8. Correlation among SCFAs, Oxidative Stress, and Inflammatory Markers

SCFA concentrations, serum oxidative stress, and inflammatory markers were signifi-
cantly improved with Lactobacillus casei LTL1361 and dietary fiber treatment. Therefore, a
correlation analysis was performed among SCFA concentration, serum antioxidant capacity,
and inflammatory markers. As shown in Figure 9, SCFA concentrations were significantly
correlated with serum T-AOC, TNF-α, and IL-10. Acetate, propionate, and butyrate were
all negatively correlated with proinflammatory marker TNF-α (p < 0.05) (Figure 9B,E,H),
but positively correlated with anti-inflammatory marker IL-10 (p < 0.01) (Figure 9C,F,I).
Acetate and butyrate were highly positively correlated with T-AOC (r = 0.572, p < 0.01;
r = 0.843, p < 0.00001) (Figure 9A,G).
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p-value.

4. Discussion

Aging is associated with a high prevalence of chronic diseases, disability, and cognitive
decline [47]. Cognitive abilities, such as memory and learning ability, play a crucial role in
the daily functioning of the elderly. Dietary fiber is well recognized for supporting gastroin-
testinal, immune, and metabolic health [48–50], but the appreciation for its importance in
cognitive function is less explored with only a handful of observational and interventional
studies available [51–53]. Recent studies have found that probiotic supplementation, which
contained Lactobacillus casei, Lactobacillus plantarumim, and Lactobacillus paracasei, improved
learning and memory abilities in D-galactose-treated aging mice [28,29,39]. In this study,
the Morris water maze test was conducted to evaluate the effects of DFC and Lactobacillus
casei LTL1361 on cognitive abilities in aged mice. Escape latency was significantly reduced,
and the cumulative duration of the target quadrant was significantly increased in naturally
aged mice treated with DFC or Lactobacillus casei LTL136. The results revealed that the ad-
ministration of both DFC and centenarian-sourced Lactobacillus casei LTL1361 significantly
improved learning and memory ability, and the improving effects enhanced with their
combination (Figure 1).

Apoptosis, or programmed cell death, is a fundamental feature of all animal cells
which is involved in cell growth, division, and differentiation, and which causes a series of
changes in cell morphology and function [40]. In recent years, caspases were found to be
highly associated with cell apoptosis. Among these, caspase-3 is a common downstream
effector of apoptotic pathways and a core protease that mediates cell apoptosis [54,55].
The mRNA expression of caspase-3 in the brain was significantly downregulated in mice
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administrated with DFC, Lactobacillus casei LTL1361, and their combination for 12 weeks,
but the mRNA expression of antiapoptotic protein Bcl-2 was significantly upregulated
(Figure 2). The results indicated that DFC and Lactobacillus casei LTL1361 could ameliorate
apoptosis in the brain of aged mice. Furthermore, the hippocampus of aged mice brains was
analyzed by H&E staining. Neuropsychological studies with hippocampal amnesia have
provided evidence that the memory system is critically dependent on the hippocampus,
especially the CA1 region [42,56]. The morphology of pyramidal nerve cells in the CA1
region improved notably in treatment groups compared with the control group. We
speculated that the ameliorated effects of cognitive abilities might be associated with the
protective effect of pyramidal nerve cell morphology in the hippocampal CA1 region
(Figure 3).

Evidence has indicated that cumulative oxidative stress plays a role in aging [9,57,58].
Dietary fiber and probiotic supplementation have been reported to reduce oxidative
stress [28,29,59–62]. The imbalance between antioxidants and pro-oxidants is called ox-
idative stress, and it is related to various diseases [63]. Previous studies have reported
that mitochondrial reactive oxygen species and free radicals play critical roles in cellu-
lar oxidative damage [58]. In vivo, free radicals act on lipids to produce a peroxidation
reaction, and the final oxidation product is MDA, which indicates increased oxidative
stress [7,64]. The total antioxidant capacity (T-AOC) consisting of enzymes such as SOD,
glutathione peroxidase (GSH-Px), and catalase (CAT), as well as nonenzymatic compounds
(e.g., glutathione, vitamin E), can prevent the oxidative damage of lipids [64]. A previous
study found that a probiotic mixture could significantly increase the activities of SOD
and CAT, as well as decrease MDA content, which eventually ameliorated the cognitive
deficit in a D-gal-induced aging mouse model [28]. Similarly, our results also revealed that
administration of dietary fiber or LTL1361 and their combination significantly enhanced
T-AOC level and SOD activity and decreased MDA concentration in both serum and brain
tissue compared with the control group; these protective effects might be associated with
the amelioration of learning and memory function.

Increased levels of inflammatory markers are related to aging-associated patholo-
gies [65]. TNF-α is a proinflammatory cytokine involved in systemic inflammation, which
is mainly secreted by macrophages and monocytes [66]. Increased levels of TNF-α usu-
ally aggravate the degree of inflammation in the body. On the other hand, IL-10 is an
anti-inflammatory factor that plays roles in downregulating the inflammatory response
and antagonizing inflammatory mediators [67]. Evidence has shown that dietary and
probiotic interventions affect host health and aging by improving immune homeostasis
and suppressing chronic inflammation [68,69]. In this study, TNF-α concentration was
significantly decreased and IL-10 was significantly increased in both serum and colon tissue
of aged mice following 12 weeks of probiotic and DFC intervention, compared with the
control group. Meanwhile, the small intestine index and colon index were significantly
increased in the three treatment groups. Colon histology revealed significant inflammatory
infiltration within the colon lamina propria of aged mice in the control group, while aged
mice in the three treatment groups exhibited relatively lower inflammatory infiltration.
Such an effect was also observed in the small intestine. The results demonstrated that
intestinal inflammation occurred during the aging process, and that DFC or Lactobacillus
casei LTL1361 had the potential to limit gut inflammation. Previous studies have indicated
that intestinal inflammation is related to epithelial barrier function [70,71]. The gut barrier
integrity and function are compromised during the aging process, which includes increased
epithelial tight junction permeability and decreased mucus production; ZO-1 and Claudin-1
are important indicators of intestinal barrier function [11,43]. In this study, the mRNA
expression of ZO-1 and Claudin-1 was significantly upregulated in both small intestine
and colon tissues in treatment groups, especially in the group with the combination of
DFC and Lactobacillus casei LTL1361, indicating a potential beneficial change in gut perme-
ability. Therefore, we speculated that DFC and Lactobacillus casei LTL1361 improved the
maintenance of mucosal barrier integrity and immune homeostasis.
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Previous studies have shown that SCFAs can promote intestinal epithelial cell prolifer-
ation [72,73]. Butyrate is an essential bacterial metabolite produced in the colon, since it is
a preferred energy source for colon epithelial cells, contributing to the maintenance of the
gut barrier function, as well as demonstrating immunomodulatory and anti-inflammatory
capabilities [74,75]. Our results showed that the administration of DFC combined with
centenarian-sourced Lactobacillus casei LTL1361 significantly increased butyrate and acetate
concentrations in the colon contents of aged mice. Evidence indicates that butyrate and
other SCFAs exert their effects through binding GPCRs that are involved in the resolution of
inflammation in the gut, and GPR41 and GPR43 are the best-studied SCFA receptors [76,77].
This study found that the mRNA expressions of GPR41 and GPR43 were significantly
upregulated in all treatment groups in the small intestine, whereas no significant difference
was observed in colon. However, another study showed that the expression of GPR43
in the colon of aged mice was significantly decreased (p < 0.05) in a high-fiber diet (5%
inulin) compared with a low-fiber diet (1% cellulose) for 4 weeks, but the authors did
not investigate gene expression in the small intestine [76]. Furthermore, it is interesting
to note that butyrate and acetate concentrations were highly positively correlated with
serum T-AOC and IL-10, but negatively correlated with proinflammatory marker TNF-α.
It is speculated that DFC combined with centenarian-sourced Lactobacillus casei LTL136
might ameliorate oxidative stress and systemic inflammation by elevating the production
of SCFAs and upregulating the expression of SCFAs receptors.

5. Conclusions

As stated above, our study provided evidence that administration of the dietary
fiber complex or centenarian-sourced Lactobacillus casei LTL1361 and their combination
showed antiaging potential, associated with improved learning and memory ability, a
protective effect of pyramidal nerve cells in the hippocampus, decreased oxidative stress
and inflammation in serum and tissues, a protective effect of gut barrier function, and
increased SCFA concentration and gene expression of SCFA receptors in the small intestine.
Furthermore, the dietary fiber complex or Lactobacillus casei LTL1361 and their combination
have the potential to become a promising functional food (probiotics or synbiotics) for the
elderly. Further studies are required to clarify the detailed mechanism of the gut–brain axis
in the metabolite-mediated antiaging effects.
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